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1. It is well known that the general continuous solution of Cauchy’s functional
equation

(1) f(x+y) = f(x)+/(y)
is (see e.g. [3] or [1])
(2) f(x)=cx,

with an arbitrary constant ¢. As DARBoOUX has proved ([4]), this (with nonnegative
¢’s) is also the most general solution of (1) which is nonnegative for positive x’s
(it is even enough to suppose the nonnegativity for small positive x’s). But without
any regularity-suppositions (2) isn’t anymore the most general solution of (1),
this can be shown and at the same time the most general solution of (1) can be
constructed with the Hamel-basis of real numbers ([7]).

In all these results (1) was supposed valid for all real x, y and then also (2) is
verified for all real x’s moreover, the Hamel-basis also gives a representation of
all real numbers. — But for many applications (see e. g. [1]), (1) can be supposed
valid only for nonnegative x. y. It is easy to show that (2) (with nonnegative x) remains
the most general continuous selution of (1) also with this restriction and with non-
negative x, ¢ also the most general solution nonnegative for (small) positive variables.
— But how to construct in this case the most general solution of (1) for nonnegative
X, ¥? Are there Hamel-bases of the nonnegative numbers?

In this little note we answer the second question in the negative and construct
nevertheless the general solution asked for in the first one.

2. We first recall the above-mentioned results of Cauchy, Darboux and Hamel
with short proofs: (1) implies by induction

(3) Sy + x4 ...+ x,) = f(x) +(x)+ ... +f(x,)
and with x; =x,=...=x,=x
(4) flnx) = nf(x).

If now x:%r (m=0, n=0) then by (4)

nf(x) = f(nx) = f(mt) = mf(1) i. e. f(%’ :] = % 1(1)
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(5) Srt)=rf(1)

for positive rational r’s. For x=0 (1) gives

(6) f10)=0,

so that (5) remains valid for all nonnegative rational r’s. If (1) was supposed for
negative x's too, then from (1) with y =—x

(7) S(=x) =—f(x)

follows and (5) becomes valid for all negative rational r’s too. — In particular for
t=1 we have from (5). by denoting f(1)=c.

(8) flry=cr

for all nonnegative rational or for all rational r's, respectively.
If f is supposed to be continuous, then from (8)

(2) f(x)=cx

follows also for all nonnegative or all real x's, respectively. But this follows also
from the nonnegativity of f for (small) positive x’s.
In fact, then for (small) y =0

fix+y) = f(xX)+f(») = fix)

i. e. f is monotonic (increasing) and now for irrational x we take two sequences {r,]
and {R,} tending to x monotonically from below or from above, respectively. Then
r,<x-=2R, and by (8) and by the monotony of f

cr,=flr.)=f(x)=f(R,) =cR,.

But for n-»~ both {r,} and {R,} tend to x, so ¢r, ~cx, ¢R,—cx and f(x), being
between the two has to be cx too. so that (2) is proved (f(x)=cx is nonnegative
for positive x’s if ¢=0).

Now, if no regularity-suppositions are made at all, but (1) is supposed valid for
all real x,y, then we make use of the Hamel-bases of real numbers. Hamel ([7])
has proved that there exist subsets B (the ,,Hamel-bases™) of the set of real numbers the
elements of which are rationally independent (i.e. rib, +rb,+...+r,b, = 0 only
if ry=ry=...=r,=0, here b;€ B and the r;’s are rational numbers; j=1,2. ...
..., 1, m being an arbitrary positive integer) and so that all real numbers can be
represented in a unigue way as linear combinations of the basis-elements with
rational coefficients:

9 x =riby4rby+...+r.b, (b; € B, r, rational).

So the general solution of (1) can be constructed by choosing the values of f in an
arbitrary way on B and then for any real x with the representation (9) by defining f by

(10) S(x) = ri flby) +rflby) + ... +1,f(b,).
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In fact, (10) satisfies (1), as one can see by substitution and on the other hand, from
(3). (5) (which were consequences of (1), derived without any regularity-suppositions)
and from (9)

fx) = flriby +ryby+ ... +1,b,) = ri flby) +rafihy) + ... + 1, f1b,)
i.e. (10) follows. g.e. d.

3. This last proof shows that we could construct the general solution of the
equation (1) valid for nonnegative x, y, if there would exist a “Hamel-basis B" of
the nonnegative numbers” the elements of which were nonnegative real numbers
and any non-negative real number could be represented in a wnique way as linear
combinations of the basis-elements with non-negative rational coeflicients. We show
that this is not possible.

In fact, if there would exist such a basis B’, then its elements would have to be
rationally independent as defined above (i. e. with r; rational and not only positive
rational numbers) for if e. g.

!‘Ihl -+—!‘sz+... *!’kbk—rk+|bk+|—...—rmbm = 0

could hold with positive rational r;’s and with one r; different from 0, then the
representation of the nonnegative number

x =rby+rby+...+nby = reibsg + oo+ b

would not be unique. — But for two basis elements b,, b, there exist positive
numbers n big enough so that

y = nb; —b,= 0.
If y had a representation

y = rby+rb,+rbs+...+r.b, (rj= 0 rational b;<B’)

then the basis elements would nor be rationally independent as we would have
nb, —b, = rib,+ryb,4+riby+... +r,b,,

e (ry—mby+(ry+1)by+ribs+...4rb, =0, r,+1#0. Thus we have proved

the following

Theorem 1. There don’t exist Hamel-bases of the set of nonnegative numbers,
i. e. there does not exist any set B" whose elements are nonnegative and any non-
negative number is representable as a linear combination of a finite number of elements
of B’ with nonnegative rational coefficients in a unique way.

The question of existence of such a Hamel-basis of the nonnegative numbers
was raised by J. Z. Yao (verbally).

4. Theorem 1 shows that the general solution of (1) for nonnegative x, y cannot
be constructed in analogy to Hamel’s construction ([7]) of the general solution of
(1) for all real x, y. We will show, however, that this can be done in consequence
of Hamel’s theorem. In fact, we shall prove that every solution of (1) for nonnegative
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X, y can be extended to a solution of (1) for all real x, y. This can be done by defining
(7) f(=x) =—f(x)

for —x < 0. We have to prove that the so extended f(x) satisfies (1) for all real x. y
if the original f(x) (x=0) satisfies (1) for all nonnegative x. y.
We distinguish 6 cases:
. x=0. y=0: there is nothing to be proved.
2. x=0, y=0. x+y=0. Then by (7) and by the validity of (1) for nonnegative
variables:
J&x) = Ax+3+(=)) =+ +L(—y) = f(x+¥)-1(p),

thus
S(x+y) = f(x)+£(y).
3. x=0, y=0, x+y=0: proof analogous to 2.
4. x=0. y=0, x+y=0. Again by (7) and by (1) being valid for nonnegative
variables:

JO) === =—-x+y)+x) =—((—(x+p) +/(x) = flx+y)—f(x)
thus
Sx+y) = f(x)+1(y),

in this case too.
5. x<=0, y=0, x+y=0: proof analogous to 4. And finally
6. x<0. y=<0:
Sx+y) ==fl=x=y) ==f((-0)+ (=) ==(f(=0)+f(-y)) =
= f(x)+f(y) q. e. d.

On the other hand every solution of (1) for all real x, y eo ipso satisfies (1) also
for all nonnegative x, y.
So we have proved the following

Theorem 2. Every solution of Cauchy’s functional equation

(h Sx+y) = f(x)+1(»)
for nonnegative x,y can be extended by the definition
(7) f(=x) ==f(x)

to a solution of (1) for all real x,y.

So every solution of (1) for nonnegative x,y can be given by taking an arbitrary
solution f(x) of the functional equation (1) considered for all real x. y, and by restrict-
ing it to nonnegative X’s.

Everywhere in this note the word “nonnegative™ can be replaced by “positive”
only then in 4 also

(6) f10)=0
has to be considered as a definition.



Cauchy’s functional equation 263

The content of this little note falls also under the heading “functional equations

on restricted domains™ (see e. g. [8], [5]. [9]. [2]. [10], [6]). which is a newer field
of research in the theory of functional equations.
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