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The Hausdorff moment problem relates to obtaining necessary and sufficient
conditions involving a real sequence {4,} so that there exists a function g(¢) of
1

bounded variation over [0, 1] and 4, = fr"dg(t). Different solutions of this problem

0
have been given by HAUSDORFF [6], RAMANUJAN [10] and JAKiMOVSKI [7]. A related
question is to obtain necessary and sufficient conditions for the representation
1

).,,=fr"g(r)dr, with g(7) belonging to a specified function space. This has been

0
discussed in HAUSDORFF [6], RAMANUJAN [12], BErRMAN [I, 2], LorenTZ [9] and
GEHR]NG [4]. The above problems with the modifications of the type that

A= fr"”dg(r) or i,= f:”’g(r)dr form the content of [3] and [8]. The main tool

in most of these 1nvest1gat10ns is the uniform approximation of continuous functions
in [0, 1] by polynomials or power series suggested by them. In this paper we obtain
certain sufficient conditions for the above representations under a fairly general
set-up and indicate how some of the earlier results are included as special cases
of these results.

Notation. Throughout the paper the following assumptions are made, unless
a statement to the contrary is made.

1. R=1 is a fixed real number;

2. @(n) denotes a sequence of non-negative integers or + oo,

3. For each fixed n, (=0, 1,2, 3,...), {#,,} is a sequence of real numbers .
such that o, =0, for m=¢(n) and O<a,,,,,§l for all » and m;

4. c¢,.(z) are power-series satisfying

(4.1) Cul2)=0 for m=¢(n), n=0,1,2 ..
4.2) fore,(2) = Zd' A 2*, (0=m=g@(n)), we have 2 | G| RE < oo
k=0 k=0
@.3) for each p = 0,1,2,3, ..., Apy(2) = 3 Cou(2) 2l — 2"
m=0

uniformily in |z| =R, as n—eo;
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5. In the space P of power series g(z)zj’ a,z", with radius of convergence
o0

greater than 1, set L(g)= 2 a,iy, where {,} is a fixed bounded sequence. L(g)
0

is well defined and is a linear functional on P.
We list below some special examples of functions described on (4).

Example 1. c,,(z) = [;](l—z)"'mz'", 0=m=n and =0 for m=¢(n) =
=n and a,, = m/n.

The function described above is the kernel of the well-known Bernstein app-
roximation for analytic functions; see, for instance, Lorentz ([9], Theorem 4. 1. 1).

Example 2. c,,(z) = [ i ][z+Q,,(z)]"'[] —z—0,)])" ™ for 0O=m=nand = 0,

m=@(n) = n where for each n, |z+ Q,(z)|=R for |z|=R, R>1 being fixed, o,
are chosen as in Example 1, and Q,(z)= J3'q,,z" with ¢,= 7|q,,,]R" -0 as n-—oo.

Example 3. The Lagrange interpolatory functions.
.,(1 z)
+

Example 4. In Example 2, choose Q,(z)= , with a,=>0 and a, 0.

Theorems

In this section we prove certain sufficient conditions for a given sequence
{4,} to be a Hausdorff moment sequence. We start with the following lemma.

Lemma 1. Suppose R=1;if f(z)= j‘ @y 2" — 2P uniformly in |z| = R and if {1}
k=0

is a bounded sequence, then lim L(f,)=4,.

Nt o
Proor. We first prove that for each ¢=0 there corresponds a N(e) such that
for n=N(e), we have |a,; —d;,| <&R~*, where §,, are the Kronecker symbols.

For any k=0,
1 Ju(2)
ok = i Zk+1 =
|z|=R
and
| ¥
5"!’ - 2—1", ¢ z—kﬁdz.
|zj=R
Consequently
= f(2)—2* |fa(z)—2*|
|Gy — O | im g) B 1T dz| = IE:I‘E’; S B
|lzl=R

and the conclusion above easily follows.
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Now to complete the proof of the lemma, consider any & =0 and the correspond-
ing N(¢) indicated above. For n=N(g),

IL(fa) =4, = IkZ Ay P — A
- Ig(ank—élp))'ki
sup |4l 2 @ —0y,| = sup |4]e > R7*
k * k X

I

and the proof of the lemma is complete.

We state a theorem below and omit its proof remarking that it runs on lines
parallel to that of a known theorem (JAKIMOVSKI [7], Theorem 1) and that Lemma 1
plays now the réle of Theorem 3 of [7].

Theorem 1. Let ¢(n) be finite for n=0. If for the bounded sequence {1} we have

- (k)
(1.1) st:pkg{'] B m2=’0 IL(eg)| < ==

Jor some regular matrix (i.e., Toeplitz matrix) B=(b,), then {4,} is a Hausdorff
moment-sequence.

The following remarks on Theorem 1 are relevant.

wln)
1. The following converse of Theorem I iseasily proved: If sup max 2 |c,.(2) =

n 0=z=1m=0
<eoand {4,} is a Hausdorff moment sequence then for each regular matrix
B=(b,), we have that (1.1) holds.

2. Theorem 1 of [7] referred to earlier is itself a special case of our Theorem 1
by choosing the ¢,,(z) and «,, as in Example 1.
3. In the case of Example 2, the condition (1. 1) becomes

sup 3 lbu| 3 [ ,’;] L(z+ Qu@I) [1—2 = @y < =

and considering Example 4, it follows that a bounded sequence {4,} will be a
Hausdorff moment sequence if, in particular, a,=0, a,—~0 and

Indeed the above condition is also seen to be necessary.
4. It is no serious limitation to assume that the sequence {4,} is bounded since
a moment sequence is necessarily bounded.

Theorem 2. Let ¢(n)=0(n)and let for each fixed n,{c,,(2)}, M=0, 1, ..., @(n),
denote some permutation of {c,,(2)}, m=0, 1,2, ... o(n). If for a bounded sequence

{7},
(2.1) sup > |L(cap)| = =
M n=0

then {4,} is a Hausdorff moment sequence.
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Proor. Let
sup 3 [L(ca)| = K.
M n=0

For each fixed n, let N,= max ¢(j). Then

J=0,1, ..,n

w

Nn ol

- o= Nn n
(N.+1DK = ? ._Z Lcym) = Z Z Lcym) = ._Z !L(fm)|

;rl‘d

Thus, for each fixed n,

N,+1 K | n o gk
oo > K* = ( (" E l; = ‘ég %;i}ll;(ckﬁ4)| —
n | q(k) . " 1 (k)
;2 NG Z \Lcym)| = tg::"'i‘—lmgo \L(Cym)|

and the result follows by taking the matrix B in Theorem 1 to be that of the (C, 1)
method.

Corollary and Remark. Choosing the ¢,,(z) as in Example 1 it follows that

o)

implies that {4,} is necessarily a moment sequence, thus enabling us to make the
following remark on Theorem 219 of HArDY [5]. If the quasi-Hausdorff method
(H*, u,) 1s conservative (i. e.) if it is a Kojima matrix, then it is necessary that p,
is a moment sequence. (see also RAMANUJAN [11], p. 201).

We consider next the case the ¢(n) is not necessarily finite for any » and prove,
with the notations set out earlier,

2.2) sup “Z-

Theorem 3. Let @(n) be not necessarily finite for any n. Suppose also the follow-
ing conditions hold:

qin) o
(i) Jor each p=0, 3 |0y’ 2 |Gumi| < o
m=0 k=0
and
(n)
(ii) for {1} bounded, sup 3 |L(cud)| < <o
n m=0

Then {4,} is a Hausdorff moment sequence.

Proor. We first prove that under the assumptions of the theorem

q(m)
(3.1) lim 3 L(Cpm)oEm = 4,, for each p=0.

n—e= m= 0
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q(n)
Let p be fixed. The uniform convergence, in [z| =R, of Jc,.(2)25, to zP implies,
m=0
by the Wierstrass’s theorem for double series, that

7in)

Anp@) = 3 ()t = 3 by 2

where
aim)

bnﬂ R mé,o Ak (anm)p'

We now have A,,(z)~z” uniformly in |z| =R, as n-<o. Therefore, by Lemma 1,

(3.2) lim L(4,,) = lim Z bupidi = 4,.
This is true for p=0,1,2,3,....
Now

gin) g(n) -

20 L(clml)anm s Zﬂ mlml ,:; nm}; Ak
and

gin) = ain)
Z Iaum[p 2 |anmkl u*k' = Sup u‘ll Z |at,,,,,[" Z; |allmki e A0

m= k=0 k m=0 =

and therefore interchanging the order of summation we have,

gin)

2 L(C,,m)ﬁlﬂmz é;k 2 a amnk — .Z“'bupl )‘k
m=0 k=0 m=0 k=0

and therefore (3.1) follows from (3.2).
It follows from (3. 1) that for each polynomial P(z) we have

lim f L{cyw) P(0ye) = L(P).

Also, T T

ain)

y L(crrm)P(aum)| = "PH Z 1L(cmn)i — K"P”
for each n, the norm above being the supremum norm over [0, 1]. Letting n — o,
it follows that for each polynomial P over [0, 1], |L(P)|=K||P||; i.e. L is a linear
continuous functional over P[0, 1], the space of polynomials over [0, 1]. Since
P[0, 1] is dense in C[0, 1], L can be extended to C[0, 1] and the result in the theorem
is now an easy consequence of the Riesz representation theorem.

Our final result in Theorem 4 is a sufficient condition for a bounded sequence

{4,} to be a moment sequence of the form /,= ft'f(r)dr, where f is in a specified

0
function-space X(C) of the Koethe type. For definition and relevant details regard-
ing these see LORENTZ ([9], pp. 65—69).
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Theorem 4. Let the function-space X(C) have the property of rearrangement-
invariant norm and uniform absolute continuity for functions with norm less than 1.
Let @(n)<-<o, for eachn. Let 0=o,, <0, <0,<... <0, =1 and sup |a,, —

— %y m—1| =0 as n—-co. Given a bounded sequence {2,}, define the functions f,(x)
as follows:

) ={e =ty a 1) AN 0 o e SR wea s =0, 1.2y ...oMm).

1
Then, if ||f,||x«cy= M, for each fixed n, then 4, = f t"f(¢)dt, for a suitable function f
0

in the space X(C), with ||f||xc, =M.
PARTIAL PROOF OF THEOREM 4, We have, in the notation set out earlier,

(n)
qZ’ Coml(2)2%5, =~ 2%, uniformly in |z|=R, R=>1,
m=0

x g(m) = o) ok
z Z Ay O = Z bui =
m=0 k=0

s

3 g(m) -
i. e. oL, 2 Qo t® =
k=0

k=0

say, and the above expression converges uniformly in |z|=R to z", for each p.
Therefore, by Lemma 1,

Zﬂ'b.‘.ﬂ’).k*ﬂ., for each p, as n—oo;

k=0
1. €.
- F(m) gin) oo
Z‘ik Z Ok O = Z Ol m Zaumk)‘k"'a'p A R rerey
: k=0 m=0 m=0 k=0
1. €.

¢(n)

lim 3 L(Con)®m =4, for p=0,1,2,3,....
n m=0

1
But the left-side above is f J(x)g,(x)dx, where the f,(x) are the functions defined
0
in the statement of the theorem and
&(X) =05y, for a, ,-i=x<dt,,, m=0,1,..pH).
Hereafter the proof is routine and we refer the reader to the proof of Theorem

3.8.4 in Lorentz [9].
Corollary. For the space L (p=1), the condition |f,|| =M, reduces to

o |L(Cam)I”
m=0 (amn_an.m— ')p—l

The choice of ¢,,(z) as in Example 1 yields the well-known solution of the moment
problem for the space L,(p=1).

=M, n=0,1, ....
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