On finite groups with three independent generators two of
which have distinct odd prime orders

By K. R. YACOUB (Cairo)

In a recent paper [1], the structure of finite groups with three independent
generators has been studied when two of the generators have the same odd prime
order. In the present paper, we consider a similar problem namely that when two
of the generators have also odd prime orders but distinct.

In § 1, we state without proof some results which will be required. Throughout
this paper, the symbols p, ¢ are used to denote distinct odd primes with p < g.

§ 1. Preliminary results

Lemma 1 (i). The general products of {a} and (b} when b is of order p are
(¢f [2]) of the types

Ly a"=b0=e, ab=ba’, M=) (mod m)
L;: a"=b"=e, ab=0"a, u"=ml (mod p), u#Z1 (mod p).

For the sake of reference, this lemma (on using different symbols) may be
written

Lemma 1 (ii). The general products of {a} and {c} when c is of order q are of
the types

Ny @"="=¢, ge=ca', s*'=I1 (mod m)

Ns: ‘ad"=e=e, dc=c%, "=l (mod g), v#1 (mod g).

Lemma 2. The congruences x*=1 (mod g), y"=1 (mod p) have in respective
the solutions x =1 (mod ), y=1 (mod p). Moreover, if p divides q — 1, the congruence

x?=1 (mod q) has besides the solution x=1 (mod q) other solutions for which
x may be a number whose order modulo q is p.

Now, if in Lemma 1 (ii), we take m =p, replace a by b, then use Lemma 2,
we deduce

Lemma 3. Let b, ¢ be of orders p, q respectively.

(i) If p is not a divisor of q— 1, the general product of {b} and {c} is Abelian
bP=cl=e, bc=ch.
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(i) If p divides g — 1, the general products of {b} and {c} are
P=ct=e, be=ch,
and b*P=ci=e, bc=c"b, w’=1 (modgq), w#!1 (mod g).

For the convenience of reference, the two types of groups described in Lemma 3
(both Abelian and non-Abelian) will be referred together by

K(w):bP=c'=e, bc=c®b, w’=1 (mod g).

It may be remarked that @ =1 (mod ¢) for the Abelian type and that both types
arise only when p divides ¢ —1.

§ 2. Description of the problem

Let G be a finite group with three independent generators a, b, ¢ of orders
m, p, q respectively. Then, by Lemma 1 (i), {a, b} is either of the type L, or of the
type L,. Also, by Lemma 1 (ii), {a, c} is either of the type N, or of the type N,.
Further, {b, ¢} is by Lemma 3 of the type K(w).

Thus in determining all groups G, we have four cases to consider.

(1) {a,b}=L,, {a, c}=N,, {b,c}=K(w). We denote this group by 7(1, 1;w).
(2) {a,b}=L,, {a, c}=N,, {b,c}=K(w). We denote this group by 7(1,2; w).
(3) {a,b}=L,, {a, c}=N,, {b, c}=K(w). We denote this group by 7(2, 1; o).
4) {a,b}=L,, {a, c}=N,, {b, c}=K(w). We denote this group by 7(2,2; w).

In this paper, we aim to describe groups of these types in terms of some simple
parameters and prove the existence of such groups for permissible parameter values.
We deal seperately with the cases pfg—1 and plg—1. (by the symbol pfg—1,
we mean that p is not a divisor of ¢—1.)

The case pfq—1.

In this case {b, ¢} is Abelian, so that {b, ¢} = K(w) with ®=1 (mod ¢), and
the types we have to deal with are therefore T'(1,1; 1), 7T'(1,2; 1), T(2, 1; 1),
T2 2500,

§ 3. Groups of the type 7°(1, 1: 1)

Theorem 1. If there is a group G of the type T(1, 1; 1), then it has the defining
relations

(1) a"=0=c"=e, ab=ba’, ac=ca’, bc=ch,
where
(2) r’=1 (mod m), s=1 (mod m).

Conversely, if r,s satisfy (2), then the group G generated by a, b, ¢ with the
defining relations (1) is of the desired type.
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ProOF. Assume the existence of a group G of the type 7T(1, 1; 1). For this
type {a, b}=L,, {a,c}=N,, {b, c} is Abelian. Then by Lemma 1

a"=b"=e, ab=ba", rr=1 (mod m)

a"=cl=e, ac=ca’, si=1 (mod m)

Also be=ch, and the first part of the theorem then follows.

For the converse, let H be the system of all formal triads [x, y, z] where x is
taken mod m, y mod p, z mod ¢. The triads [x, y, z] and [x’, )’, 2] are regareded
identical if x’=x (mod m), y"=y (mod p), z’=z (mod g). In this system, we define
multiplication by means of the formula

[x, », 21[x, ¥, 21 =[r" s"x+ X", y +), 2 + Z'].

Under this multiplication, it is easy to verify that H forms a group (the identity
is [0, 0, 0] and the inverse of [x, y, z] is [—r~%s ~*x, —y, —2z]).

Further, if " =[1, 0, 0], »’=[0, 1, 0] and ¢" =0, 0, 1], then by direct calculation
one can show that

a’m - bfp -_— ch —_ ef’ afb? - b?alr’ afcl - c?a.fs, blcl — C’b)

where e denotes the identity element [0, 0, 0] of the group H. This shows that H
is a homomorphic image of G. But as the order of H is pgm, and the order of G
is at most pgm, they have the same order and are isomorphic. This completes the
proof of the theorem.

§ 4. Groups of the type 7°(1,2: 1)

Theorem 2. If there is a group G of the type T(1,2; 1), then it has the defining
relations

3) a=br=¢l=e, ab=ba", ac=ca, be=ch
where
4) r’=1 (mod m), v"=v""'=1 (modg), vl (mod g).

Conversely, if r,v, m satisfy (4), then the group G generated by a, b, ¢ with the
defining relations (3) is of the desired type.

ProOF. Assume the existence of a group G of the type T'(1,2; 1). For this
type {a.b}=L,, {a, c}=N,, {b, ¢} is Abelian. Then by Lemma 1

(5) == dh=a",
(6) a*=cl=e, ac=c'a,

r’=1 (mod m), v"=1 (modg), v#!l (mod g).
Also, since {b, c} is Abelian, then bc =ch. Thus it remains to show that

" 1= I(mod g).
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For by using (5), (6) together with the associative law in G and the fact that {b, ¢}
is Abelian, we have
(ab)e =(ba")e =be?" a" =c*" ba',
a(bc)=a(ch) =c'ab =cvba’.
But since (ab)c=al(bc), it follows that v"=v (mod g) which, on noting that v is
prime to g, implies ¢~ ' = I(mod ¢). Thus we have shown that (3) and (4) are ne-
cessary.

For the converse, we use again the system H of Theorem 3 where multipli-
cation of triads is defined here by the formula

[x, y, 2)[x’, ¥, 2’| =[r"x+ X', y + ), z+0*2').
That H forms, under this multiplication, a group can be easily verified (the identity

is [0,0,0] and the inverse of [x,y,z] is [—r~?x, —y, —v™*z]). Moreover
a =[1,0,0],b"=[0, 1, 0], ¢’ =[0,0, 1] are generators which satisfy relations T(1, 2; 1).

§ 5. Groups of the type 7(2,1: 1)

Theorem 3. If there is a group G of the type T(2,1; 1), then it has the defining
relations

(7 at=p=cl=e, ab=00'a, ac=ca’, bc=ch
where
(8) si=1 (mod m), w"=u'"'=1 (modp), uzl (mod p).

Conversely, if s, u,m satisfy (8), then the group G generated by a, b, ¢ with
the defining relations (7) is of the desired type.
The proof is similar to that of Theorem 2 and is omitted.

§ 6. Groups of the type 7(2, 2; 1)

Theorem 4. If there is a group G of the type T(2,2 :1), then it has the defining
relations

9) a"=b"=c"=e, ab=>b'a, ac=c'a, bc=ch
where
(10) u"=1, uZl (mod p), v"=1,vZ1 (mod g).

Conversely, if u, v satisfy (10), then the group G generated by a, b, ¢ with the
defining relations (9) is of the desired type.

ProOF. The proof follows the same pattern of as Theorem 1, where for the
converse, of the theorem multiplication of triads is defined by the formula

[x, », zZ][x’, ¥, Z'l =[x+ X', y+ ™y, z4+0°2).
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We omit this proof.
The case plq—1.

In this case {b, ¢} =K(w) where =1 or # 1 (mod ¢). In §§9,10 we shall
prove that groups of the types 7(2, 1: w), T(2, 2;: ) with @ # 1 (mod ¢) do not exist.
§ 7. Groups of the type 7(1, 1: w)

Theorem S5(i). If there is a group G of the type T(1,1: 1), then it has the defining
relations

(1) a=bP=M"=e, ab=0ba", ac=ca*, be=cbh
where
(12) r’=1 (mod m), s9=1 (mod m).

Conversely, if r, s satisfy (12), then the group G generated by a, b, ¢ with the
defining relations (11) is of the desired type.

The proof is exactly the same as that of Theorem 1 and is therefore omitted.

Theorem 5(ii). If there isa group G of the type T(1,1; w), w# 1 (mod q), then
it has the defining relations

(13) a"=b"=cl=e, ab=ba", ac=ca, bc=c"h
where
(14) r’=1 (mod m), ®"=1 (mod g).

Conversely, if r,  satisfy (14), then the group G generated by a, b, ¢ with the
defining relations (13) is of the desired type.

PROOF. Assume the existence of a group G of the type 7(1, 1; w), w# 1 (mod g).
For this type {a,b}=L,, {a,c}=N,, {b, c}=K(w), so that by Lemmas 1,3

(15) "= =0l=e, agb=bd, ac=ca’, bc=c"b
where
(16) rP=1 (mod m), s9=1 (mod m), w’=1, w1 (mod q).

Now, it remains to show that s=1 (mod m). By using relations (15) and the
associative law in G, we have

a(bc)=a(c”b) =c“a*’b = c“ba™",
(ab)e =ba"c =bca"™ = c®ba’.

But a(bc)=(ab)c, and hence rs® =rs (mod m) which if we note that r and s are
both prime to m implies at once

(17) s~ '=1 (mod m).

Calling the second and the fourth of (16), namely
(18) s7=1 (mod m), w# 1 (mod g)
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we see that (17) and (18) cannot be satisfied simultaneously unless s=1 (mod m).
This completes the proof of the first part of the theorem.

For the converse, we call again the system H of formal triads [x, y, z] used
in Theorem | and follow the same lines of proof.

In this system multiplication is defined by

[x, 5, 21X, ', 2] =[x+ X, y +)', 2+ @0'2].
The proof is straightforward and may be omitted.

§ 8. Groups of the type 7(1, 2;: w)

Theorem 6. If there is a group G of the type T(1,2; w), then it has the defining
relations

(19) a=bP=cl=e, ab=ba", ac=c’a, bc=c"b
where
(20) r’=1 (mod m), v"=v""'=1, v#1 (mod g), ®"=1 (mod g).

Conversely, if r,v, o, m satisfy (20), then the group G generated by a, b, ¢ with
the defining relations (19) is of the desired type.

ProOOF. Assume the existence of a group G of the type T(l,2; w). For this
type {a,b}=L,, {a,c}=N,, {b, c}=K(w), so that by Lemmas 1, 3

(21) P ="=c=p, ab=ba’, ac=c’a, be=c"bh

where
rP=1 (mod m), v"=1 (mod q), w’=1 (mod g), v#1 (mod g).

Now, it remains to show that v"~'=1 (mod ¢). For by using relations (21)
and the associative law in G, we have

a(bc) =a(c®b) = c®ab = c“"ba",
(ab)c =(ba")c =bc"a" =c“""ba’.

But a(bc)=(ab)c, and therefore wv"=wv (mod ¢) which, on observing that @ and
v are both prime to ¢, implies v"~'=1 (mod q).

Thus we have shown that (19) and (20) are necessary.

For the converse, we call again the system H of formal triads [x, y, z] used
in Theorem 1, where mutiplication is now defined by

[x, 5, 2l[x", ¥, Z)=[r"x+ %, y+¥, z+v"e’Z’].

Under this multiplication, it is easy to show that H forms a. group (the identity
is [0, O, 0] and the inverse of [x, y, z] is [—r %X, —y, —v "0~ 7z]}.
Moreover, if a’=[1,0, 0], »’=[0, 1, 0] and ¢"=[0, 0, 1], then one can easily
show that
a.rm = bfp = cﬂq = e', afb; e brar,-’ arc_r :nyaf, brcr :crmbf

where ¢’ denotes the identity element [0, 0, 0] of the group H.
Thus H is a homomorphic image of G. But as the order of H is pgm and the
order of G is at most pgm, they have the same order and are isomorphic.
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§ 9. Groups of the type 7(2,1: w)

Theorem 7(i). There is no group of the type T(2,1:®) when w#1 (mod g).
(ii) Moreover, if there is a group G of the type T(2,1; 1), then it has the defining
relations

(22) a"=h =cl=e, ab=b'a, ac=ca*, bc=cbh
where
(23) w=w"1=1 (modp), u#l (mod p) s?=1 (mod m).

Conversely, if u, s, m satisfy (23), then the group G generated by a, b, ¢ with
the defining relations (22) is of the desired type.

Proor. Assume the existence of a group G of the type 7'(2, 1; w). For this type
{a, b}=L,, {a, c}=N,, {b, c} = K(w), so that by Lemmas 1, 3

(24) =bP=cl=e, gb=b0'a, ac=eq’, bc=c"h
where
(25) =1 (modp), uZl (modp), s?=1 (mod m), " =1 (mod gq).

Further, by using relations (24) and the associative law in G, we have
a(be) =a(c?b) = c®a*’b=c"b*"a*",
(ab)c =(b“a) c = b"ca’ = c”"b"a’,
but since a(bc)=(ab)c, we must have
w"=w (mod gq), ©*” =u (mod p), s°=s (mod m).

Moreover, if we remark that o is prime to ¢, u prime to p, s prime to m, the above
relations take the forms

(26) @ 1'=1 (modg), v*’~'=1 (mod p), s°~'=1 (mod m).

It is obvious that the relation s7= 1 (mod m) of (25) and the relation s*~' =1 (mod m)
of (26) cannot be satisfied simulaneously unless @ =1 (mod ¢). This proves that
no group of the type 7(2, 1; ) can exist when @ # 1 (mod ¢), and the first part of
the theorem follows.

For the second part of the theorem, we follow the same pattern of proof of
Theorem 3 and we omit this proof.

§ 10. Groups of the type 7(2, 2: w)

Theorem 8(i). No group of the type T(2, 2; w) exists when w1 (mod g).
(i) Moreover, if there is a group G of the type T(2,2; 1), then it has the defining
relations
(27) "=bp=c"=¢, ab=b'a, ac=c"a, be=ch
where
(28) w=1l,uZl (modp), v"=1, vZ1 (mod g).
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Conversely if u,v satisfy (28), then the group G generated by a, b, ¢ with the
defining relations (27) is of the desired type.

PrOOF. Assume the existence of a group G of the type 7'(2,2: ). For this
type {a,b}=L,, {a, c}=N,, {b, ¢}= K(w), so that by Lemmas 1,3

(29) am=b0P=cl=¢, ab=0b'a, ac=ca, bc=c"b
where
(30) W=1l,uzl (modp), v"=1, vZ1 (mod g), w’=1 (mod g);

Further, by using (29) and the associative law in G, we have
a(bc) =a(e?b) =c”"ab=c”"b"a,
(ab)c = b"ac =b"c*a = c”""b"a,
but since a(bc)=(ab)c, we must have
w'v=wv (mod gq)
which if we note that w, v are both prime to ¢ implies
(31) @ '=1 (mod g).

Calling the relations @w”=1 (mod g), u# 1 (mod p) of (30), we see (31) cannot
be satisfied unless w=1 (mod g). This shows that no group of the type 7(2,2; w)
exist when @ # 1 (mod ¢) which proves the first part of the theorem.

For the second part of the theorem, the proof follows the same pattern of
proof as Theorem 4, and the proof is omitted.

Conclusion. Theorems 1—8, show that groups with three independent generators
exist when two of the generators have odd prime orders p, ¢. If p<g, these groups
are described in Theorems 5, 6, 7, 8 when p divides ¢ — 1 and in Theorems 1, 2, 3, 4
when p is not a divisor of ¢ — 1.
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