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Recently the author has proved ([5]) some results on partially ordered groups
G satisfying the Riesz interpolation property: if @;=b; in G (i=1,2;j=1, 2) then
there exists some ¢€G such that ¢;=c=b; for i=1,2;j=1,2. It turned out that
in the theory of Riesz groups a distinguished role is played by the subdirectly irre-
ducible ones which can be characterized by the property that no two elements have
a g.1.b. (or L. u. b.) unless one of them is greater than or equal to the other. These
groups have been called (for want of a better name) antilattices, a typical example
being the group of all polynomials in the unit interval or the group of all trigono-
metric polynomials in the interval [0, 2], with real coefficients of course. As pointed
out, in antilattices a natural topology can be introduced by taking the open intervals
as a basis of open neighbourhoods, and then every antilattice becomes a topological
group (under a mild condition ensuring that it is a Hausdorff space). A necessary
and sufficient condition can be given to guarantee that the topological completion
of a commutative antilattice be a lattice-ordered group: for this and related
results we refer to [6].

Our main objective here is to consider antilattices which are at the same time
vector spaces over the real numbers. We shall see that in this case some results can
be stated which resemble those on vector lattices. ') The bounded and continuous
linear maps between antilattices will be considered briefly, and it will be shown that
bounded and continuous linear functionals on o-simple antilattices have the same
meaning. A certain amount of simplification arises if we assume that multiplication
by scalars acts continuously, i. e. if the antilattice is a topological vector space over
the reals. Then the antilattice 4 must be o-simple, and it is easy to see that a real-
valued norm can be introduced, and A possesses enough continuous linear functio-
nals to distinguish points. Moreover, A is then isomorphic to a group of real-valued
continuous functions on a compact Hausdorff space © where for the functions f
and g we put f=g if and only if f(o) =g(o) for all ¢€ Q. It is easy to derive an
approximation theorem of Stone—Weierstrass type. Finally, we characterize the
dual spaces of antilattices (with continuous scalar multiplication) as abstract Lebesgue
spaces.

") For vector lattices we refer to [1].
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A few remarks on terminology may be inserted here. ?)

Group will always mean an abelian group written additively. A group G is
called a partially ordered group if it is a partially ordered set under a binary relation
= such that a=b implies a+c¢ = b+ ¢ for all c€G. If in addition G is a vector
space over the real number field R such that a =5 implies 2a = /b for all 2=0 in
R, then G is called a partially ordered vector space. The set P of all x€G with x=0
is the positivity domain of G which completely determines the partial order of G;
namely, a=b if and only if b—a € P. G is lattice-ordered if = makes G into a lattice.
G is directed if to each pair a, b€ G there exists a ¢€G satisfying a=c¢ and b=c.
A directed group with the Riesz interpolation property mentioned above is said
to be a Riesz group. There are several properties equivalent to the Riesz interpolation
property; for instance: the closed intervals are additive: [a. b] + [c, d] = [a+ ¢, b+ d]
for all a, b, ¢, d<G. An antilattice is a Riesz group such that the g. 1. b. of ¢ and b
never exists unless it equals a or b.

An element z€G is a pseudo-zero if z#0 and z+P* = P*; and weG is
pseudo-positive if wd P and w+ P* € P* where P* denotes the positivity domain
P with 0 omitted. (Cf. [5].)

A partially ordered group (vector space) containing no non-trivial convex,
directed subgroup (subspace) is called o-simple. If G, (g€ 17) is a family of partially
ordered groups. then their mild cartesian product is the group of all vectors (....g,....)
with ¢ th component g, in G, such that (..., g,, ...)=(.... gz, ...) if and only if
g, =g for all e/ If we consider a subdirect product of the G, with this “mild™
definition of ordering, then we speak of a mild subdirect product. Finally, an
o-isomorphism is an algebraic isomorphism preserving order relation in both direc-
tions (i. e. it is isotone in both directions).

§ 1. Vector antilattices

Let 4 be a partially ordered vector space over the real number field R such
that it is an antilattice and contains no pseudo-zeros. For brevity, we shall refer
to A as a vector antilattice. We have the following results which can be proved by
slight modifications of the proofs in [5] and [6].

(1) If the open intervals (—a, @) with @« =0 in A are taken as a basis of open
neighbourhoods around 0, then A4 becomes a non-discrete topolozical group. A
will always be considered as furnished with this topology.

(2) If C is a maximal trivially ordered subspace of A4, then 4/C is fully ordered
under the induced ordering.

(3) A is o-isomorphic to a mild subdirect product of the fully ordered vector
spaces A/C where C runs over all maximal trivially ordered subspaces.

(4) The topological completion of A4 is a vector lattice if and only if 4 is an
approximation antilattice in the sense that, given a,bcA4 and =0 in A, there
exists a ¢€ A such that c¢=a.b and if x=a. b then x = c+u.

2) In the main we follow the terminology of [4]. For the definitions not reproduced here
see [4].
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(5) If L is a vector lattice and if 7 is a filter in the positivity domain of L such
that (i) a€(—¢ ¢t) for all 1€ T implies a =0, and (ii) r€7, 2=0 implies 21 € T, then
keeping L as a vector space over R and weakening the order of L by declaring only
0 and the elements of 7 to be positive, we obtain an approximation antilattice A.
The topological completion of A contains an o-isomorphic copy of L.

(6) Every dense subspace of A4 is again a vector antilattice.
(7) The mild cartesian product of vector antilattices is again a vector antilattice.
We list some more properties of vector antilattices.

(8) If K is a trivially ordered subspace of A, then its closure K is likewise tri-
vially ordered. Thus maximal trivially ordered subspaces of A are closed.

To prove this, assume a, b€ K and a=b. Choose u=0 in A such that 2u =
< b—a. There exist ¢, d€K satisfying c€(a—u, a+u). dé(b—u, b+u). Hence
¢ =a+u <= b—u = d would be a contradiction.

(9) If K is a non-trivially ordered convex subspace of A. then K is open. If
A is an approximation antilattice, then A/K is a vector lattice.

Let =0 belong to K. Given a€ K., (@ —u, a+u)= K too whence K is open.
If to a, b A, c€ A is chosen as described in (4). then we have aK/ bK = ¢K for
the cosets in A/K.

(10) If A contains no pseudo-positive elements, then its topological dimension is
0 or I.

Let a<€ A belong to the closure of the open set (—u, u) where u=0. Thus for
everyr =0in A, (@ —v, a +v) intersects (— u, u). On account of the Riesz interpolation
property, this is equivalent to the fulfilment of the inequalities ¢ —¢ < u and
~u = a+v. In other words, both —a+w« and a 4 u have the property that adding
an arbitrary element v =0 to them makes them positive. By hypothesis, —a+u = 0
and ¢+u =0, whence —u = a = u. Thus the closure of (—u, u) is the closed
interval [—uw, u]. We claim that the boundary of [—wu, u] consists of —u, u only.
For if a€[—u, u] and @ # —u, u, then —u = —a, a, and by the antilattice property
there is some ¢=0 in A4 such that —u+4v = —a, a. Therefore (a—v,a+v) =
< (—u, u), and a is an interior point. We arrive at the desired conclusion that the
topological dimension of 4 does not exceed 1.

Our proof shows that in general the closure of (—u, ) is the set (—u+ Q)
((u— Q) where Q denotes the set of all positive and pseudo-positive elements.
We also have:

(11) Q is the closure of P*.

§ 2. Continuous linear maps

Let A and B denote vector antilattices in the sense of the preceding section.
We are going to consider the continuous and the bounded linear maps from A4
into B.

Recall that a continuous lincar map f: 4 - B is a function of A into B such
that (i) f(a, +a,) = f(a,)+f(a,) for all a;€ A4, (ii) f(Aa)=7if(a) for all ac A, Z€R,
(iii) f is continuous in the open interval topology.

D 22
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Theorem 1. A linear map f: A ~ B is continuous if and only if to every b=0 in
B there is an a=0 such that

0=c=a implies f(c)c(—b.Db).

If f is continuous, then some neighbourhood (—a, a) of 0 is contained in %)
Jf=Y—b, b). Hence the stated condition is necessary. Conversely, if f satisfies the
condition and if given =0 in B, then let dcf~1(—b, b) be arbitrary. Since B is an
antilattice and 0€(—b—f(d), b—f(d))\(—b+f(d), b+f(d)), there is an open
interval (—b,, b;) with b, =0 in the intersection. Choose a € A so as to satisfy that
0=c=a implies f(c)e(—1b,,1b,). Then f(—a,a)=(—b,.b,), and it follows
fld—a,d+a) — (=b,b), i.e. [~ (—b, b) is open.

It follows at once:

Corollary 2. An isotone (antitone) linear map f: A —~ B is continuous if and
only if to every b=0 in B there is an a=0 (a=0) in A such that 0=f(a) <b.

In particular, an o-epimorphism is always continuous.

Corollary 3. An isotone or antitone linear map into an o-simple vector anti-
lattice B is necessarily continuous.

For, if given 4=0 in B, then some a =0 (or a =0) satisfies 0=f(a). If =0
is chosen such that Af(a) <b, then Aa =0 (or Aa<=0) satisfies 0=f(4a) <b.

Let fand g be linear maps from A into B. If /f and f+ g are defined as usual,
then the set of all linear maps from A4 into B is made into a vector space over the
reals. Let L(A, B) denote this space.

We shall use the convention: linear maps into R will be called linear functionals.

Define the linear map f: A —B positive, written: f=0 (where 0 denotes the
zero map of A4 into B) if ¢=0 implies f(a)=0; that is to say. f is positive if and
only if it is isotone. Accordingly. we set f=g to mean that g —f is positive. Under
this definition L(A, B) is a partially ordered vector space over R. Call the linear
map f: A ~ B bounded if there exist g, he€ L(A., B) satisfying g=/,0 and f,0=A.
Obviously, the sum. difference and scalar multiples of bounded linear maps are
bounded, and so are the positive linear maps. The bounded linear maps from A
into B form a subspace L,(A4, B) of L(A, B), actually the one generated by the
positive linear maps.

If f and g are continuous linear maps from A into B, then so are f+g and Ag
for all A€ R. Hence the continuous linear maps from A4 into B form a subspace
LA, B) of L(A, B). The following result tells us the connection between bounded
and continuous linear maps.

Theorem 4. If A, B are vector antilattices and B is o-simple, then bounded linear
maps are continuous. The bounded and continuous linear functionals on an o-simple
vector antilattice A are the same.

By virtue of Corollary 3, isotone linear maps of A into B are continuous, and
so are their differences, i. e. the bounded linear maps. The second statement is a
consequence of the following well-known result of Riesz [11].

*) We write simply f(—b, b) for f((— b, b)).
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Let G be a partially ordered vector space over R with the Riesz interpolation
property. The relatively bounded #) linear functionals of G form a complete vector
lattice L where the lattice-operations \V and / are as follows:

(fvg)a) = sup {flb)+g(c) with 0=b,0=c,b+c = a},
(frg)a) = inf {f(b)+g(c) with 0=b,0=c,b+c¢ = a}

for a=0 in G.9)

In order to complete the proof of Theorem 4. let f: A ~R be a continuous
linear functional and £=0 a real number. If (—=b,b) = f~'(—e&,2) and A=0
satisfies [—a, a] — (— 4b, 2b), then f[—a, a] — (— Ae, /¢) and f'is relatively bounded.
By the cited result, both fV0 and f/0 exist. Hence f is bounded and the proof is
completed.

§ 3. Antilattices which are topological vector spaces

Henceforth we shall confine our attention to the case when the vector antilattice
A is at the same time a topological vector space over the reals, that is, the map
(2, a)~/7a of RX A into A is continuous °).

Theorem 5. A vector antilattice A has the property that (4, a) —~Ja is continuous
if and only if A is o-simple.

Assume that A4 satisfies the continuity condition, and let =0 in 4. Then
V = (—wv.v) is an open neighbourhood of 0. By hypothesis, to @€ A4 there exists
a real ¢ =0 such that |u| =e¢ implies pa € V. Hence —v <= pa <v, and thus the convex
subgroup generated by v exhausts the whole of A. Conversely, let 4 be o-simple.
Observe that the neighbourhoods (—v, v) are star-like, i.e. a€(—v,v) and |4 =1
imply Aa€(—uv,v). If given Aa and v=0 in A4, we can find £¢=0 such that na =4v
for [n|=e, and u=0 such that (A+é&)u = }v. Then (e. g. for A=0) ta—v =
~(i—e)a—u) = (L+e)a+u) = Za+v implies the continuity of multiplication
by scalars.

A vector antilattice in which multiplication by scalars is continuous will be
called a ropological vector antilattice.

Theorem 6. A topological vector antilattice is normable and admits enough
continuous linear functionals to separate points.

Recall that according to a well-known result by KoLmoGorov ([8]), a topologi-
cal vector space is normable (i. e. it admits a norm such that the induced metric
determines the topology) if and only if it is locally convex and has a bounded open
neighbourhood system of 0. These conditions are satisfied in our present case,

*) Relatively bounded means that for all a=0 in A, the set {f(#) with b<[—a, al} is a bounded
set of real numbers.

*) For an arbitrary ac G the definition of (fVg)(a) is immediate, since every a is the diffe-
rence of two positive elements of G. — For other proofs see [3] or [7].

¢) For topological vector spaces we refer to [2] or [3].
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hence with each x€ A4 we can associate a non-negative real number || x| given by
the Minkowski functional

(%) Ixll = inf {AlA-1x€ U, 1 >0}

for some fixed neighbourhood U = (—u.u) of 0. Note that this norm possesses
the property: —x-<y<x implies ||y| = |x].

In order to verify the second statement of Theorem 6. we can make use of
the following consequence of Eidelheit’s separation theorem: 7) if K is a closed convex
set in a locally convex linear space L and if x¢ K., then there exists a continuous
linear functional f of L such that f(x)= sup {f(y)|¥€K]}. In our present case we
take K= Q or — Q according as x #0 is not in Q or not in — Q. Then K is closed
(cf. (11) in § 1), and 0€ K implies that our sup is =0 whence f(x)=0. Therefore
the continuous linear functionals separate the elements of A4, indeed.

Next we prove the following result which gives a fairly good description of
topological vector antilattices.

Theorem 7. Every topological vector antilattice A is algebraically, order-theore-
tically and topalognaii) isomorphic to a group of real-valued continuous functions
on a compact Hausdorff space Q where ordering is mild. If in A the norm is defined
by (*), then there exists an isomorphism of A with a group of continuous functions
on Q which preserves the norm ®).

Let C be a maximal trivially ordered subspace of 4. From (2) we know that
A/C is fully ordered. We claim that 4/C is a vector space o-isomorphic to the real
numbers. For if u+ C is an arbitrary positive coset, then A(u+ C) becomes greater
than any other coset v+ C if / is sufficiently large, and thus A/C is archimedean.
Because of (8), the canonical map 4 - A/C is a continuous linear functional of A.
If we let C, run over all maximal trivially ordered subspaces of A, then by (3) the
totality of canonical maps A4 - A4/C, yields an o-isomorphism 7 of 4 with a mild
subdirect product of the I-dimensional real vector spaces 4/C,. Hence 7 is an
o-isomorphism with a group of functions.

We topologize the set of the C,, or the set Q of the indices ¢ of the C, as follows.
Given a real number 4 =0 and a finite number of elements a,, .... a, of A, let the
(d,ay, ..., a,)-neighbourhood of ¢ Q be defined as

(% %) Vs.ay . ... an(0) = {0€Q with |afg)—afo)| <d, i=1,...,n},

where a/(o) denotes the “‘value” of the function a; corresponding to a; under =,
or otherwise expressed, a (o) is the image of a; under the canonical map: 4 - A4/C,.
Clearly, ( % * ) defines the coarsest topology that makes all functions a correspond-
ing to a< A continuous. It is easily seen that this is a HausdorfT topology and, as
shown by GELFAND, ?) this topology makes € into a compact space. (It is to be

7) See [3]. p. 22. Here convexity is to be taken in the sense of the theory of topological vector
spaces.

&) Thus it is an isometry. Recall that the norm of a real-valued function is the sup of its
absolute value.

?) See e. g. NEUMARK [9]. Observe also that ( % % ) defines the unique topology under which
2 is a compact HausdorfT space and the functions corresponding to elements of A4 are continuous.
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noted that the kernel of an isotone linear functional of 4 is a maximal tri-
vially ordered subspace of A.)

If we have chosen U = (—uw, u) as a neighbourhood of 0 to define the norm
|x||, then clearly |u| =1. The vector space isomorphism between A4/C and R can
be assumed to be a normed space isomorphism if 4/C is considered as a normed
space under the induced norm |x+ C|| = inf {|x +¢|, c€C}. Now u+ C does not
intersect the interval (—w, u). since #+ C contains no negative elements, and there-
fore |u+ C| = ||u|. Thus u+ C corresponds to the real number 1, and the arising
isomorphism 7 mapping A into the group of continuous functions over £ will map
u upon the constant 1 function #. Since 7 is an o-isomorphism and the norm on
the space of continuous functions can be defined in terms of constant functions and
order in the same way as the norm was defined by ( % ). we conclude that 7 must
be an isometry.

Note that Theorem 7 holds verbatim if 4 is only assumed to be an o-simple
antilattice which is divisible and has isolated order.

Observe also that our result contains as a special case the Ky Fan— Fleischer
theorem on the representation of commutative lattice-ordered groups as groups
of continuous functions '°). In fact, if G is an archimedean lattice-ordered group
containing a subgroup H o-isomorphic to the group of real numbers such that the
elements =0 of H are strong units, then the filter generated by the strictly positive
elements of H gives rise to an antilattice 4 on G which is o-simple and hence the
preceding theorem holds true for 4. The transition from A to G is easily performed
by simply declaring also the pseudo-positive elements to be positive.

Next we are concerned with a result of Stone— Weierstrass type.

Theorem 8. Let A be a topological vector antilattice which is an approximation
antilattice. If Q is the compact space of the maximal trivially ordered subspaces of A,
then the topological completion of A is the vector lattice C(Q) of all continuous func-
tions on Q.

We begin with observing that '') A contains the constant functions, and the
definition of Q implies that A4 possesses sufficiently many functions to distinguish
the points of Q. Hence we conclude '?) that C(Q) is the smallest closed vector
sublattice, containing 4. of C(Q). Since lattice-ordered groups are distributive as
lattices, the vector sublattice generated by 4 in C(Q) consists of functions of the

form
y(ﬁlf\-"-"j\"fik‘) (qu-"”

where V and A mean point-wise maximum and minimum, respectively. In view
of the approximation property, these functions can be approximated by functions
f€ A arbitrarily. Hence the stated conclusion.

Our Theorem 8 generalizes the classical approximation theorem by Weierstrass
stating that polynomials and trigonometric polynomials approximate the continuous

‘“)_See_é. g. Risensoim [10].
') We may without fear of ambiguity identify 4 with m(A).
12) See [3), p. 103.
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functions on a finite interval. This generalization shows that from the point of view
of approximation it is more natural to consider a polynomial positive only if it is
=0 everywhere. (In fact, an approximation with a deviation =& makes this tacit
assumption.)

§ 4. The dual spaces

Next we shall be concerned with the dual spaces of topological vector antilatti-
ces. These are the vector spaces A* of all continuous linear functionals f of the
topological vector antilattices A. Since the 4 are normed vector spaces, so are 4*
with the norms

1Al = sup {|f(x)| for |lx||=1}.

This norm determines the same topology on 4* as the so-called polar sets of the
intervals (—a, a).

Before stating our theorem on the dual spaces, recall that an abstract Lebesgue
space is a normed vector lattice L such that (i) L is a real Banach space, (i1) /g = 0
implies | f+gll = ||f—gl, (iii) £, g=0 implies || f+g| = |[f] +/gl. Note that (ii)
is equivalent to: (ii") f and |f| = fV —f have the same norm.

We have the following characterization of the dual spaces.

Theorem 9. The dual space of a topological vector antilattice is an abstract Lebesgue
space.

From Riesz’ theorem cited in § 2 we infer that the dual space A* of a topological
vector antilattice A is a vector lattice. By classical results on normed spaces we also
know that A* is a Banach space in the norm mentioned above. In order to verify
(ii’), we show:

IUVO) +(—= VOl = ISl
which is equivalent to (ii") because of f\V —f = fVO+(—fV0). We have clearly:
I(VO) +(=fVOI = sup {(f(x)VO)+(—f(x)VO) for |x]|=1} =
= sup {sup [f(») for 0=y=x]+sup [—f(z) for 0=z=x] for x| =1} =
= sup {sup [f(y) —f(2) for y, z€[0, x]] for | x| =1}.

By the Riesz interpolation property, the closed intervals are additive, that is, the
set of all y —z with y, z€[0, x] coincides with the interval [— x, x]. Hence

I(fV0)+(—fVO)| = sup {sup [f(v) for v€[—x, x]] for |[x||=1} =
= sup {f(v) for |v| =1} = |IfI,
as claimed. To establish (iii), let f, g=0. Then f and g are isotone and we have
f(x)+g(y) = fiw)+g(w) if x,y=w.
Therefore, if to x and y in the unit ball w is chosen again in the unit ball, then
1f1l+ gl = sup {f(x) for x| <1} +sup {f(3) for |y|<1} =
= sup {f(w)+g(w) for |w|<1} = | f+g].
The converse inequality being always true, the proof of Theorem 9 is finished.
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