Soluble embeddings of group amalgams

By JAMES WIEGOLD (Cardiff)

1. Introduction

Let A =ami(A, B; H) be an amalgam of two groups A, B with amalgamation
H=A7 B normal in 4 and in B, and call such an amalgam normal. The main
aim of this note is to prove (Theorem 2. 3) that % is embeddable in a soluble group
if — and of course only if — 4 and B are soluble and the automorphism groups
induced by 4 and B on H together generate a soluble group. In a recent paper [1]
GrAHAM HIGMAN has given a criterion for the embeddability of an amalgam of
finite p-groups in a finite p-group. which has as a corollary for normal amalgams of
finite p-groups the result analagous to Theorem 2. 3. Higman's proof uses wreath
products; ours uses a technical lemma on generalised free products which is possibly
of some independent interest. Professor HIGMAN has made some helpful suggesti-
ons for a wreath product treatment of the soluble case and at present Mr. R. B. J. T.
ALLENBY is working on these suggestions. I thank Mr ALLENBY for some very
useful remarks.

Suppose that A =am(A, B; H) is a quite general amalgam. The CIM-algebra

of U (for full details see [2]) is the set of all subgroups of 2 obtained from 4, B, H
and the unit subgroup E by means of the operations of commutation; intersection;
and multiplication of subgroups in those cases where the product is again a sub-
group. A ClIM-criterion is a set of equations between the elements of the CIM-
algebra. The central theme of [2] was the proof that no CIM-criterion can be necessary
and sufficient for the embeddability of an amalgam in a soluble, or in a nilpotent
group. In other words, in general one has to go “outside™ the amalgam in order
to find embeddability criteria; for instance in [3] the tensor product was used to
formulate a criterion for embeddability of an amalgam in a nilpotent group of class 2.
A glance at Higman’s paper will show that his criterion in certainly “internal™;
and we show in the final section that the criterion given by Theorem 2. 3 is likewise
internal.

The notation used is as follows. For any group elements x, y the conjugate
¥~ 'xy is denoted by x* and the commutator x~'x” by [x, y]: longer simple commu-
tators are left-normed; for subgroups X, Y the symbol [X, Y] means the subgroup
generated by all [x,y] with obvious notation; and the derived series of X is
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2. Generalised free products and soluble embeddings

Our first theorem describes a connection between the cartesian [A4, B] and the
amalgamation in the generalised free product of a normal amalgam am (A4, B: H).

Theorem 2. 1. Let G be the generalised free product of two groups A and B amal-
gamating a normal subgroup H. Then in G,

(i) [4. BINH = [A, H][B, H];
(ii) for n=1, [4. B]™ NH = [[A, B]*-V(\ H, [4, B]"-1),

Prook. (i) Firstly [4, H] is a normal subgroup of A.[B, H] is normal in B
so they are both normal in H and [4, H][B, H] is a group: evidently it is also a
normal subgroup of G contained in [4, B] 1 H. To prove that [4, B] " H is contained
in [A, H][B. H]. proceed as follows. Let S be a left transversal (system of left coset
representatives) of Hin A and T a left transversal of H in B. Then [A, B] is generated
by elements of the form [sh. th’] with obvious notation. Using well-known commuta-
tor identitics it is a matter of routine to show that [sh, th’] is congruent modulo
[A. H][B. H] to [s,t]. It follows that every clement of [A, B] is of the form
[5y, 10952, 12]%.. . [8,, 1,]7"u. Where the s; are in S, the ¢, in T, u in [A, H][B, H]
and the ¢; integers. Suppose this element also lies in H. Going over to the factor-
group G/H and letting star denote image of element and subgroup of G in G/H,
we get

(2.2) [st, 111 [s3. 130 [sh, 1d)ee = |

But G* is the absolutely free product of A* and B* so that. as is well-known,
[A*, B*] is free on the generators [s*, 1*] with s in S— H and ¢ in 7 — H. Evidently
we can so arrange things (before going over to the factor-group!) that in (2. 2) no
pair [s{, 1] and [sf.4, t{+,] are identical; and it follows at once that all the ¢; are
zero. This means that every element of [4, B] H is in [4, H][B. H], completing
the proof of (i).

(ii) This is by induction over n. For n =1 we have immediately that [4, B]'()
(VH 2 [[A.B]( H,[A. B]]. By the proof of the first part, a typical generator of [4, B]
is of the form [f,x,, fox,]. where f, and £, lie in the group K generated by all the
[s, 7] and x,, x, lie in [4. H][B, H]. Straightforward calculation gives the following
sequence of equalities and congruences modulo [[4, H][B, H], [A. B]]:[fix;.fox;] =
=1, L2201, foxa, x[xy L oxo] = [ oxa] = U xallh Ll fax:] = LA )
where we remind the reader that commutators are left-normed. It follows that
every element g of [4, B] is of the form Au for kin K" and win [[4, H][B, H]. [A, B]].
We now use the fact that K* is free on all the [s*, /*] different from the identity.
so that K*" = [4*, B*] is free, possibly of zero rank. Then, assuming that g is in
H, its image in G* is A and so expressible as a reduced word in a system of free
generators for K*'; we can so arrange things with & and with this system that the
reduced word is obtained from k& simply by changing every 5 to s and every 7 to
t*. But g*=1 and u* =1 so that as k&~ is reduced, & must also be 1. Thus
g€|[[A4, H][B. H], [4, B]] and we have completed the case n=1. The proof of the
inductive step requires no essentially new ideas and we omit it.

In the following theorem we have not been at pains to obtain the best possible
bound for the length of the embedding group.
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Theorem 2. 3. Let A =am(A. B: H) be a normal amalgam where A is soluble
of length s and B soluble of length t. If the groups of automorphisms induced by A and
B on H together generate a soluble group of length n, then W is embeddable in a soluble
group of solubility length not exceeding n+ 1+ max(s. 7).

PrOOF. Let G be the generalised free product of 2. Then our condition certainly
implies that [H, [4, B]"]=E in G, and it follows at once from Theorem 2. | that
[A, B]"+*V (N H=E. Put Y=[A4, B]"*" and L=G/Y. We shall show that L is a
soluble embedding for 2. Firstly the image of A4 in L is isomorphic with 4/Y 1 4,
so we look at an element @ of Y1 A. Again using star to denote image of element
and subgroup in G/H, we have a* €[A4*, B*]"+* D[] 4*. But G* is the absolutely
free product of 4* and B* so that 4* meets [4*, B*] trivially. Thus a* =1,
a¢ Y H = Eso that A is isomorphically represented in L. So is B. Next, the inter-
section AY/Y(BY/Y is at least HY/Y. Conversely suppose that aY=5Y so that
a= by with obvious notation. Then a* =b*y* so that a* is in the normal closure
of B* in G*, and therefore ¢* = 1. Thus a€ H and AY/Y and BY/Y intersect precisely
in HY/Y, and L embeds . Lastly L is soluble of length at most n+ 1 +~max (s, 7),
since it is an extension of [4, B]/[A, B]"* 1 by G/[A, B]: this factor group is generated
by elementwise permuting homomorphic images of 4 and B. This completes the
proof of the theorem.

3. Internal criteria

Once again let A =am (A, B; H) be a normal amalgam and denote by X, the
subgroup [A, B]"™ [ H of the generalised free product of . Then the X, are sub-
groups of H normal in G which, by Theorem 2. 1, are connected by the equations

Xn:[Xn-l'r[A_s B](ll-l}]! n:l, 2..

We shall describe briefly how the X, can be constructed using only the multiplications
inside . Firstly X,=[A, H][B, H] and here the construction is obvious since
[A. H] and [B, H] are in H.

Suppose next that a.b,...ab, is any formal “*word™ in elements of 4 and B,
where a, and/or b, may be absent. Then we define the formal commutator of an
clement i of H with this word to be the element

R (o)), ) o

of H. 1t 1s well-defined because of normality and is, of course, the actual commutator
[h, a,b,...aib,] of h with the element a,b,...a,b, of any group containing . Sor for
instance X, is the subgroup of H generated by all formal commutators of elements
of X, with formal words of the form (a7 ‘b7 'a,b,)"...(a7 'bi 'ab)™ where the
g;are £ 1 and (a='h~'ab)~ "' means b~'a~'ba. The reader will readily supply defini-
tion of X, ., from X, and proofs for all the claims made about the X,.

Our final result is:

Theorem 3. 1. A normal amalgam N =am(A, B: H) is embeddable in a soluble
group if and only if A and B are soluble and X, is the unit subgroup for some n.
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Proor. If X, is nontrivial for some n, then in any group containing 2 the »-th
term of the derived series is non-trivial; so if X, # E for all n, every group embedding
A is insoluble.

Conversely suppose X, = E for some n and that A and B are soluble. An argu-
ment similar to that employed in Theorem 2. 2 shows that G/[A4, B]"™ is a soluble
embedding for 9.

Theorem 3.1 gives the internal criterion promised in the introduction. It is
pleasant in that it uses only intersection and commutation; the point is, of course,
that the X, are not necessarily in the CIM-algebra of .
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