On /i-ideals and k-ideals in hemirings*)

By D. R. LaTORRE (Knoxville, Tenn.)

1. Introduction

If a non-empty set S is a semigroup under each of two binary relations — and
-, and if - is distributive over +, then the system (S, +, +) is called a semiring.
A zero element of a semiring S is an element 0 such that 0-x =x-0=0and 0 +x =
= x+0 = xforall x£S. By a hemiring we mean an additively commutative semiring
with zero. The concept of ideal in semirings that is found most often in current
literature is the following. A /left ideal of a semiring S is a non-empty subset 7
closed under premultiplication by elements of S and under addition. Right ideals
are defined dually and a rwo-sided ideal, or simply ideal, is both a left and a right
ideal. We shall hereafter call these ideals left. right, and two-sided semi-ideals.

Although semi-ideals are useful for many purposes, they do not in general
coincide with the usual ring ideals if S is a ring and, for this reason, their use is
somewhat limited in trying to obtain analogues for semirings of ring theorems.
Indeed. many results in rings apparently have no analogues in semirings using
only semi-ideals,

HENRIKSEN ([5]) defined a more restricted class of ideals in semirings, which
he called k-ideals, with the property that if the semiring S is a ring then a complex
in Sis a k-ideal if and only if it is a ring ideal. A still more restricted class of ideals
in hemirings has been given by lizuka ([6]). However, a definition of ideal in any
additively commutative semiring S can be given which coincides with lizuka’s
definition provided S is a hemiring, and we call these ideals h-ideals.

The purpose of this paper is to investigate h-ideals and k-ideals in hemirings
in an effort to obtain analogues of familiar ring theorems.

Definitions and basic concepts occupy section 2 and, in particular, we compare
the BOURNE and l1ZUKA congruence relations in hemirings.

Section 3 contains our main results, and begins with a discussion of hemirings
of type (H). A hemiring is of type (H) provided that, under any natural homomorphism
of the hemiring onto a Bourne factor hemiring modulo an /A-ideal, the image of an
h-ideal is an h-ideal. Specifically, we give analogues, for hemirings of type (H). of
several theorems wellknown in ring theory.
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This research was supported by the Oak Ridge Institute of Nuclear Studies.
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2. Basic concepts

Definition 2. 1. A left k-ideal I of a semiring S is a left semi-ideal such that
if acl and x€ 8, and if either a+x¢c/ or x+ac<l, then xel. A left semi-ideal 7
of an additively commutative semiring S is called a left h-ideal provided that if
x,z€8 and i,,i€l, and x+i;+z = i, +z, then x€L.

Right k- and h-ideals are defined dually, and a two-sided ideal of either type
is both a left and a right ideal of that type. It is clear that every h-ideal is a k-ideal,
but examples disprove the converse. It is routine to verify that any class of k-ideals
(h-ideals) in a hemiring is closed under intersection.

As for rings, we define the semi-ideal (k-ideal. h-ideal) generated by a complex
M of S as the intersection of all semi-ideals (k-ideals, h-ideals) that contain M.
If M consists of a single element then the ideal it generates is called principal. Although
a characterization of principal semi-ideals is well-known. we know of none for
principal k- and A-ideals.

BoOURNE ([1]) has defined a relation, in an additively commutative semiring
S, relative to a two-sided semi-ideal /; namely a =&(/) provided there are elements
iy, iy €1 such that a+i; = b+i,. This relation has been further investigated by
BUGENHAGEN [4] and the following results are known. The Bourne relation is a
congruence relation in S and hence partitions S into congruence classes C,, Cy, ...,
the class C, containing x. Defining addition and multiplication by C,&5C, = C, .}
and C,+ C, = C,,, these classes form an additively commutative semiring S//.
The class C, is not necessarily of the form a + I. The semi-ideal 7 is contained in a
congruence class C;, which is a k-ideal of S, and S/7=S/C,. If S has a zero then
C; is the zero of S//. Finally, 7 is a congruence class mod 7 if and only if it is a
k-ideal; in this case C, =1

lizuka ([6]) has also defined a relation, in a hemiring, relative to any two-sided
semi-ideal 7, which we now give for any additively commutative semiring S; namely,
a[=1b(I) provided there are elements i;,i,€7 and z€ S such that a+i,+z =
= b+1i,+z. The lizuka relation is an additively cancellative congruence relation
and we shall denote the congruence classes by D,, D,. .... As before, the D, form
an additively commutative semiring S[/]7 that is also additively cancellative. The
semi-ideal 7 is included in a class D,, which is an h-ideal of S, and S[/]7= S[/1D,.
If S has a zero then D, is the zero of S[/]/. Moreover, [ is a congruence class mod /
if and only if it is an h-ideal. In this case, D; = 1.

Theorem 2. 2. If I is a two-sided semi-ideal in an additively commutative semiring
S then the Bourne [lizuka] congruence class C,[D,] is the two-sided k-ideal [h-ideal]
of S generated by 1.

ProoF. We prove the bracked assertion. Let 4 be any two-sided /A-ideal of §
containing I, b€ D,, and i€l Since b[=]i (/) there exist i, i, €l and z€ S such
that b+i, +z = i+1i,+z. Since A is an h-ideal, the equation b+ i, +z = (i+i;)+z
implies that b€ A4, whence D, S A. Since D, is an h-ideal containing 7, our result
follows.

Clearly, for any semi-ideal 7 in any additively commutative semiring S, x = y(/)
implies x[=]y(/). Examples show the converse false. But we shall later see that
if 1 is any h-ideal in a finite hemiring S then these two relations coincide.
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By the natural homomorphism of S onto S/I we mcan the mapping that carries
each a € S onto the Bourne class C, containing it. Similarly, we speak of the natural
homomorphism of S onto S[/]/.

HENRIKSEN ([5]) observed that a k-ideal 7 of a hemiring S is the kernel of the
natural homomorphism of § onto S//. If 7 is any semi-ideal of S then the lizuka
class D, 1s the zero of S[/]/, whence the /-ideal D; of S is the kernel of the natural
homomorphism ¢ of S onto S[/]1/. Thus, if 7 is an h-ideal then D, =1/, and [ is the
kernel of p.

The following theorem gives a sufficient condition for the Bourne and lizuka
relations to coincide.

Theorem 2. 3. If I is a semi-ideal of an additively commutative semiring S. and
S/1 is additively cancellative, then S/I = S[/]11. and if 1 is a k-ideal then it is an h-ideal.

ProOOF. Suppose a. b€ S and a[=]b(I). Then there exist i,,i, €1 and z€ S
such that ¢+ i, +z = b+i,+z. If v is the natural homomorphism of S onto S//
then, using cancellation, (@ +1i,)v = (b+1i,)v. Thus there exist iy, iy €7 such that
a-+i,+iy = b+i,+iy. whence a=5b(I). Therefore S/I=S[/]1. Now suppose 7 is
a k-ideal of S. If x+i,+z = i,+z. where i;.i, €l and z€ S, then by cancellation
(x+i,)v = i,v, whence x+i, +iy = i, +1iy for some iy, i, €/ Since I is a k-ideal,
it follows that x€/7 and 7 is an h-ideal.

BOURNE [2] calls a semiring S with zero element 0 semi-isomorphic to a semiring
T with zero provided there is a homomorphism from S onto 7 with kernel 0. It is
not difficult to give an example of semiisomorphic semirings that fail to be iso-
morphic. Also, it is clear that semi-isomorphic rings are actually isomorphic. In
this connection we have the following result.

Theorem 2. 4. A semiring with zero that is semi-isomorphic to a ring is itself
a ring.

PROOF. Let ¢ be a semi-isomorphism from the semiring S with zero element
0" onto the ring R. For any @€ S, there exists x< S such that —(ag) = xg¢. Thus
0 =ag—agp = ag+xp = (a+x)g, whence a+x = 0. It follows that (S, +)
is a group. If ap=bg for a,b€S then 0 = a¢g —bg = (a—b)p, whence a=>b.
Therefore ¢ i1s 1 -1, and S is a ring isomorphic to R.

Semi-isomorphisms between semirings replace many of the isomorphisms
between rings. The first example of this occurs in Theorem 2.5, an analogue of
the fundamental homomorphism theorem for rings. The unbracketed assertions
are due to Bourne ([2]).

Theorem 2. 5. Let ¢ be a homomorphism of a hemiring S onto a |[an additively
cancellative | hemiring T. The kernel I of ¢ is a k-ideal [h-ideal] of S and there is a
semi-isomorphism ¥ of S/I [S[/11] onto T such that if v is the natural homomorphism
of S onto S/I [S[/]11] then ¢=v¥.

For the proof of the bracketed assertions, note that if 7" is additively cancellative
then its zero is an Ah-ideal, whence the kernel of ¢ is an /h-ideal of S. Again using
additive cancellation to show ¥ single-valued, the remainder of the proof is routine
and is thus omitted. An example can be given to show that semi-isomorphism cannot
be replaced by isomorphism in the unbracketed statement.
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A semiring is called additively regular if its additive semigroup is regular in the
sense that for each a< S there exists x€ .S such that ¢ + x+a = a. The following
theorem and its two corollaries are of some interest.

Theorem 2. 6. An additively regular hemiring S that is semi-isomorphic to an
additively cancellative semiring T with zero is a ring.

PrOOF. If ¢ is a semi-isomorphism of S onto 7, and e is an additive idempotent
of §, then, since eq is an additive idempotent in 7 and the only such element in 7
1s zero, e is in the kernel of ¢. Since ¢ has kernel zero, e =0. Thus (S, -+ ) is a regular
semigroup with a unique idempotent and is hence a group.

Corollary 2. 7. Let p be a homomorphism from an additively regular hemiring
S onto an additively cancellative hemiring T. If I is the kernel of ¢ then S/I= S|[/|I
and S/l is a ring isomorphic to T.

Proor. By Theorem 2.5, S/I is semi-isomorphic to 7, whence. since S// is
also additively regular, Theorem 2. 6 shows that S// is a ring. By Theorem 2. 3,
S/I= S[/]1. Since the ring S/ is semi-isomorphic to 7, our result is immediate.

Corollary 2.8. If 1 is an h-ideal of a hemiring S then S|l is semi-isomorphic
to S If S is additively regular then S/I is a ring and S/I= S[/]1.

Proor. If ¢ is the natural homomorphism of § onto S[/]/ then 7 is the kernel
of ¢. Thus Theorem 2.5 (with 7= S[/]/) shows that S/I is semi-isomoprhic to
S[/11. If S 1s additively regular then. since S[/] is additively cancellative, Corollary
2.7 shows that S/7 is a ring and S/I=S[/]1.

An example can be given to show each assertion of Corollary 2. 8 false if 7
is only a k-ideal.

BOURNE and ZAsSENHAUS ([3]) define the zeroid Z of a semiring S as
{z€S:z+x = x for some x<S}. If § has an additive idempotent then Z is non-
empty, and the zeroid of any additively cancellative semiring with zero is zero.
lizuka ([6]) points out that if S is a hemiring, Z={z¢ S:z[=]0(0)} and is the
intersection of all A-ideals of S. The intersection of all A-ideals in any semiring with
0 is just 0. A frequent problem is that in a given hemiring the zeroid may not be
zero. However, BOURNE and ZASSENHAUS proved that if Z is the zeroid of any hemi-
ring S then S/Z has zeroid equal to zero, and if S is finite then S/Z is a ring. The
first of these two results can be generalized as follows.

Theorem 2.9. If I is any h-ideal of a hemiring S then both S|I and S[/] I have
zeroid equal to zero.

PRrOOF. Let v be the natural homomorphism of S onto 7= S// and ¢ the natural
homomorphism of S onto V= S[/]/. Let Z(T) and Z(V') denote the zeroids of
T and V. respectively. Since 7 is an h-ideal it is the zero of V, i. e., I=0y; but [is
also a k-ideal and hence is the zero of T. i.e., I=0;. Suppose zo€Z(V). Then
z0+x9 = xo for some x € §. Thus there exist i,, i, €/ and y€ S such that (z 4+ x) +
+iy+y =x+iy+y, ie, z+i;+(x+y) =0+i,+(x+y), so that z[=]0(J).
Hence zo=0p=7=0,, whence Z(V)=0,. Now if zve Z(T) then zv+xv = xv
for some x€8. Thus there exist i,,i, </ such that (z+x)+i, = x+1i,, ie,
Z+iy+x =0+i,+x, so that z[=]0(/). Therefore zp=0p=1 whence z€/.
But z€7 means zv=71=0;, whence Z(7)=0;.
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A semiring S is called additively periodic provided the additive semigroup of
S is periodic, i. e., every element of (S, -+) has finite order. This is the case if and
only if for each x< § there exist integers 0 <m <n such that mx =nx. In proving
that for any finite hemiring S, S/Z is a ring, BOURNE and ZASSENHAUS actually
proved that every additively periodic hemiring with zeroid equal to zero is a ring.
This observation together with Theorems 2.9 and 2. 3 provide a simple proof of
the next theorem.

Theorem 2. 10. /f I is an h-ideal of an additively periodic hemiring S then S|I
is a ring and S/I = S[/]1.

Once again we remark that an example shows Theorem 2. 10 false if 7 is only
a k-ideal.

3. Hemirings of type (H)

Although k-ideals and /-ideals in a ring coincide with the familiar ring ideals,
these two kinds of ideals generally lack an important property enjoyed by both
semi-ideals and ring ideals. Namely, A-ideals and /-ideals need not be preserved
under homomorphisms; indeed, they need not be preserved under natural homo-
morphisms, as appropriate examples show. For some purposes, however, it is nice
to have these ideals preserved under natural homomorphisms, and thus we are
led to the following definition.

Definition 3. 1. An additively commutative semiring S is said to be of type
(H) provided that if 7 is an A-ideal of S, and v is the natural homomorphism of S
onto S/, then the image, under v, of any A-ideal of S is an h-ideal of S/I.

If we replace h-ideal by k-ideal everywhere in this definition, S is said to be of
type (K). To require that a hemiring S be of type (K) is actually weaker than requiring
that its k-ideals be preserved under arbitrary homomorphisms of S. However,
the corresponding question for type (H) is still unanswered. Clearly every ring is
of type (K) and type (H), and suitable examples exist to show that not every hemiring
is of either of these types.

The hemiring /* of all non-negative integers and the hemiring £* of all non-
negative even integers are familiar examples of hemirings that are of type (K) and
type (H). Indeed. since both are additively cancellative their As-and k-ideals coincide.
The proofs of these assertions are straightforward once the A-ideals are shown to
be all sets of the form (m), where (m) denotes all non-negative integral multiples
of the element m<I*[E~]. We cannot make any general statement regarding the
occurence of hemirings of type (K). but for those of type (H) we have the following
theorem.

Theorem 3. 2. Every additively regular hemiring and every additively periodic
hemiring (in particular every finite hemiring ) is of type (H).

The proof will be simplified by the following two lemmas.

Lemma 3. 3. (1) Let ¢ be a homomorphism from an additively regular semiring
S onto a ring R. If i is an element of any left k-ideal I of S then —(ip) = x¢ for
some x e 1.
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(2) Let ¢ be a homomorphism from a semiring S onto an additively periodic
ring R. If'i is an element of any left semi-ideal I of S then —(iq) = x¢ for some x ¢ I.

PrROOF. In case (1), 7 is an additively regular subsemiring of S. Thus if i€/,
there exists x €/ such that i+ x+i = i. Applying ¢ to this equation shows that

xq@ =—(ip).
In case (2), let i1 and rcig. Now there exist integers n= m= 0 such that
mr=nr, whence (n—m)r =0, so that —r = (n—m—1)r. Thus —(ig) =—r =

=m—m—=1r=m-m-1)(ip) = [(n—m—1)ilg, and x = (n—m—1)i€lL

Lemma 3.4. If ¢ is a homomorphism from an additively regular (periodic)
semiring S onto a ring R then ¢ preserves both k-ideals and h-ideals.

PRrROOF. If 1 is a k-ideal of the semiring S, /¢ is a semi-ideal of R. Now suppose
a,belp,andreR,andr+a = b. Ifiy, i €Elwithi,g =aand i,g =b, thenr = i,¢ —
—iyg. If S is additively regular, part (1) of Lemma 3. 3 shows that —(i,¢) = xq
for some x ¢/, and if § is additively periodic then part (2) of that lemma applies.
Thus, r = i, —iy¢ = (i, +x)g€lq. It follows that 7¢ is a k-ideal of R. Since
k-ideals. h-ideals and ring ideals coincide in R. h-ideals are preserved by ¢ also.

Now, turning to the proof of Theorem 3. 2., if I is any h-ideal of the additively
regular or additively periodic hemiring S, then S// is a ring by Corollary 2. 8 or
Theorem 2. 10. Lemma 3. 4 then shows that the natural homomorphism of S onto
S/I preserves h-ideals. whence S if of type (H).

We now give some results for hemirings of type (H) and type (K), including
analogues of three well-known ring theorems. The following lemma is basic to what
follows.

Lemma 3. 5. Let I be a k-ideal of a hemiring S, and let v be the natural homo-
morphism of S onto S/I. If A is a k-ideal of S/l and B= Av~1, then S/B is isomorphic
to (S/D/A.

OQUTLINE OF A PROOF, Now B is a k-ideal of §. Since /v is the zero of §//, and
Ais a k-ideal of S/I, we have Iv= A. Thus I =(Iv)v—' < Av-! = B. Let ¢ be the natural
homomorphism of S onto S/B and v" the natural homomorphism of S/7 onto (S/7)/A.
Consider the mapping ¢:ap — (av)v’ of §/B into (§/1)/A. Now ¢ is single-valued.
one-to-one, and maps S/B homomorphically onto (S/7)/A. The details can be
found in [7].

Theorem 3.6. If S is a hemiring of type (K) (type (H)). and I is a k-ideal
(h-ideal) of S. then S/I is of type (K) (1ype (H)).

OUTLINE OF A PROOF. Let S be a hemiring of type (K) and 7 any k-ideal of S.
We must show that if A is a k-ideal of S//. then. under the natural homomorphism
v of S/I onto (S/1)/A4. the image of any k-ideal A" of S/ is a k-ideal of (5/1)/A.
Let v be the natural homomorphism of S onto S// and let B=Av~!; then B is a
k-ideal of S. Also, B"=A'v~"' is a k-ideal of S. Let ¢ be the natural homomorphism
of S onto §/B. By Lemma 3. 5, the mapping ¢:ag — (av)v’ is an isomorphism of
S/B onto (S/I)/A. Consider the inverse image (4 v)¢~1! of Av". If we can show
that this is a k-ideal of S/B then clearly A’v" is a k-ideal of (S/7)/A. Consider
(A’v=1)p = B'p. Since B’ is a k-ideal of S, and since S is of type (K), B¢ is a k-ideal
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of S/B. Now (A'v')g~'=Bp, and the reader is referred to [7] for the details. The
proof of the bracketed assertion is parallel.

Lemma 3.7. If S is a hemiring, I a semi-ideal of S, and N a k-ideal of S that
contains I, then, denoting by v the natural homomorphism of S onto S/I, we have
Nv=NJI.

Proor. Now Nv={av:a€N)}. Let avENv.aéN; then av={x€<S:x=a(l)}.
If ¢ is the natural homomorphism of N onto N/I then a¢ = {xcN:x=al(l)].
Clearly ap € av. Conversely, if x €av then there exist i;, i, € /< N such that x +i, =
= a +1i,. Since N is a k-ideal we have x€N. Thus x€ag, so that av=ag¢c N/IL.
Therefore NvE N/I. Now if bg€N/I with €N, as above we have bg =bvE Ny,
whence N/IS Nv.

We remark that examples exist that show Lemma 3. 7 false if NV is only a semi-
ideal. Our next theorem is an analogue of a basic result in ring theory.

Theorem 3. 8. Let S be a hemiring and I any semi-ideal of S. Then any k-ideal
(h-ideal) M of S/I is of the form N/I for some k-ideal (h-ideal) N of S that contains I.
If Iis an h-ideal, and S is of type (H), then the h-ideals of S/I are exactly the hemi-
rings N/I where N is an h-ideal of S containing I.

Before giving the proof we remark that the last sentence of this theorem holds
if we replace type (H) by type (K) and A-ideals by k-ideals.

PrOOF. Let 7 be a semi-ideal of S, v the natural homomorphism of § onto
S/I; then N =Mv~"'is a k-ideal [Ah-ideal] of S and Nv =M. Now N = Mv-1 contains
the kernel of v which, in turn, contains /7, so by Lemma 3. 7 we have M = Nv=N/I.
Now suppose 7 is an h-ideal of § and S is of type (H). If N is any /A-ideal of S con-
taining / and v is defined as before, then by Lemma 3. 7, Nv=N/L Since S is of
type (H) Nv=N/I is an h-ideal of S/I

As a final lemma we have

Lemma 3.9. If I is a k-ideal and M a semi-ideal of an additively commutative
seniiring S. and M S 1, then I/M = S/M if and only if 1= 8.

PROOF. Suppose I/M = S/M and s€ S. If v and g are the natural homomorphisms
of S onto S/M and of 7 onto I/M, respectively, then sv=ap for some a¢ /. Since
s €sv there exist i,., i, € M &I such that s+i, = a+i,, whence, since I is a k-ideal,
s€l. Thus S=1.

Definition 3. 10. A semiring S is called /A-simple if it contains no A-ideal
other than S itself and its zeroid; a semiring S with zero is called O-h-simple if it
contains no /A-ideal except § itself and possibly zero. By Theorem 2. 9. if M is an
h-ideal of a hemiring S then S/M has zeroid equal to zero, whence the two concepts
of simplicity coincide in S/M.

The next theorem is familiar from ring theory. Its proof, facilitated by Theorem
3.8 and Lemma 3.9, is omitted since it parallels the usual proof given in rings.

Theorem 3. 11. If S is a hemiring of type (H), and M is a proper h-ideal of S,
then S/M is 0-h-simple if and only if M is maximal among the h-ideals of S.
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If we define a semiring S with 0 to be 0-k-simple provided it has no k-ideal
except 0 and S itself, then the last theorem has an obvious analogue for hemirings
of type (K) and k-ideals.

Our final result is an analogue of an isomorphism theorem for rings.

Theorem 3. 12. If S is a hemiring of type (H) (type (K)), and I and M are
h-ideals (k-ideals) of S such that 1= M, then S/M is isomorphic to (S/1)/(M/I).

Proor. By Theorem 3.8, M/l is an h-ideal of S/I. If v is the natural homo-
morphism of S onto S// then (M/I)v-! =M. For, by Lemma 3.7, MS(M/[)v~".
Conversely, if ¢ is the natural homomorphism of M onto M/I, and xe(M/I)v—1,
we have xv& M/I, so that xv =myp for some m< M. Now mo © M, and, since x € xv =
=mp, it follows that x< M. Thus (M/I)v=' =M. An application of Lemma 3.5
completes the proof.
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