Applications of analytic number theory to the study
of type sets of torsionfree Abelian groups Il.

By D. W. DUBOIS'") (Albuquerque, N. M.)

We continue our study begun in [3] of the problem proposed by BEAUMONT
and Pierce [1] of finding necessary and sufficient conditions that a set of types
be the type set of a torsionfree Abelian group. The principal results here are an im-
proved sufficient condition for the rank two case, a necessary and sufficient condition
for a type set to be the type set of a quotient divisible rank two group, generalizing
[3] and KoEHLER [5], and a construction, generalizing those in [2], [3], and CORNER
[7], of great utility in type considerations; for example, every rank two group has
a type set that is the type set of some A(S; x) of rank two, and an A(S; x) of finite
rank is quotient-divisible if and only if 7(4(S; x)) is non-nil, where 7(A4(S; x))
is the g.L.b. of the types of a maximal independent subset. In the last paragraph
we formulate the rank two problem in number-theoretic terms which clearly show
its analytic character.

For most terms see Fuchus [4], §42, or BEaAumonT and Pierce [1]; and also
see [3]. Let S:1,, 7,, ... be a sequence of types and T a set of types. Sis a 7,-sequence,
where 7, is a type, if for all i <j, 7, 1;=14; Tis a 7y-set if 7" #1” implies 7" 1" =1,,
for all 7, t” in T. The formula D(i, j, p) stands for the predicate a,(p) <a,(p)<
<ua,(p) ===, where a, are characteristics. Let «, be a characteristic belonging to
7,, n=0,1, ..., and suppose S is a t,-sequence, T={r,;n=1,2,...}. Then T is
a t,-set. We say that 7; is a snarl of the subsequence S’: T,;y, Ty 2 --- (here n(l)<
<n(2)<...) if D(i, n(j), p(j)) holds for an infinite set of primes p(j). The sub-
sequence S’ is free if no t;is a snarl of it (briefly, if it has no snarls). Snarl of a subset
and free subset are defined analogously. By the standard list we mean a well-ordered
set comprising all coprime pairs (a, b) of integers with @ =0, such that if max{a, |b|}<
<max {a’, |b’|} then (a, b) precedes (a’, b’) in the order. A characteristic is non-nil
if it is almost everywhere zero or infinity. A torsionfree group is quotient-divisible
(g. d.) if it contains a free subgroup whose quotient is a divisible torsiongroup.
The sequence S, above, is a type sequence of the rank two group G if for some
independent x and y in G, the standard list can be indexed so that the type of
a,x+b,y is t,. The following Lemmas from [3] are used extensively:

Lemma. Let G be a rank two group containing independent elements x and y.
Define aq by: ao(p)=min{H,(x), H,y)} for every p. Let (a, b) and (c, d) be coprime
pairs, let p be a prime and suppose H (ax +by)=ay(p). Then: 1. T(G) is an [o,)-set
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and every type sequence of G is an [uy)-sequence. 2. If X" and y' have equal type
greater than [x,) then X" and y" are dependent. 3. The determinant ad — bc is divisible
by p if and only if HyJcx+dy)=ao(p). 4. If H,(ax+by)=co=0y(p) then
H(cx +dy) =uo(p) + Hy(ad — bc) (the last height is computed in the additive group
Z of all integers).

We now define the group A(S; x). Let S be a linearly independent set of reals
in the open interval (0, 1), and let x be a function whose domain is S and whose
range is a subset of the cartesian product [[I(p), where I(p) is the group of all

P

p-adic integers and p runs over all primes. For every s in S, x(s) is a function on
the set of all primes whose value at p, denoted by x(s, p), is a p-adic integer. Let
A(S: x) be the set of all finite rational combinations >a,s such that for every
p, 2a.x(s, p) is a p-adic integer. Then A(S; x) is a torsionfree group of rank |S/|.
The height at p of a member Yas of A(S; x) is the height at p of Ya.x(s, p) in
I(p) which is simply the p-adic value of > a.x(s, p). For every p, the correspondence
Das—~ Jax(s,p) is a homomorphism which preserves heights at p; its kernel
is the set of all members of A4(S; x) of infinite height at p and its image is p-pure
in I(p). For a subset S” of S let S'(p)={(s, x(s, p)); s€ S’}. We say that S'(p) is
independent provided that a (finite) rational combination 2a.x(s, p) is zero only
if all a, are zero. Then S’(p) is independent if and only if every nonzero member
> as of A(S; x) has finite height at p. Thus, if S(p) is independent then A(S; x)
SES’

is isomorphic with a p-pure subgroup of 7(p). Let K be a set of primes and suppose
that for every p in K and every s in S, H,(x(s, p)) =a(p) << and that the zero
degree term in the standard p-adic power series representation of p~*Px(s, p) is
[llog p|*]. Then for every nonzero a= Jas in A(S; x), H,(a)=x(p) for almost
all p in K; cf. [2]. To see this, suppose that K’ is an infinite subset of K and that
for every p in K’, H (a)=1+a(p). (It is clear that H (a) =«(p) for all p in K.) Then
for all large p in K,

p=2lay |log p| =| Xa/llog pl|,

while the latter quantity is divisible by p, hence zero; but this same quantity tends
to infinity with p along with its (nonzero) term of maximum exponent. Thus we
have a contradiction. We remark, finally, that 4(S: x) is cohesive if and only if
for every p, either S(p) is independent or else x(s, p) =0 for all s (see Theorem
1(b) of [2]): if we require that x be a one-to-one function and that S(p) be algebrai-
cally independent over the rationals, in the sense that the set of all x(s, p), for s
in S, is algebraically independent, then we can construct rigid systems of cohesive
groups A(S; x) as in Theorems 4 and 5, and Corollary, of [2].

The expression [|log p|*] appears so often that we shall abbreviateit by L(p, s).
As we saw above, if p divides Da,L(p.s) for every p in a set F;, and if not all
a, are zero, then F is finite.

Theorem 1. Let T be a set of types closed under finite g. . b. (if T and " belong
to T then so does t(\t"). Then there exists a group A(S; x) whose type set is T and
whose rank is |T)|.

ProOF. Let S be a linearly independent set of real numbers in (0, 1) of the same
power as T. Let each type in 7 be represented by a characteristic of that type and
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let & be a one-to-one function mapping S onto the resulting set of characteristics,
with values «(s), for s in §. The value of «(s) at p will be denoted by «(s, p). Let
x be a function from § into []I(p) satisfying (a) for every p the relation S, =

P

= {(s, x(s, p)); a(s, p) ===} is independent, i.e. if Sax(s,p)=0 then all a, are
zero; (b) for every p and every s in S, H,,(x(s, p))=a(s, p), and if a(s, p) <o then
x(s, p) =p** P(L(s, p) +...). To get such an x, take, for each p, a linearly independent
subset of elements y(s, p) in I(p) having L(s, p) as zero degree term, and in one
to one correspondence s<»y(s, p) with S. Thenlet x(s, p) = p** Py (s, p), if a(s, p) < o=,
x(s, p)=0 if «(s, p)=-oc. Now A(S; x) will have the required properties provided:
for every nonzero a= Jays in A(S; x), the type of a is the g.l.b. of the types of
its nonzero summands a,s (with a,+0). We show this by induction on the number
of summands. For the case of only one summand we have H,(s)= H,(x(s, p))=
=u(s, p) for every p so that the type of @ =a s is the type of s. Now suppose the claim
valid for all elements of A(S; x) with fewer than n summands, where n>1, and
let @ have exactly » summands. For every p set

#o(p) =min {H,(s); a, =0} =min {x(s, p); a,#0} = min {H,(x(s, p)); a, = 0}.

By condition (a) and the remarks preceding the statement of Theorem 1, the
summands of a with finite height add up to an element of finite height, at p, while
those of infinite height add up to an element of infinite height, at p. This shows
that H,(a) === if and only if a4(p)=-e=. Let F be the set of all primes p such that
if a;#0 then H,(as)=H,(s) and every sum of fewer than n» summands of a has
height at p equal to the g.L.b. of its summands. By the induction hypothesis, F has
finite complement. The induction is now completed by showing that

Fy={p;peF and Hya)=>x(p)}

is finite. The induction hypothesis implies that if p belongs to F, and a,+#0 then
Hy(ay) < ==, and therefore that H,(a) < <. Let a,be nonzero and let p belong to F;.
Then H(at)=H/(t)=uy(p): for supposing that H,(a,t)>ao(p) we deduce from
the induction hypothesis that > a.s, having fewer than » summands, has height

LE
at p equal to 2,(p) (recall that p belongs to F, < F), which implies that
H,(a) = H,(a, t+ ,;,:055) = H,,(%G,S) = do(p)s
5 5
which contradicts the membership of p in F,. We now see that if p belongs to F,
and a,#0 then H,(a)=1+2y(p)=1+u(s, p)=-e. By condition (b), p divides
SaL(p, s) for every p in F,, so F, is finite. The proof is complete.

From now on we consider mainly rank two groups, with a slight change in
notation. The set S will be a two element set, S= {x, y}, where x and y are inde-
pendent reals in (0, 1). The functions are denoted by » and v, and A(x, y; u,v)
is the group of all rational combinations ax+ by for which for all p, au,+bv, is
a p-adic integer; where u,, for example, is the value of u at p, i.e., a p-adic integer.
It may be that « and v are the same.

Let G be a rank two group containing independent elements x” and )’. Let
%o (p)=min {H,(x"), H(y")} for every p. Let (a,,b)=(1,0), (ay b;)=(0,1)
and let (a,, b,) be the n'™ member of a list of all coprime pairs (@, b) with a=0.
Let 7, be the type of a,x"+b,)". Then 7,, 7,, ... is a type sequence of G, and is an
[#o]-sequence. Choose characteristics a, in 1, so that «, = H(x'), &, = H(y"); for
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all p, ay(p)=min {H X', Hyy'}; if a,(p)=uo(p) then H,(a,x" +b,y")=u,p); for
all Kk =n and all p, min {crk(p) b (p)}-—:xo(p) unless D(k, n, p) Let x and y be inde-
pendent reals in (0, 1). Let p be a prime. There are five cases; the first four are just
as in Theorem 2 of [3].

1. For every n, o,(p)=ay(p):

a) ag(p)=c. Set wu,=v,=0.

b) a4(p) <. Choose u, and v, independent in /(p) with

“pzp%(m[fd(ps x)+ H-)s
v, =p™?(L(p, y) +...).

2. For exactly one index n, a,(p)=oy(p):
a) a,(p)=-ee. Choose independent p-adic integers u, and v, satisfying:
%(p) =min {H,(u,), H,(v,)} and H,(a,u, +b,,t,,)uar (p).

These heights are p-adic valucs

b) a,(p)=-<. Same as (a) except for the independence requirement, which
cannot hold now, since a,u,+ b,v,=0.

3. For exactly lwomdlces say i<Jj, ag(p)=o;(p), at,,{p)-cxj(p) Then D(i, j, p).
By Lemma 4, u;,(p)=u4(p)+ H, det (c,,cj) S0 there exist p-adic integers u,,v,
with H (au,+bw,)=o(p) for k=i, k=j, (note that au,+by,=0) and
min {Hp(u,,), H,,(v,,)} =aq(p).

Now we have a group A(x, y; u,v)=A of rank two . We claim that a,x" + b,)’
and a,x+ b,y have the same type (the first computed in G and the second in A).
First consider infinity places. If «;(p)=-< then p satisfies (la), (2b) or (3), and
in each of these cases H,(a;x + b;y) = . Suppose conversely that H,(a;x + b;y) = =.
This means that au,+b;v,=0 so (la), (2b) or (3) holds for p. Case (la) gives
a;(p) = ==. Failure of case (la) implies that for some m, «,(p) ==, a,u,+b,v,=0.
But not both u, and v, are zero. Hence a,b;—a;b,, =0, m=j. Again a;(p)=-=.
Next consider finite places. The construction makes a,(p)=min {H,(x), H(p)},
for all p: H,(a,x+b,y)=a,(p) for all p, and if «,(p)>a,(p) then equality holds.
Hence we need merely to deduce a contradiction from the following assumption:
there is an infinite set P of primes and a fixed index & such that for all p in P,

H,(apx + bey) = (p) =20 (p) = Hy(a X" + by').

(Note that «,(p) = H,(a,x" + b,y’) is valid for almost all primes p.) The construction
in case (1) guarantees that for almost all p in P there exists n with a,(p)=2,(p).
Then H,(a,x+b,y)=u,(p): application of Lemma 3 (to A) shows that p divides
a,b,—ab,. But H,(a,x" +b,y)=a,(p)>ay(p) so H,(ax +by)=uas(p) by the
same Lemma applied to G. This is a contradiction. We have proved:

Theorem 2. Every type sequence of a rank two torsionfree Abelian group is a
type sequence of some group A(x, y; u,v) of rank two.

Let A(x, y; u,v)bearbitrary. Then any type sequence of A is an [xy]-sequence
where o, is the g.l.b of the heights of x and y. Let x” and y” be independent reals.
We define u’ and v’ as follows: if ag(p)<eco set u,=p=*Py,, v,=p=*Py ; if
#o(p) == take u, and v, independent with coefﬁcnems of p° cqual to L(p, x’),
Lip, ¥); respectwely If (a, b) is any ordered coprime pair, and if 2%,(p)<-oo,
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then H,(ax’ +by) H (ax-+-by) ay(p);: if ao(p)-m then H,(ax’ +by)-=:m by
mdependence of u, and v, while H,(ax’+by’) is zero for almost all such primes p.
Hence the type of at "+ by’ is always equal to T(ax + by) —[x,]. The type sequence
of A(x’, y’, u’, v") is therefore a zero-sequence, where zero is the type thatis
identically zero. This proves:

Theorem 3. A t,-sequence is a type sequence of a rank two group if and only
if the zero-sequence obtained by subtracting t, from every term is likewise a type
sequence of a rank two group.

Next we prove some results concerning quotient divisible (q.d.) groups. See
BEAUMONT and PIercE [1], and also [3], Corollary 3.

Let G be a q. d. group containing a free group F on the base X (X is linearly
independent), with G/F a divisible torsion group. Then for every prime p, min {H,(x):
x € X} is either zero or infinity. For if 0 =min {H,(x); x€ X} < e and H,(x;)=h < o=,
for x, in X, then p "r, belongs to G, has helght zero at p, and hence for every
member y of F, H(p~"x,+y)=0. This contradicts the divisibility of the coset
of p~"x, by p.

For any finite rank torsionfree group G, let (G) be the g.l.b. of the types of
any maximal independent set in G. A corollary of the preceding paragraph is that
if Gis a q.d. group of finite rank then t(G) is non-nil. This is Theorem 6. 4 of [6].

Let A(S: x) be arbitrary and let a(p)=min {H,(s); s€ S}=min {H,(x(s, p)):
s€ S}, for every p. If o is non-nil then A(S; x) is q.d. To prove this set

m= [[{p~*"; a(p)<e}.
This is a rational since « is non-nil. For every s, ms belongs to 4= A(S; x), and
for every p, either every mx(s, p) is zero or else at least one of them is a unit in
I(p). Let F be the free group generated in A by all ms. Let a= >'a,s belong to 4 and
let p be a prime. The proof is completed by showing that the coset of a (mod F)
is divisible by p. There is a 7 in S such that mx(¢, p) is a unit in /(p), while mr belongs
to F. There is a rational integer k& such that Yax(s, p) —kmx(t, p) is divisible by
p in I(p) whence a — kmt is divisible by p in A. Thus the coset of a is divisible by p.

For the special case of rank two groups, the foregoing, together with Theorem 2,
implies: the type set of a rank two group G is the type set of some q.d. group if and
only if ©(G) is non-nil. Compare [3], Corollary 3.

Next we shall prove a sufficiency theorem, for the rank two case only. which
improves our Theorem 2 of [3].

Let § be a zero-sequence, that is, a t,-sequence where 7, contains the charac-
teristic that is everywhere zero, and let / map S onto S” by permuting indices.
Then S is also a zero-sequence. Moreover, the map f carries free subsequences
to free subsequences, snarls to snarls, and if S is a type sequence of a rank two
group then so is §’. Given that S contains a free subsequence we may assume,
for purposes of showing that S is type sequence of a rank two group, without losing
generality, that (we are still assuming that S is a zero-sequence)

A. The subsequence 7., 3, ... is free; if 7,(p) =oo then p=pu. (pi is the
k™™ prime).

We simplify the problem further by choice of characteristics o, in 7, ; each step
involves, as is easily verified, only putting a finite number of finite places equal
to zero.
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B. For all p, min {a,(p), 2,(p)}=0; if k<n then min {x(p), z,(p)}=0
unless a,(p)=eo.

C. If nis odd and k<n, then not D(k, n, p).

D. If k<nand D(k, n, p), then o, is a snarl. It is now true that from D(k, n, p)
follows: k<n, o, is a snarl, and » is even.

E. The set F={n; for all k and all p, not D(k, n, p)} contains all odd indices,
and the set of all «, for n in F is free.

We make a further assumption that reduces the generality very much; namely
that the set consisting of all snarls and all very large elements is free, where a charac-
teristic is very large if and only if it is infinite at infinitely many primes. Then
there is no further loss of generality in assuming:

F. 1If a, is finite at every prime, or a snarl, or very large, or if n is odd, then
n belongs to F.

Now we shall index the coprime pairs. Let ¢ =(a, b), ¢’ =(a’, b’); then det (c, ¢’)
is, by definition, ab’ —a’b. Take ¢, =(1, 0). Let n=1. If n belongs to F let ¢, be the
first member of the standard list that has not been previously chosen. Let n be
outside F. Take ¢, as the first not previously chosen member of the standard list
that is a solution for ¢ to the problem: If o,(p) = <= then

Hp det (c‘l cl) S a;(P), ]f D(iv n, p);
H,det(c,c,-)=1, if a;(p)=0 for all i=n.

The first case arises only for i < n so our equations refer always to previously chosen
pairs. The first case can arise only for finitely many p and involves only one equation
for each such p, simply because the type sequence is a zero-sequence. The second
case arises only for finitely many p because of our assumption that if =, is very
large then » belongs to F. The Lemma following the next Theorem states that this
system is solvable. If «,(p) == then there is exactly one /& =h(n, p) such that (a)
h=n;(b) det (¢, c,) is divisible by p; (c¢)if n belongs to Fthen h=n; (d)if D(i, n, p)
then h=i<n; (e) if n is not in F and «;(p)=0 for all i=#n, then h=n—1. Then
(f) if h<n—1, then o,(p)=0; and (g) & belongs to F. To see (g), note that if case
(d) holds then «; is a snarl by (D) so by (F), «; belongs to F. If condition (e) holds
then n is even, n— 1=/ is odd and so belongs to F. Before constructing the group
A(x, y; u, v) we make one further adjustment of the characteristics:

G. If a,(p) ===, if 2;(p)=0 for all i=n, and if p divides det (¢;, ¢,) for some
i less than n, then «,(p)=0.

Note that with this change, o, has the same type and that the recursion relations for
the ¢, are not affected. The recursion relations on the ¢, enable us to choose #and v, given
independent reals x and y in (0, 1), just as in Theorem 2, to get a group A =A(x, y;
u,v). We shall show that for every n, type of a,x+b,y is [«,]. For infinity places
the argument of Theorem 2 is valid. For finite places we need merely to derive
a contradiction from the assumption: there is an index k& and an infinite set Q of
primes such that for all p in Q, 0=u,(p) < H,(a,x + b,y). As in the previous theorem,
if #,(p)=0 then H,(a,x+b,y)=a,(p), and from our assumption on k and Q,
there exists, for every p in Q, an m=m(p) >k with «,,(p) =0. Hence H,(a,x+b,y) =
=,(p)=0 and therefore p divides det(c,, ¢;). By condition (G), there exists
n=n(p)=m(p) with a«,(p)=--. Then p divides det (c,, ¢;). The set of all m(p)
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and the set of all n(p), for p in Q, are both infinite sets; for example, p divides
det (Cupy» ¢) for all p in the infinite set Q, while n(p) =k. Let h=h(p)=h(n(p), p)
(see remarks preceding condition (G)), so that /i belongs to F. By (b), p divides
det (c,, ¢;,) and therefore p divides det(c,, ¢;). Suppose that the set of all i(p),
pin Q, is finite. Then there is a j with 2(p) =j for infinitely many p in Q, and for all these
values of p we have h(p) =h(n(p), p)<n(p) — 1. By condition (f),2;(p) =0, so p divides
det (¢, cyp) =det (¢, ¢;) for infinitely many values of p and so j=k. This gives
0 =0y (p) =u;(p) =0, a contradiction. Hence the set of all i(p) is infinite. Now taking
into account that /(p) belongs to F the argument of Theorem 2 of [3] is essentially
applicable: for all large h(p)=h,

0 < |det (¢i, ¢y)| <= Bh(p) < B'hlogh < puw = pums

where B and B’ are fixed positive numbers. But «,(p) == so by (A), p=pun,
while p divides det (¢, ¢),)). This is another contradiction and completes the
proof of:

Theorem 4. If the t,-sequence S has an infinite free subsequence and if the set
of all snarls and very large elements is free, then S is a type sequence of a rank two
torsionfree Abelian group.

Lemma. Let (a;, b;) be a coprime pair, e; a non-negative integer, p; a prime,
i=1,...,n, with the p, distinct. Then there exist infinitely many coprime pairs (x, y)
such that for every i,

H, (a;x—by)=e;.

Proor. Choose s; and ¢; so that s,a;—1,b,=1, and construct # and v so that,
mod pfi+1, (use Chinese Remainder Theorem), for every i,

ussppi'+b;, v=4pf +a.

Let g be the g.c.d. of w and v with u=gx,, v=gy,. Then (x,, y,) is a solution.
Let p be different from all the p; and let (x;,y;) be a coprime pair satisfying
H,(aix;—b;y)=e;, i=1,..,n and Hyax;—b;y)=j, j=0,1,2,.... Then the
(x;, y;) are infinite in number, and all are solutions.

Example. Let oy be one at every odd numbered prime and zero at every even
numbered prime. For even n let o, be zero at every prime. For odd n=3, set «,
zero at every prime except the n™, with a,(p,) = c=. According to Theorem 4, the
sequence [o;], [,], ... is a type sequence of a group A(x, y; u, v); i.e., for a suitable
indexing of the coprime pairs ¢, =(a,, b,), a,=0, the type of a,x +b,y is [«,]. For
each odd n=3, let k,=max {p; for some i<n, p divides det (¢;, ¢,)}. Let f, =a,,
and f,=ua, for all even n. Let fy(p;) =<o, set

Qis={p;p>k, andforall i<3, ;(p)=0},

and set fi; equal to = at the first, third, fifth, etc., primes in Q5, zero elsewhere.
Having defined f; for all kK <n, where n is odd, and having defined Q, for all odd
k <n, set B,(p,) ===, set

0.={p;p=k, andforall i<n, f;(p)=0},
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and set f§, equal to = at the first, third, fifth, etc., primes in Q,, zero elsew here.
The sequence [f,], [B,), ... is a zero-sequence, [f,] is very large for all odd n=3,
while f, is a snarl of the set of all these very large elements. With ¢, defined as in
constructing A(x, y: u,v) we can construct a group A(x’, y"; «’,v") exactly as in
Theorem 4, so that the type of a,x”+b,y" is [B,]. Thus the condition that the set
of all very large elements be free is not necessary.

We close with an alternate formulation of the rank two problem, suggested
by our various sufficiency theorems, especially Theorem 2. Let a: o, a,, ... be
a sequence of characteristics such that the corresponding sequence S of types is
a zero-sequence. Call « a solvable sequence provided there exists an indexing ¢, ¢,, ...
of the coprime pairs with nonnegative first member so that for every i there exists
an N such that for every prime p and every index n= N, if a,(p) = = then

H, det (c;, ¢,) =x,(p).

Then we can prove, by methods almost identical with those used previously, that
S is a type sequence of a rank two group if and only if o is a solvable sequence.
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