On Hausdorff and related moment problems

By A. JAKIMOVSKI, (Tel-Aviv) D. LEVIATAN (Tel-Aviv) and M. S. RAMANUJAN* (Ann Arbor, Mich).

The Hausdorff moment problem relates to obtaining necessary and sufficient conditions involving a real sequence $\{\lambda_n\}$ so that there exists a function g(t) of bounded variation over [0, 1] and $\lambda_n = \int\limits_0^t t^n dg(t)$. Different solutions of this problem have been given by Hausdorff [6], Ramanujan [10] and Jakimovski [7]. A related question is to obtain necessary and sufficient conditions for the representation $\lambda_n = \int\limits_0^1 t^n g(t) dt$, with g(t) belonging to a specified function space. This has been discussed in Hausdorff [6], Ramanujan [12], Berman [1, 2], Lorentz [9] and Gehring [4]. The above problems with the modifications of the type that $\lambda_n = \int\limits_0^1 t^{n+z} dg(t)$ or $\lambda_n = \int\limits_0^1 t^{n+z} g(t) dt$ form the content of [3] and [8]. The main tool in most of these investigations is the uniform approximation of continuous functions in [0, 1] by polynomials or power series suggested by them. In this paper we obtain certain sufficient conditions for the above representations under a fairly general set-up and indicate how some of the earlier results are included as special cases of these results.

Notation. Throughout the paper the following assumptions are made, unless a statement to the contrary is made.

- 1. R > 1 is a fixed real number;
- 2. $\varphi(n)$ denotes a sequence of non-negative integers or $+\infty$;
- 3. For each fixed n, (n=0, 1, 2, 3, ...), $\{\alpha_{nm}\}$ is a sequence of real numbers such that $\alpha_{nm}=0$, for $m>\varphi(n)$ and $0\leq \alpha_{nm}\leq 1$ for all n and m;
 - 4. $c_{mn}(z)$ are power-series satisfying

(4.1)
$$c_{nm}(z) = 0$$
 for $m > \varphi(n)$, $n = 0, 1, 2, ...;$

(4.2) for
$$c_{nm}(z) = \sum_{k=0}^{\infty} a_{nmk} z^k$$
, $(0 \le m \le \varphi(n))$, we have $\sum_{k=0}^{\infty} |a_{nmk}| R^k < \infty$

(4.3) for each
$$p = 0, 1, 2, 3, ..., A_{np}(z) = \sum_{m=0}^{\infty} c_{nm}(z) \alpha_{nm}^p \to z^p$$
 uniformly in $|z| \le R$, as $n \to \infty$;

^{*} The third author acknowledges support by the National Science Foundation. NSF 05261.

5. In the space P of power series $g(z) = \sum_{n=0}^{\infty} a_n z^n$, with radius of convergence greater than 1, set $L(g) = \sum_{n=0}^{\infty} a_n \lambda_n$, where $\{\lambda_n\}$ is a fixed bounded sequence. L(g) is well defined and is a linear functional on P.

We list below some special examples of functions described on (4).

Example 1.
$$c_{nm}(z) = \binom{n}{m} (1-z)^{n-m} z^m$$
, $0 \le m \le n$ and $= 0$ for $m > \varphi(n) = n$ and $\alpha_{nm} = m/n$.

The function described above is the kernel of the well-known Bernstein approximation for analytic functions; see, for instance, Lorentz ([9], Theorem 4.1.1).

Example 2. $c_{nm}(z) = \binom{n}{m} [z + Q_n(z)]^m [1 - z - Q_n(z)]^{n-m}$ for $0 \le m \le n$ and $0 \le m \le n$ and $0 \le m \le n$ are chosen as in Example 1, and $Q_n(z) = \sum_{r} q_{nr} z^r$ with $\varepsilon_n = \sum_{r} |q_{nr}| R^r \to 0$ as $n \to \infty$.

Example 3. The Lagrange interpolatory functions.

Example 4. In Example 2, choose $Q_n(z) = \frac{a_n(1-z)}{1+a_n}$, with $a_n > 0$ and $a_n \to 0$.

Theorems

In this section we prove certain sufficient conditions for a given sequence $\{\lambda_n\}$ to be a Hausdorff moment sequence. We start with the following lemma.

Lemma 1. Suppose R > 1; if $f_n(z) = \sum_{k=0}^{\infty} a_{nk} z^k \to z^p$ uniformly in $|z| \le R$ and if $\{\lambda_n\}$ is a bounded sequence, then $\lim_{n \to \infty} L(f_n) = \lambda_p$.

PROOF. We first prove that for each $\varepsilon > 0$ there corresponds a $N(\varepsilon)$ such that for $n > N(\varepsilon)$, we have $|a_{nk} - \delta_{kp}| < \varepsilon R^{-k}$, where δ_{kp} are the Kronecker symbols. For any $k \ge 0$,

$$a_{nk} = \frac{1}{2\pi i} \oint_{|z|=R} \frac{f_n(z)}{z^{k+1}} dz$$

and

$$\delta_{k_p} = \frac{1}{2\pi i} \oint\limits_{|z|=R} \frac{z^p}{z^{k+1}} \, dz.$$

Consequently

$$|a_{nk} - \delta_{kp}| = \left| \frac{1}{2\pi i} \oint_{|z|=R} \frac{f_n(z) - z^p}{z^{k+1}} dz \right| \le \max_{|z|=R} \frac{|f_n(z) - z^p|}{R^k}$$

and the conclusion above easily follows.

Now to complete the proof of the lemma, consider any $\varepsilon > 0$ and the corresponding $N(\varepsilon)$ indicated above. For $n > N(\varepsilon)$,

$$\begin{aligned} |L(f_n) - \lambda_p| &= |\sum_k a_{nk} \lambda_k - \lambda_p| \\ &= |\sum_k (a_{nk} - \delta_{kp}) \lambda_k| \\ &\leq \sup_k |\lambda_k| \sum_k |a_{nk} - \delta_{kp}| \leq \sup_k |\lambda_k| \varepsilon \sum_k R^{-k} \end{aligned}$$

and the proof of the lemma is complete.

We state a theorem below and omit its proof remarking that it runs on lines parallel to that of a known theorem (JAKIMOVSKI [7], Theorem 1) and that Lemma 1 plays now the rôle of Theorem 3 of [7].

Theorem 1. Let $\varphi(n)$ be finite for $n \ge 0$. If for the bounded sequence $\{\lambda_n\}$ we have

(1.1)
$$\sup_{n} \sum_{k=0}^{\infty} |b_{nk}| \sum_{m=0}^{\varphi(k)} |L(c_{km})| < \infty$$

for some regular matrix (i. e., Toeplitz matrix) $\mathbf{B} = (b_{nk})$, then $\{\lambda_n\}$ is a Hausdorff moment-sequence.

The following remarks on Theorem 1 are relevant.

1. The following converse of Theorem 1 is easily proved: If $\sup_{n} \max_{0 \le z \le 1} \sum_{m=0}^{\varphi(n)} |c_{nm}(z)| < \infty$ and $\{\lambda_n\}$ is a Hausdorff moment sequence then for each regular matrix $B = (b_{nk})$, we have that (1.1) holds.

2. Theorem 1 of [7] referred to earlier is itself a special case of our Theorem 1

by choosing the $c_{nm}(z)$ and α_{nm} as in Example 1.

3. In the case of Example 2, the condition (1. 1) becomes

$$\sup_{n} \sum_{k=0}^{\infty} |b_{nk}| \sum_{m=0}^{n} {n \choose m} |L([z+Q_{n}(z)]^{m}) [1-z-Q_{n}(z)]^{n-m}| < \infty$$

and considering Example 4, it follows that a bounded sequence $\{\lambda_n\}$ will be a Hausdorff moment sequence if, in particular, $a_n > 0$, $a_n \to 0$ and

$$\sup_{n} (1+a_n)^{-n} \sum_{m=0}^{n} \binom{n}{m} \left| \sum_{r=0}^{m} \binom{m}{r} a_n^{m-r} \Delta^{n-m} \lambda_r \right| < \infty.$$

Indeed the above condition is also seen to be necessary.

4. It is no serious limitation to assume that the sequence $\{\lambda_n\}$ is bounded since a moment sequence is necessarily bounded.

Theorem 2. Let $\varphi(n) = O(n)$ and let for each fixed $n, \{c_{nM}(z)\}, M = 0, 1, ..., \varphi(n),$ denote some permutation of $\{c_{nm}(z)\}, m = 0, 1, 2, ..., \varphi(n)$. If for a bounded sequence $\{\lambda_n\}$,

$$\sup_{M} \sum_{n=0}^{\infty} |L(c_{nM})| < \infty$$

then $\{\lambda_n\}$ is a Hausdorff moment sequence.

PROOF. Let

$$\sup_{M}\sum_{n=0}^{\infty}|L(c_{nM})|=K.$$

For each fixed n, let $N_n = \max_{j=0, 1, ..., n} \varphi(j)$. Then

$$(N_n+1)K \ge \sum_{M=0}^{N_n} \sum_{k=0}^{\infty} |L(c_{kM})| = \sum_{k=0}^{\infty} \sum_{M=0}^{N_n} |L(c_{kM})| \ge \sum_{k=0}^{n} \sum_{M=0}^{\varphi(k)} |L(c_{kM})|.$$

Thus, for each fixed n,

$$\infty > K^* = \frac{(N_n + 1)K}{(n+1)} \ge \frac{1}{n+1} \sum_{k=0}^n \sum_{M=0}^{q(k)} |L(c_{kM})| =$$

$$= \sum_{k=0}^{n} \frac{1}{n+1} \sum_{M=0}^{q(k)} |L(c_{kM})| = \sum_{k=0}^{n} \frac{1}{n+1} \sum_{m=0}^{q(k)} |L(c_{km})|$$

and the result follows by taking the matrix **B** in Theorem 1 to be that of the (C, 1) method.

Corollary and Remark. Choosing the $c_{nm}(z)$ as in Example 1 it follows that

implies that $\{\lambda_n\}$ is necessarily a moment sequence, thus enabling us to make the following remark on Theorem 219 of HARDY [5]. If the quasi-Hausdorff method (H^*, μ_n) is conservative (i. e.) if it is a Kojima matrix, then it is necessary that μ_n is a moment sequence. (see also RAMANUJAN [11], p. 201).

We consider next the case the $\varphi(n)$ is not necessarily finite for any n and prove, with the notations set out earlier,

Theorem 3. Let $\varphi(n)$ be not necessarily finite for any n. Suppose also the following conditions hold:

(i) for each
$$p \ge 0$$
, $\sum_{m=0}^{q(n)} |\alpha_{nm}|^p \sum_{k=0}^{\infty} |a_{nmk}| < \infty$

and

(ii) for
$$\{\lambda_n\}$$
 bounded, $\sup_{n} \sum_{m=0}^{\varphi(n)} |L(c_{nm})| < \infty$.

Then $\{\lambda_n\}$ is a Hausdorff moment sequence.

PROOF. We first prove that under the assumptions of the theorem

(3.1)
$$\lim_{n\to\infty} \sum_{m=0}^{q(n)} L(c_{nm}) \alpha_{nm}^p = \lambda_p, \text{ for each } p \ge 0.$$

Let p be fixed. The uniform convergence, in $|z| \le R$, of $\sum_{m=0}^{q(n)} c_{nm}(z) \alpha_{nm}^p$ to z^p implies, by the Wierstrass's theorem for double series, that

$$A_{np}(z) = \sum_{m=0}^{\varphi(n)} c_{nm}(z) \alpha_{nm}^p = \sum_{j=0}^{\infty} b_{npj} z^j,$$

where

$$b_{npk} = \sum_{m=0}^{\alpha(n)} a_{nmk} (\alpha_{nm})^p.$$

We now have $A_{np}(z) \to z^p$ uniformly in $|z| \le R$, as $n \to \infty$. Therefore, by Lemma 1,

(3.2)
$$\lim_{n\to\infty} L(A_{np}) = \lim_{n\to\infty} \sum_{j=0}^{\infty} b_{npj} \lambda_j = \lambda_p.$$

This is true for p = 0, 1, 2, 3, ...Now

$$\sum_{m=0}^{q(n)} L(c_{nm}) \alpha_{nm}^p = \sum_{m=0}^{q(n)} \alpha_{nm}^p \sum_{k=0}^{\infty} a_{nmk} \lambda_k$$

and

$$\sum_{m=0}^{q(n)} |\alpha_{nm}|^p \sum_{k=0}^{\infty} |a_{nmk}| |\lambda_k| \le \sup_{k} |\lambda_k| \sum_{m=0}^{q(n)} |\alpha_{nm}|^p \sum_{k=0}^{\infty} |a_{nmk}| < \infty$$

and therefore interchanging the order of summation we have,

$$\sum_{m=0}^{\varphi(n)} L(c_{nm}) \alpha_{nm}^p = \sum_{k=0}^{-} \lambda_k \sum_{m=0}^{\varphi(n)} \alpha_{nm}^p \, a_{nmk} = \sum_{k=0}^{-} b_{npk} \, \lambda_k$$

and therefore (3.1) follows from (3.2).

It follows from (3.1) that for each polynomial P(z) we have

$$\lim_{n\to\infty}\sum_{m=0}^{q(n)}L(c_{nm})P(\alpha_{nm})=L(P).$$

Also,

$$\left|\sum_{m=0}^{\varphi(n)} L(c_{nm}) P(\alpha_{nm})\right| \leq \|P\| \sum_{m=0}^{\varphi(n)} |L(c_{nm})| = K\|P\|,$$

for each n, the norm above being the supremum norm over [0, 1]. Letting $n \to \infty$, it follows that for each polynomial P over [0, 1], $|L(P)| \le K||P||$; i. e. L is a linear continuous functional over P[0, 1], the space of polynomials over [0, 1]. Since P[0, 1] is dense in C[0, 1], L can be extended to C[0, 1] and the result in the theorem is now an easy consequence of the Riesz representation theorem.

Our final result in Theorem 4 is a sufficient condition for a bounded sequence $\{\lambda_n\}$ to be a moment sequence of the form $\lambda_n = \int_0^1 t^n f(t) dt$, where f is in a specified function-space X(C) of the Koethe type. For definition and relevant details regarding these see LORENTZ ([9], pp. 65—69).

Theorem 4. Let the function-space X(C) have the property of rearrangement-invariant norm and uniform absolute continuity for functions with norm less than 1. Let $\varphi(n) < \infty$, for each n. Let $0 = \alpha_{n0} < \alpha_{n1} < \alpha_{n2} < \ldots < \alpha_{n,\varphi(n)} = 1$ and $\sup_{m} |\alpha_{nm} - \alpha_n, \alpha_{n-1}| \to 0$ as $n \to \infty$. Given a bounded sequence $\{\lambda_n\}$, define the functions $f_n(x)$ as follows:

$$f_n(x) = (\alpha_{nm} - \alpha_n, m-1)^{-1} L(c_{nm}), \ \alpha_n, m-1 \le x < \alpha_{nm}, \ m=0, 1, 2, ... \varphi(n).$$

Then, if $||f_n||_{X(C)} \leq M$, for each fixed n, then $\lambda_n = \int_0^1 t^n f(t) dt$, for a suitable function f in the space X(C), with $||f||_{X(C)} \leq M$.

PARTIAL PROOF OF THEOREM 4. We have, in the notation set out earlier, $\sum_{m=0}^{\sigma(n)} c_{nm}(z) \alpha_{nm}^p \to z^p, \text{ uniformly in } |z| \leq R, R > 1,$

i. e.
$$\sum_{m=0}^{q(n)} \alpha_{nm}^p \sum_{k=0}^{\infty} a_{nmk} z^k = \sum_{k=0}^{\infty} z^k \sum_{m=0}^{q(n)} a_{nmk} \alpha_{nm}^p = \sum_{k=0}^{\infty} b_{nk}^{(p)} z^k,$$

say, and the above expression converges uniformly in $|z| \le R$ to z^p , for each p. Therefore, by Lemma 1,

$$\sum_{k=0}^{\infty} b_{nk}^{(p)} \lambda_k \to \lambda_p \quad \text{for each } p, \quad \text{as} \quad n \to \infty;$$

i. e.

$$\sum_{k=0}^{\infty} \lambda_k \sum_{m=0}^{\varphi(n)} a_{nmk} \alpha_{nm}^p = \sum_{m=0}^{\varphi(n)} \alpha_{nm}^p \sum_{k=0}^{\infty} a_{nmk} \lambda_k \to \lambda_p \quad \text{as} \quad n \to \infty;$$

i. e.

$$\lim_{n} \sum_{m=0}^{\varphi(n)} L(c_{nm}) \alpha_{nm}^{p} = \lambda_{p}, \quad \text{for} \quad p = 0, 1, 2, 3, \dots.$$

But the left-side above is $\int_{0}^{1} f_n(x)g_n(x)dx$, where the $f_n(x)$ are the functions defined in the statement of the theorem and

$$g_n(x) = \alpha_{nm}^p$$
, for $\alpha_{n, m-1} \le x < \alpha_{nm}$, $m = 0, 1, ... \varphi(n)$.

Hereafter the proof is routine and we refer the reader to the proof of Theorem 3. 8. 4 in LORENTZ [9].

Corollary. For the space $L_p(p-1)$, the condition $||f_n|| \le M$, reduces to

$$\sum_{m=0}^{\varphi(n)} \frac{|L(C_{nm})|^p}{(\alpha_{nm}-\alpha_{n,m-1})^{p-1}} \leq M, \qquad n=0, 1, \ldots.$$

The choice of $c_{nm}(z)$ as in Example 1 yields the well-known solution of the moment problem for the space $L_p(p-1)$.

References

- D. L. Berman, On the problem of moments for a finite interval, Dokl. Akad. Nauk SSSR (N. S.) 109 (1956), 895—898 (Russian); MR 18, p. 390.
- [2] D. L. Berman, Application of interpolatory polynomial operators to solve the moment prob-
- [2] D. L. Berman, Application of interpolatory polynomial operators to solve the moment problem, Ukrain. Mat. Z. 14 (1962), 184—190 (Russian); MR 25, ≠ 2355.
 [3] K. Endl, Untersuchungen über Momentenprobleme bei Verfahren vom Hausdorffschen Typus, Math. Ann. 139 (1960), 403—432.
 [4] F. W. Gehring, A study of α-variation, Trans. Amer. Math. Soc. 76 (1954), 420—443.
 [5] G. H. Hardy, Divergent Series, Oxford, 1949.
 [6] F. Hausdorff, Summationsmethoden und Momentfolgen, I, II, Math. Z. 9 (1921), 74—109; 280—290

- 280-299.
- [7] A. Jakimovski, Some remarks on the moment problem of Hausdorff, J. London Math. Soc.
- 33 (1958), 1—14.
 [8] A. Jakimovski and M. S. Ramanujan, A uniform approximation theorem and its application to moment problems, Math. Z. 84 (1964), 143-153.
- [9] G. G. LORENTZ, Bernstein Polynomials, Toronto, 1953.
 [10] M. S. RAMANUJAN, Series-to-series quasi-Hausdorff transformations, J. Indian Math. Soc. (N. S.) 17 (1953), 47-53.
- [11] M. S. RAMANUJAN, On Hausdorff and quasi-Hausdorff methods of summability, Quart. J. Math. (Oxford second series) 8 (1957), 197-213.

(Received July 28, 1964.)