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Matrix number theory, I:
factorization of 2 < 2 unimodular matrices')

By BERNARD JACOBSON (Lancaster, Penn.)
and ROBERT J. WISNER (University Park, N. M.)

1. Introduction

The subject of matrices enjoys a duly-earned place in mathematics, and the
fact that matrices can be presented as representations of linear transformations
does not obviate their importance as rectangular arrays of numbers in other fields
of mathematics or in applications. This paper, however, arises neither from algebraic
considerations nor from a desire to examine new applications. The spirit here is
number-theoretic, exploring classes of matrices as one might explore the positive
integers and their properties. Indeed, we shall in this first of a projected series of
papers on matrix number theory consider only 2 X 2 matrices with integral entries;
moreover, strictest attention centers upon the case in which the entries are positive
or nonnegative integers and in which the matrices are unimodular. This being the
case, matrix addition is not a closed operation while matrix mulriplication is;
and our attention is confined to basic multiplicative number-theoretic properties
of factorization.

We first establish some notation and recall some elementary facts. The set
of integers is denoted, as usual, by Z; and we let Z' designate the set of positive
integers, while Z° will be used to represent the set of nonnegative integers. Elements
of Z will be labelled a, b, ¢, ..., and 2 X2 matrices will be labelled, 4, B, C, ... .
A is called wnimodular if |A| =1, and the set of unimodular matrices over Z!, Z°,
or Z is a multiplicative semigroup.

In this paper, the factorization properties of 2X2 unimodular matrices are
explored, first with the entires coming from Z?, then from Z°, finally from Z.

B is said to be a left divisor (or factor) of A if for some matrix C, 4= BC;
a right divisor if A= DB for some matrix D. A unit in a semigroup of matrices
is a matrix which is a divisor of every matrix of the semigroup, and in the cases to
be considered, all units are both left and right; a prime in a matrix semigroup is a
matrix which is not a unit and has at most units and itself as divisors: all other
nonunit matrices are composite.
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It appears that few of the results about 2 X2 matrices can be generalized to
the n X n case. However, the 22 case is of interest in itself, and it lends itself
uniquely to number-theoretic studies which will be presented later.

In §2, the result (nonunique factorization of 22 matrices over Z') is of
small interest in itself, but it is used here to prove the result in § 3 (unique factoriza-
tion of 22 matrices over Z°). This latter fact seems to be a new piece of know-
ledge about an unstudied segment of the classical modular group. Hopefully, this
sort of information may lead to advances in some difficult problems which arise
in investigating the structure of the modular group, about which precious little
is known.

2. Entries in Z'

We let here the symbol Uj designate the multiplicative semigroup of all uni-
modular 2X2 matrices over Z', exploring some questions about the divisibility
of such matrices.

The first thing to notice is that since each entry of a matrix in U} is a positive
integer, the definition of matrix multiplication assures that each entry of a product
of two matrices in U} is a sum of two positive integers; consequently, no matrix
with 1 as an entry has a divisor, so there are no units in U3. This makes the concept
of a prime in U} very simple: A4 is a prime in U} if it cannot be written as a product
of elements in U}. Thus, it is clear that if the element 4 € U} contains 1 as an entry,
then A is prime. The “only if” counterpart of this statement is also true, as will
be seen in the proof of Theorem 1.

Theorem 1. Let Ac U}, and let m be the minimum value of the entries of A.
Uj has no units; A is prime if m=1; and A factors uniquely as a product of primes
if and only if m=2.

PrOOF. Suppose

| e
A_[b c]éU2

with minimal entry m (we shall later implore the reader to check that the position
of m is unimportant). If m=1, then A is prime, as seen above. If m =1, then we
compute some new positive integers: let k be the least positive residue of @, mod m,
and let / be the least positive residue of b, mod m. That is, write

(1) a=rm+k
b=sm+1

where, since |4|=1 and m=1 and minimal, it is easy to check that r=1, s=1,
1=k<=m, 1=I/<m. Notice that since mc—ab=1, m divides ab+ 1. Moreover,
computing ab+ 1 as expressed in (1) yields the fact that m divides k/+ 1; simple
arithmetic assures that each of the entries in the following factorizations of A4 is
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a positive integer and that each matrix involved as a factor is unimodular:

ma
2 A_[b c]_ [b! mib=1| . ltr [T
m. - m . L Tﬂ'—
(; a-k
m—k k m
(m—k)b—1 kb+1| |~ mta—k
m m | m

These factorizations of 4 form the crux of the proof, showing also that if m=1,
then A is not a prime, thus completing the aforementioned characterization of
primes in U3. We leave it to the reader to check that other positionings of the mini-
mal element m =1 may cause (2) to undergo changes, but that there will still exist
two factorizations, one with the first factor containing a row of 1’s, the other with
the second factor containing a column of 1’s, and each factor being an element of U3.

Two things are clear. First, if the two factorizations given in (2) are the same,
then m=2, and it is easy to see that 4 can be factored in no other way. Second,
if m=2, then the two factorizations as given are not the same, but neither are the
factors necessarily prime.

However, in case m=2 (and now we stress that m need not be placed in the
first row and first column as in (2)), we proceed as follows: factor the given matrix
to obtain-as in the first factorization of (2)-a prime initial factor with a row of 1s,
and in case the second factor is not a prime, repeat the process until a factorization
is obtained in which we may write

(3) A=AA, ... 4,

where A, A,, ..., A, each contains a row of 1’s and A, is prime. Next, begin
again the factorization of the given matrix, this time concentrating on obtaining
by repetition final prime factors as in the second part of (2), so that eventually,

(4) A:BIBZ saey B}

where B,, By, ..., B; each contains a column of 1’s, and B, is prime.

Now if (3) and (4) are not identical, then it follows that 4 does not factor
uniquely as a product of primes. If (3) and (4) are the same and h=j=2, then it is
easy to conclude that the minimal element m of A is 2, contradicting our assumption
that m=2. Thus, (3) and (4) being the same means that h=j=2, and the non-
unique factorization of A will clearly be assured if we but show that each product
of three matrices POR where P has a row of 1’s, Q has a row of 1’s and a column
of 1's, and R has a column of 1’s (each of course being in U3) can be factored into
primes in another way. There are clearly only eight cases to consider, and the full
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demonstration, completing the proof, is:
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3. Entries in Z°

Now let U9 designate the set of unimodular 2 X 2 matrices over Z°, and it will
be seen that a striking change takes place by admitting 0 as an entry. Whereas §2
displayed an infinite number of primes in U] with nonunique factorization, the
present circumstance reduces the number of primes to two, and there is unique
factorization in U9Y.

It should be noted that the identity matrix 7, is the only unit in U3; a prime
in UY is, then, an element which cannot be written as the product of two nonunits.

Theorem 2. In U9, the only primes are the elements

| P | 1 0
P12=[0 1] aﬂd P2!=[l l]

and each element of U9 is either the unit I,, a prime, or is expressible uniquely as
the product of primes.

PrOOF. That 7, is the only unit in U9 is trivial.
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To show that P,, and P,, are the only primes is easy. For if A€ U has 0 as
an entry, then the conditions which define the class U3 force 4 to be of the form

(o 2l [k 3
(o 1)=(5 1)
HHEHHE

where the exponent, as usual, denotes the indicated number of repeated matrix
factors, with the 0 exponent defined to yield 7,. On the other hand, if 4 € UJ has
all its entries positive, then by the results of §2, 4 either has a minimal entry of
1 or can be factored (not necessarily in a unique manner) as a product of matrices
in U}, and hence in UY, each of which has 1 as a minimal entry. But it is easy to
check that the following equations hold:

and it is clear that

and that
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which then guarantee that every matrix in U%, except for I,, is divisible by P,
or P,,. Straightforward calculation yields that neither P,, nor P,, is a proper
divisor of the other, so they are the only primes. It follows that A4 is expressible as
the product of primes. (An alternate proof of this fact will be given in a later paper,
where its approach gives rise to other natural questions.)

Finally, factorization of

A= P73 P3P PR ..y

where almost all of the exponents are 0, is unique. For if not, then it would be
necessary that

PIZB=P21C
or

DPlz =EP21
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for suitable matrices B, C or D, E in UY. But

F AR LE DY ' 1 OYle I
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implies

from which it follows that
atc=e

c=e+g
so that
at+e+g=e

from which we conclude that @ =g =0. But @ =0 is impossible. A similar argument
holds to show the impossibility of the equation DP,,=EP,,, and the proof is

complete.

4. Entries in Z

Letting U, designate the multiplicative semigroup of all unimodular 2 X2
matrices with entries in Z, we recall merely that U, is the classical modular group;

and in a group, the usual concept of a prime is impossible.
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