A central limit theorem for equivalent random variables

By P. REVESZ (Budapest)

Introduction

The author of the present paper gave a talk in the Seminar of the Mathematical
Institute of the Hungarian Academy of Sciences at November 17. 1964 in the
presence of Professor A. N. KoLMoGORrov. In this talk Theorem 2 of this paper
was proved under the condition that the equivalent random variables are uniformly
bounded. KOLMOGOROV proposed a way to prove Theorem 2 in this stronger form.
In this paper we follow the advice of KoLMOGOROV to prove Theorem 2.

First of all let us mention some definitions.

Definition 1. (See [1], [2]. [3]). The events A,., A4,, ... are called equivalent
if the probability of the event A; A4;,...4; (i;#i, if j#[) depends only on k and
it does not depend on the indices i;.7,, .... iy. The numbers

Q&Y:P(A“A,-Z...A,-k) {k:1< 2..-.}
are called the moments of the sequence A, 4,. ....

Definition 2. The random variables ¢,, &,, ... are equivalent if the joint
distribution function of the random variables ¢; , &, .... ¢ U #0if j#1) depends

only on k and it does not depend on the indices i, i,. .... 0 i.e.

P{ﬁh ':.\'1 3 él’z ':.\.3 g seey lfik "‘—_.\'k} — Fk(l‘l ’ .\'2. ooy ".k) (!\‘ — ]. 2. ...)
In our paper [4] we studied the properties of equivalent events. Our main
result is the following: if the indicator function of A, is a(w), i.e.')

_ 1 if weA, § 5
a,(w) = 0 if wiA, (e =12 %)
then the sequence a, converges weakly to a random variable /(w) in the Hilbert-space
of the square integrable random variables. i. e.

M(an) - M(in) (k = ==)

') All random variables and events are defined in a probability space {£2, S, P}, i.e. all events
are elements of the o-algebra S, all random variables are measurable functions in the space {£2, S}.
So aw(w) is also a random variable.
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for any square integrable n, and the events A,, A,, ... are independent under the
condition that /. takes a fixed value, i. e.

P{A“AI'J...A“]A):P{Ah!;.)P(A‘-:u.)..-P{A"k..‘:.):;'.&

with probability 1.

Using this result the full characterization of the sequences of equivalent events
is very easy.

The study of equivalent random variables is not so simple. The aim of § 2
is to generalize the above mentioned theorem of [4]. (Theorem 1). Actually this
generalization already was mentioned in [4] in a not very exact form without any
proof.

In §3 we prove our central limit theorem using Theorem 1.

§ 1. Lemmas and notations

In this § we prove some simple lemmas and introduce some notations. These
lemmas will be used in § 2 and § 3, but some of them are interesting in themselves.
Our first lemma is known (see [5]. [6]).

Lemma 1. If H is a Hilbert space and |f,} is a sequence of elements of H such
that

lim (f,.f)) = % k=1,2,..)

n=s oa

and
IAl=C (n=1.2....)

where C is a positive constant and {7, } is a sequence of real numbers. Then f, converges
weakly to an element [ of the Hilbert space H. i. e.

(/o 8)—~(f8) (n—=)
for every element g of H.

The next lemma is a trivial consequence of Lemma 1.

Lemma 2. Ler C,,C,. ... be a sequence of equivalent random variables with
finite variances. then &, converges weakly to a random variable p in the Hilbert space
of square integrable random variables, i. e.

M(En) — M () (n— =)

for any square integrable random variable .

Lemma 3. If the random variable Y(w) is a symmetric Baire function of the
equivalent random variables &, . &5, ... and g(x. y) is a Borel measurable function defined
on the Euclidean plane then g(&,, ). g(&5. W), ... is a sequence of equivalent random
variables.



A central limit theorem for equivalent random variables 297

Proor. The distribution functions ?) Fy(x,), Fy(x,, x,), ... uniquely determine
the distribution function of ¥(w) and the joint distribution functlon of g(&;,, ).
g(&,. ), ....g(&;, . ) which does not depend on the indices i;,7,. ..., i

Lemmad. Let £,.¢&,, ... be a sequence of equivalent random variables with
finite variances, then
S1+8t+. ¢
n
and

(2)

converges to an integrable random variable ¢*(w) with probability 1, where u is the
weak limit of &,.
PrOOF. (1) and (2) are trivial consequences of the Birkhofl's individual ergodic
theorem and the Lemma 3. A very different proof of (1) can be found in [7].
Let &, , &,, ... be a sequence of equivalent random variables, we use the following

notations:
1. A,(x) is the event that ¢, < x, i. e. A,(x) is the set of those points w¢ Q for

which ¢, (w)=x.
2. a."(w) is the indicator function of ALx); i e
ay(w) = o Moo
. 0 i wéA(x).
Our next lemma characterizes the behaviour of the weak limits of the sequences

Ci=P+ =+ .-+ (= p)?
n

af,x'((u).
Lemma S. We can define a stochastic process 7 (w) (— = =x-===) such that

17 A, is the weak limit of {a,. et (—o<Xx=<o)
2" Alw) is a distribution function for each w¢e Q.

Proor. Evidently
P{i,=4,} =1

if x=y. Let the sequence of rational numbers be r,, r,, ... We define the random

variable 4, as any *) weak limit of the sequence {a, "}:;,. If 4,, is already defined

for each w, then we can define the random variable Z,, as that weak limit of

2| = . 5 - . .
ay”'|r_y what is not larger (not smaller) than /4., everywhere if r, <r; (ry <r;)

respcctively If 4,,, 2., ..., 4, is already defined then we can define the random
variable 2 such that

T+ 1

a) 4, ., is the weak limit of & tode i)
1) B N :/1,,_ if j=k and rj=r 4,
rpo ZA,, if j=k and ry<ryy,.
?) R Frlx1, X3 yoicog X6) = P 1=<X1,E2<X3 5 ic; = X5}

3) The weak limit of a sequence is uniquely determined excepr for a set of measure 0.



298 P. Révész

Let 4, for an irrational ¢ be defined by
lim 4, =4,

where {r;} is an increasing sequence of rational numbers going to 1.
To prove our lemma we have to show that:

I. /, is the weak limit of {ay’}s—1 (7 is irrational)

II. P{lim/,_,=4}=1 (for each 1)
h—0

L. P{lm 4=0}=P{lim}, =1}=1.

11— - = =
The proof of I: Let the weak limit of @) be f,. Then evidently
P{p=i=4,}=1

if r<=r. For any &= 0 we can find a rational r such that r <t and

(3) f (a¥ —a¥)dP<¢ for each N
(el
but we have
(4) im [ (@ —dPyap = [(B.—iydP = [ (B—i)dp
Nevor g [4] o

(3) and (4) together imply I.
The proofs of Il and III are so similar that we omit these proofs.

Our next lemma is a generalization of a theorem of Dynkin ([8]) and our
Theorem 3 in [4].

Lemma 6.
; (x1) (x2) (Xp) 47y ar2 < Fi s 4 1 afy aF2 - Py
Mol ol iy Aay Aes sy ) = MUy By sy Tas Aeg 55+ A0
provided that the indices i, i,, .... i, are different.

PRrOOF of this lemma is exactly the same as the proof of our Theorem 1 in [4],
therefore we omit it.

§ 2. The conditional independce of equivalent random variables

Let &,,&,. ... be a sequence of equivalent random variables. The problem of
this § is to find a “small and sufficiently concrete™ o-algebra F such that

PiCi<Zii 63 <Xs; i Ca <N F} =
= P{il <X, |F} P{(f, -r:.\'zi'F}..‘P{g",, ﬂ:.\‘,,IF}

with probability 1. Knowing the mentioned result of [4], it is a very natural conjecture
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that the o-algebra generated by the stochastic process 4.(w) is good from this
purpose. More exactly*:

Theorem 1. Let &,.¢&,, ... be a sequence of equivalent random variables, then
(A} P{éi. *':xl ’ fr’; - '\.29 ey éi,. c:'\_‘kfF} :)'.\'.;t.tg“'j'.t

with probability 1. where F is the smallest c-algebra containing the sets

Kk

(5) A={wa = <b,ay=h,<b,y,...,a,=4, <b,}
and /i (w) is the stochastic process defined in Lemma S.
PrOOF. Let us suppose that
(O Pl =m1.li e Xas i S < mIFY = Lodiagiodo -8, s X3 000 B

Here the random variable e=g¢; ;, ;(x;,x;.....x) is evidently measurable with
respect to F.
By Lemma 6 and our condition (6) we have evidently

aly =r2 afja - - o (x1) (x2) (Xp) sry arz iy
‘n/!(ﬁflf"l""‘f}’".‘]f‘x.‘“'/‘xk) - N!(ail a': ”'a'.k /I.'] "'l:“'/"f‘( -

= M(M(@@"aly®...a i A2 . AP | F)) = M(232 03 ... 4 M(a§: a3 ... alf¥ | F)) =
= M[t; 23 .- 2] (Ax, Axy + ... + g + €)].
Therefore we get
(7 M A3 ... 3e) =0
for any sequence |ri}{:1 of real numbers and any sequence {r,—}f:, of integers.
To prove our theorem it is enough to see that

(8) ft:dP = fczdP =0
A n

for any A of type (5). where z is the indicator function of A. But (8) follows from
(7) using the fact that « can be approximated in mean by a polynomial

Z alfy al2 ar;
Crirgoryfay Fory oee 25

§ 3. A central limit theorem

In this § we prove that the partial sums of a sequence of equivalent random
variables are asymptotically normal distributed under the condition that the random
variables ¢ and o take fixed values.

*+ A weaker version of this theorem is proved in [8]. Namely the author proves that the
expectation of the right hand side of (A) is equal to the expectation of the left i. e.

(B) Pllr=x1,82=%3, .o. En=Xu) = M(Ax; Ars scr diy)-
In [9] the relation (A) is stated but only (B) is proved.
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More exactly:
Theorem 2. Let &, <,. ... be a sequence of equivalent random variables having
finite variances. Then

X

[ -5
,u,rf}—* o fe *di n-— oo
V2n ¢ ‘
with probability 1 and similarly

(10) P{@-‘_‘“’“‘52*“)“i‘-'-'-?“@*r*--"-‘)c:.x-}¢ ' f e ¥ (n— =)

Vno ';;'2—}1

9) p{él.ig}i'“ +&a . DY

Vne

provided that P{a=0}=0 (where the random variables p and o were defined in
Lemma 4.)

Remark. It is easy to see that if P{e =0}=0 then
P{&fi:ﬂla=0}'—=].

Therefore from now it will be assumed that P{¢=0}=0.
Before the proof of Theorem 2 we have to prove two lemmas. First of them is
evident:

Leml‘l‘la 7¢ (":l _"H)- ’ (gz __211):
G- g

. ... Is a sequence of equivalent random variables
with
&i—n)? -
The second one gives the connection between the random variables pu, ¢ and
the stochastic process A,.

Lemma 8. If ¢, &,, ... is a sequence of equivalent random variables with finite
variances, ”l(’ﬂ'

(11) MEIF) = [ xdi,=p  (@(=1,2.)
and i
(12) M(E—wlF) = [ —pdi, = a?

with probability 1.

PrOOF. We prove only (11) because the proof of (12) is exactly the same. (11)
evidently follows from Theorem 1 and Lemma 4. In fact Theorem 1 and the Kol-
mogorov’s strong law of large numbers imply

4w
(13) P{-*—‘-*—”-' o / t(ﬁ.,!F} =1

n

—
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and

(14) MEIF) = [ ta,
with probability 1. (13) implies 3

" ;
(15) P{—“*‘AJ* frd).,}:l

e

(14), (15) and (1) together give (11).
Proor oF THEOREM 2. By our Theorem |. Lemma 8 and the simplest form of
the central limit theorem we have

X

g (] .
(16) P {g_' L3 éﬁ.’f.{'_‘_' A _\'! F} - ——l: Rl (n— <)
Vne | ¥2n

with probability I. Therefore

P{é' +¢, +I..: + & —np ~x i a} o~ M{Plé:r S2t . Hlu—np _
' no

X X

2 A
—"J'l'f[' l_ [f—zdf ,H.O'] = “l: /e 2 dt
V2n . F2n 4

—_— =

so we have (9). (10) evidently follows from (9) and Lemma 8.
Let us mention the following sharper form of the previous result:

Theorem 3. Let &, <5, ... be a sequence of equivalent random variables with
finite variances. Then

P{ﬁ(él‘ﬂ}%-(‘z(éz_lﬂ-i-----I-(‘,,(é,,—p)-‘__x}_. (1._ /‘e &
¥2n

2 —» OD
5 dt (n )

where {c,} is any sequence of real numbers for which

max ¢
3 1=k=
iy e =D
o Sy

and _ L
S,=Vei+ei+...+c2 (n=1,2,...).
PROOF of this theorem is exactly the same as the proof of Theorem 2, only we

have to apply the Lindeberg’s central limit theorem instead of the simplest form
of the central limit theorem.
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