Some functional equations in connection with
a theorem of Dubourdieu

By M. HOSSZU (Miskolc)

1. Let us consider four systems of surfaces depending on the parameters
X, ¥, z, u, respectively. In the u=constant surfaces there is determined a web by
the lines x =constant resp. y =constant resp. z=constant. Such a web is called
a hexagonal one if it is topologically equivalent with a web determined by the lines x =
=const. resp. y = const. resp. z =const. on the plane x +y +z = 0 in the orthogonal
coordinate system x, y, z, i. e. the relation

(1) Us (x)+Us (3)+ Ul () =0

is satisfied with suitable functions U’ for every fixed u=const. Similarly, the rela-
tions

) XD+ X2 () + X2 () = 0,
3) Y, (x)+ Yy (2)+ Y5 () = 0,
(4) ZI0)+Z2()+Z2w) =0

mean that the webs in the x =const. resp. y =const. resp. z=const. surfaces are
hexagonal webs. A theorem of Dubourdieu states that under certain differentiabi-
lity conditions any three of the relations (1)—(4) imply the fourth.

In the present paper we raise some problems in connection with certain functio-
nal equations arising in the examinition of Dubourdieurs webs.

Problem 1. Which are the solutions U', X¥, Yi, Z! of the system of functional
equations (1)—(4)?

Problem 2. What is the most general form of a ternary operation u =u(x, y, z)
satisfying (2)—(4)?

Problem 3. Which are the solutions X', Y, Zi of the system of functional
equations (2)—(4) for a given u=u(x,y, z)?

In the present paper we reduce the problems 2 and 3 to the solution of a system
of functional equations containing only three unknown functions of two variables,
further, we answer the problems 2 and 3 in the special case where

=Xt XY TNalP==X 2NaZ®==2%



182 M. Hosszui

2. Let us consider the functional equations (2)—(4). Suppose that all the
functions figuring there are invertible. Without loss of generality, we may suppose
that

xyz =u(x, y. z)

is a loop operation, 1. e. there exists a unit element e with the properties:
(5 Xee =gxe=eex=1x,
In the contrary case we would consider an isotope /(x, y, z) defined by
xyz =I(xbc, ayc, abz)

with arbitrarily fixed a, b, ¢. Clearly, this /(x, y, z) is a loop operation with unit
element e = abc, further, since the hexagonal property is an isotopy invariant one,
also I(x, y, z) can be written in the form (2)—(4) with suitable functions X7, Yi, Z',
Thus, in what follows, we assume (5).

With the notation
X(t) =—X31)
(2) can be written as
(6) X(xyz) = X1(p) + X3(2).

Let us substitute here z=eresp. y =e. Then we get

X'(y) = X(xye)—X%*(e), X%(z) = X(xez)—X(e)
by which (6) can be written as

X(xyz) = X(xye)+ X(xez)— X'(e) — X *(e).
Consequently, with the notation

Fl (1) = X«(1)— X2 (e)— X3 (e)

we arive at
(7) Fi (xyz) = Fi (xye)+ Fx (xez).
Similarly, (3)—(4) imply
®) Fy (xyz) = Fy (xye) + F; (ey2),
&) F2(xyz) = F. (xez)+ F: (ey2).
By putting here z=¢ resp. x=e, we have by (5) the initial conditions:
(10) Fi()=0, i=1,23.

Moreover, by putting x =e, y=e, and z=e in (7), (8) and (9) respectively, we see
that eyz, xez, xye are quasi-additions:

Fl(eyz) = F. () + F. (2),
(1) FX(xez) = F2(x)+ F. (2),

F2(xye) = F.(x)+ F. ().
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Let
(12) F uViv) = F )+ F @), i=1273

define three systems of binary operations V! which depend upon a parameter 1.
Then, e. g., (7) can be written as

Fi (xyz) = Fi (xye)+ F (xez) =
= Fx[(xye) Vx(xez)] = Fy [(xV:y) Vi (xVe2))

o xXyz = (xVi y) 7 (fo 2).
We obtain similar formulae from (8)—(9). Thus (7)—(11) can be summed up as
(13) xyz = (xVey)Vi(xVez) =
= (V2 y)Vy (WVe2) =
= (xVe2)V: (3Ve2),
where the operations V} are quasi-additions of the form (12) with unit element 7:
(10" uvVit = tViu=u, i=1,23.
2 Theorem 1. Supposed that Xi(t), Y(t), Zi(t) are invertible and (5) is fulfilled,
en

(I) xyz can be represented in the form (13) by means of the binary group opera-
tions Vi for which (12), (10") hold;
(I1) the functions X', Y', Z! can be given by F' so that
X: (1) = —Xx(t) = — Fi (t)— X () — Xz (e),
Xz (t) = X(xer)— X (€) = Fi (xef) + Xz (€),
X:i (1) = X(xte)— X (€) = Fi (x1e)+ X (),
Y, (1) = =F; ()= Y, (e)-Y, (e),
Y, (f) = F, (eyt)+ Y, (e),
Y, (1) = F (tye) + Y, (e),
ZX(t) = —F(1)- Z2 (e) - Z: (e),
Z2X(1) = Fl(etz)+ ZZ (e),
Z1 (1) = F. (tez)+ Z. ()

are true, where Xi(e), Yie), Zie) are arbitrary functions of the variables and ey:z,
xez, xye are arbitrary group operations experssible by means of F! in the form (11).
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Thus problems 2 and (3) reduce to the determination of the functions Fi(s)
satisfying (7) —(11). 1)
Remark that the special case

uViv = uVet 'Viv
of (13) was treated previously in [3].
3. Let us consider the special case
~X’=Xlm X=X —-YV=Y=Y=Y -2=Z'=2’=
Then (2)—(4) are specialized as
(14) oz =X XN+ X:@) = Y, [0+ Y] = 27 [Z:(0)+ Z: ().

From this 1t follows that
XYz =XZy =ZyX = yXz.

Hence (14) can be simplified as
(15)  xyz = Fy '(Fx(»)+ Fx(2)] = F, '[F,(x)+ F,(2)] = F. ' [F:(x)+ F-()).
Since x %y = xty is a binary group operation for every fixed 7, we have

(xty)tz =xt(ytz),
i. e.

o (FAR IR+ B+ F(D) = Fe (B0 + F{F E() + F(01))

which, by the new variables
u=F(t), v=F(y)
and by the notation

(16) f(s) = F.[Fs " (9],

can be written as

S HAu+0) +f(0)] = u+f~1[f(u) + f(v)].

Now we define

(17) M(u.v) = f=1[f(u) +f(v)]
by which we obtain the functional equation
(18) Mu+v,u) = u+M(u,v), M(u,v) = M(v, u).

Lemma. The most general continuous solution of (18) is
(19) M(u,v) = u+v+ec,

where ¢ is an arbitrary constant.

-i) A similar result can be established also for the more general case where x-+y is a group
operation but not necessarily abelian ([2]).
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ProOF. First we write (18) in the symmetric form
(20) M(u,v)+u = M(u,v+u), Mu,v)+v = M(u+uv,v).
The repeated application of (20) gives
(21) M(u,v)+nu = M(u.v+nu), M(u,v)+me = M(u+ mv,v)

for every integer n,m=0. If we write new variables v, = v+nu, u; = u+mo,
then (21) becomes

M(u,vy —nu) = M(u,vy)—nu, M(u, —mre,v) = M(uy, v)—me,

hence (21) remains valid for every integer n, m.
Both equations in (21) can be united in the form

(22) Mu+mo, v +n(u+me)] = M(u,v) +me+n(u+mre), n,m=0, +1, £2, ...

Let us introduce

(23) Nu,v) = M(u,v)—u—r,
then (22) becomes
(24) Nlu+me,v+n(u+me)] = N(u,v).

Now, choosing incommensurable # and v, by means of suitable integers m,, n;
we can define a sequence

Hl — u+m’1£', l'l = U"+"nlul, P, uk+1 - u&+mk+ll'k,t‘k+l = vk‘+‘nk!|‘k, “en

such that
g4 1] <lugly o4 1] <|t4l

Then, taking (24) into account, we get
N(u,v) = N(uy, v;) = N(uy, v) =...= N(limu, limv,) = N(©,0) = c.
k=

k=+o
Thus, by (23), we have proved
Mu,v) = u+v+ce

for any incommensurable u, v. However, the set of pairs of such w, v-s is everywhere
dense in the plane (w, v), therefore our lemma is proved, since M (u, v) is supposed
to be continuous.

By our lemma and by (17) we obtain

Jw) +f(v) = flute+ec),

flu—c) = F[F;Yu—c)] = a,,(u) (c = c(z,x))

therefore,

is an additive function for every fixed z, x. Thus we get
JF’.‘U) o a:,x[Fx(’)'i'C] = a:,x[Fx(r)]+ b:,x - a:.o[f‘o(f)]‘*' b:.O’

F: !U) ~— FU. ¢ [a:-.l}“_b:,ﬂ)]- b:.x - a:.x[f'(:q -\')]s
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by which (15;) becomes

xXyz = F:‘l [Fg{.\') + F:(y)] = Fo l(a:.‘é {az‘glFo(XJ]'i'bz,O '+‘a:.0[Fﬂ(y)I+
+bs,0—bz,0}) = Fo [Fo(x)+ Fo(3) +az0 (bz,0)] = Fo '|Fo(x)+ Fo(»)+G(2)],

where
G(2) = az0(b:,0) = c(z,0).
Here, because of xyz=xzy, i.e.

Fo '[Fo(x)+ Fo(3) + G(2)] = Fo '[Fo(x)+ Fo(2) + G(»)),

we have
Fo(3)+G(2) = Fo(2)+G(y),
thus
G(z2)—Fy(z) = a, G(2) = Fy(2)+a.
So xyz can be written as

xyz = Fo '[Fo(x)+ Fo(»)+ Fo(2)+a] = F ' [F(x)+ F(»)+ F(2)),
where
F(t) = Fy(t)+a/2.

Theorem 2. Every continuous ternary quasigroup operation xyz satisfying (14)
is a quasi-addition:

(25) xyz = F-Y[F(x)+ F(y)+ F(2)].

4. Finally, let us examine the solution of (14) e. g. for X, (7) in the special case
where (25) holds. Then we must solve the functional equation

(26) F ' F(X)+FD)+F@)] = Xx ' [X(0) + X< (2)).
With other variables and with the notation

G (=X, (y), s'=F-1(s)
‘we get
G(x+y+2) = G(»)+G(2).

By putting y = s—x, z = t—x, this shows that
G (t—x) = a(t)

is an additive function of 7 for every fixed x. Taking the definition of G into account,
we get
Xi(») = GpF(¥)] = ap[F(x) + F(y)] = ax[F(x)+ F(p)].

This function X,(y) with an arbitrary additive ax(r) satisfies (26) as
Xx(xpz) = ax[F(x)+ F(x)+ F(y)+ F(2)] = ax[F(x)+ F(»)]+ az[F(x) + F(2)] =

= Xz(M)+ Xx(2)
holds.
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Theorem 3. The most general invertible solution of the functional equation (26) is
X1) = a[F(x)+ F(y)],

where aJt) is an arbitrary invertible and additive function of the variable t.
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