A new proof of a theorem of Delange

By ALFRED RENYI (Budapest)

§ 1. Introduction

A complex-valued function g(n) defined on the set of natural numbers is called
a multiplicative number theoretical function if

(1. 1) - gnm)=g(n)-g(m) for (n,m)=1.

Here and in what follows (n, m) denotes the greatest common divisor of n and m;
if besides (1. 1) one has for any prime p

(1.2) g(p)=g(p) for a=2,3,...

then g(n) is called strongly multiplicative.
A complex-valued function f(n) defined on the set of natural numbers is called
an additive number theoretical function if

(1. 3) Sfln-m) = fin)+f(m) for (n,m)=1
and strongly additive if besides (1. 3) for every prime p
(1.4) AP I=N1p) for w=2L3 ..,

The theorem of DELANGE in question is the following (see [1] and [2]):
Theorem of Delange: Ler g(n) be a strongly multiplicative (complex-valued)
number theoretical function such that

(1. 5) gn)=1 for n=12,..
Suppose that the series
p)—1
(1. 6) Z _g_(p)i
P P

is convergent, where p runs over all primes*). Then the limit

(1.7 lim - 2 g(n) = M(g)

N—= = .N n=1

*) Throughout this paper p always denotes a prime.
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exists, and one has
(1. 8) A-!(g)=ﬂ‘l+g(p;_1].
r

Remark. Delange has proved also that the convergence of the series (1. 6) is
also necessary for the existence of a non-zero mean value M(g) of g, under the
condition (1. 5), but in what follows we shall deal only with the sufficiency of the
convergence of the series (1. 6) for the existence of (1. 7).

H. DeLaNGe ([1]. [2]) has given two different proofs for this theorem. The
first is analytic and makes use of deep Tauberian theorems; the second is elementary
but rather difficult, it is based on Selberg’s sieve method. In what follows we give
a third very simple and elementary proof.

This proof is based on the inequality: If f(n) is a strongly additive number theore-
tical function,

(1.9) avy=>1®
p=N P
and
(1.10) BA(N) = > f(p)?
p=N P
then ,
(1.11) %Z;ff(n)—A(N)[IEC.BZ(N)

where C, is a positive constant, not depending on the function f(n).

We shall call (1. 11) the Turdn— Kubilius inequality, because the inequality
(1. 10) was proved by J. KusiLius ([3], p. 35, Lemma 3. 1.)) by generalizing an
earlier inequality of P. TURAN ([4]).

Let us note that the Turan— Kubilius inequality has an obvious probabilistic
interpretation. Let us consider the finite probability space Py consisting of the
first N positive integers, these being supposed to be equiprobable. A strongly
additive function f(n) can be considered as a random variable on Py and can be
represented in the form

(1.12) ) = ;’\Isp(n)f(p) mh=1,2...,N)
where o~

3 {I if pln
(et =10 i atm

(Here and in what follows p|n denotes that p is a divisor of #» and pfn that p does
not divide n.) Clearly *)

B(N) ]

d ol o v Ll_ﬁ’]_ - f(p) {
N ,,.‘f"l‘l{'") —F;:J(P) A _,,;{- - +0 ey

*) [x] denotes the integral part of x.
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Thus (1. 11) can be written also in the equivalent form

flm) — .Z = C,B*(N)

2

n=1 |

(1.11") %

where C, is an absolute constant. As clearly the variance of the random variable
2 1 1 & ;
e,(n) on Py is equal to _p (l - p] +O(J_V_]’ if the random variables ¢,(n) (p=N)

were pairwise independent, then the variance of the sum f(n)= > 2 " e (n)f(p) would
p‘;
be exactly equal to the sum of the variances of the summands; now while the variables
&,(n) are not exactly independent, their dependence is rather weak. and this is reflected
in (1. 11”) which says (for real valued f) that the variance (on Py) of the sum
Sin)= 2> &, (n)f(p) is less than an absolute constant multiplied by the sum of the
=N

varian:cs of the terms of this sum.

The importance of the theorem of Delange is shown by the remark, that it
implies one of the main theorems of the statistical theory of additive number theo-
retic functions, namely the theorem of P. ERDOS and A. WINTNER [5]. Recently
in [6] we gave a new proof of this theorem by the standard methods of analytic
number theory. When writing the paper [6] we were unaware of the fact that there
exists such a simple proof of the theorem of Delange as presented below. After
having obtained such a proof, the simplest way to obtain the Erdds— Wintner
theorem is that through the theorem of Delange. This way of obtaining the Erdds—
Wintner theorem is much simpler than that given in [6]. Let us mention that recently
a quite different approach to the Erd8s—Wintner theorem has been given by
E. NovoseLov ([7]).

§ 2. Proof of Delange’s theorem by the Turdn— Kubilius inequality

Let us mention first that it is very easy to see (see [1]) that if g,(n) and g,(n)
are strongly multiplicative functions, such that (g, (n)| =1 and |g,(n)| =1 (n=1,2, ...)
and if

£(p)=g:(p)

1
except for pc P where P is a set of primes such that " =+ ==, then if M(g,)

exists, so does M(g,) and if the formula (1. 8) holds for g g, it holds for g=g,
too. As further it follows from the convergence of the series (1.6) and the condition
(1. 5) that the series *)

> 1-Re@)

2. 1)
( r 4

*) N (z) denotes the real part of the complex number z.
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i1s convergent too and its terms are nonnegative, and consequently the series

1
2.2 —
.2 Rapn=4 P

is convergent too, we may suppose that
1
:3) R(e(P)= 5

for all primes p, because if there would be primes p for which N(g(p)) =1, we
could, in view of the convergence of the series (2. 2) change the value of g(p) for
these primes (to 1 say) so that (2. 3) should be satisfied for all primes p. From now
on we shall therefore suppose that (2. 3) holds for all primes p. Let us put

(2.4) lg(p) =r(p) and argg(p)=1#(p)

where —n<=#(p)=+mn, i.e. we suppose that g(p)=r(p)e™ . It follows easily
from the convergence of the series (1. 6) and the condition (2. 3) that the series
with positive terms

log——
2. 5) L
P 4
2
(2.6) bl dat
r p
,{}2
@.7 . p(”)
r
are convergent and the series
2.8) Z #(p)
s P

is convergent (however the series (2. 8) is in general not absolutely convergent).
Let us define the strongly multiplicative function gy(n) by putting

g(p) if p=logN
ke &n(7) ={1 if p=logN.
By other words we put for any natural number »
(2.10) e = IT &)

p:rfpl:shf

Let us put further
@11 hy(n) = 2 p [3]g~(d)

where d runs over all (positive) divisors of #n and u(n) is the Mdbius function. Then
hy(n) is also a multiplicative function, (but not strongly multiplicative, because
hy(p) = gy(p)—1 and hy(p*) =0 for x=2).
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It is easy to see that

@12) en(m) = 3 hy(d)
. o hn(") .
and the series > . convergent and we have
n=1
n=1 p=log N 4

We have clearly in view of (2. 12)

o 1 < N & hy (d)
(2.14) N 2 ) = 5 2 hy(d) [?] = ZL+R
where*)

. 1 b s | ph 2r(log N)
(2.15) IRyl = ‘N’;;Z @l =5 [ (1+lg@)-1) = =5
and thus
(2. 16) lim Ry = 0

N = oo

As further
217 lim J] [1+.8..@;'__] o 1 1+§—(-”—):l]

N—=o p=logN P p P

the convergence of the infinite product on the right of (2. 17) (extended over all
primes p) being a consequence of the convergence of the series (1.6), we have
proved that

N
(2.18) lim -l- Davm) = JT |1 o SEL
N=o lt:l P

Thus in order to prove (1. 7) it is sufficient to show that putting

N
(2.19 Dy Z (8(1) —gx(m)
we have
(2. 20) lim Dy = 0.
N==
Now we clearly have
N
@.21) ;gﬁ(n){ 1T &P -1)
" ]'h-lng\f
and thus. putting
(2.22) fy(n) = 2 logg(p)
p>f(;;.\’

*) n(x) denotes as usual the number of primes p=ux.
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we have
I N
(2.23) Dy = — lefvm 1|
A' n=1
Now we need the simple inequality
les—1|=|z

valid for (z) =0, which can be proved e. g. as follows

z H
=1 = je:d;f = [dx = |z|.
0

0
It follows, in view of R(fy(n)=0

N

I
(2.24) Dy = 2{’![\-(!1)[.

By Cauchy’s inequality we get
I b
(2.25) D} = 5 2 v

Now evidently fy(n) is a strongly additive function, and thus, in view of the inequality
la+b|2 = 2(|al?+ 1b|?)

1 <,
(2. 26) —J_,N—.Zlu.w(nnz =

N | 2 - |2
Z|f‘-(n)—2—“f",(,p) ha| SLO
1| | N

_2_
N n= P=N -::J l

As regards the second term on the right of (2. 26) we have

> /5(p) = Ly leer(n) il b(p) |
p=~ P "logN<p=N P [ logN<p=N P |
and therefore in view of the convergence of the series (2. 5) and (2. 8) we have
f 12
(2.27) lim | Z’Iﬂ’—’l. -0
N—w | p=N P |

On the other hand, we can apply to the first term on the right of (2. 25) the
Turan—Kubilius inequality, and obtain

N | g 2 I o
1 Sl m- 5@ oz c,. S _ o[ 5 logr(+4(p) )
N J=1] psN P | p=N P logN<p=N P -

In view of the convergence of the series (2. 6) and (2. 7) it follows that

N 7 )
(2.28) lin = X |fm— ZL‘I(’—*"): = 0.
p=N I

N—= = }\‘r n.:-fl,

Thus we obtain from (2. 25), (2. 26), (2. 27) and (2. 28) that (2. 20) holds. In view
of what has been said above. this completes the proof of the theorem of Delange
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