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Sufficiency of parameter invariance conditions in
areal and higher order Kawaguchi spaces

(By M. A. McKIERNAN, (Waterloo, Ont.)

Introduction

Let V, be an n-dimensional space coordinatized by x (Latin indices assume
the values 1, ..., n throughout this note). The most elementary variational problem
s that of minimizing

[ L, 5y ar

relative to differentiable curves x‘=Xx(¢) joining given points xj, and x|. If the
integral is to be independent of the curve parametrization, the then Lagrangian L
must satisfy the homogeneity equation

(1) L{x, i} =AL{x, ¥} for A=>0.

In this note we consider some equations arising from parameter invariance
conditions imposed on more general variational problems. The first part is concerned
with problems in which the Lagrangian L depends on higher ordered derivatives
of the curve x'=xi(¢) as in Kawaguchi spaces [1],

- 5 R
(2) L{X’, X535 sy Xuj dt Where x; = v 3 for: resl ..
If m=1, then parameter invarience implies the homogeneity condition (1), which
in turn implies (we use the summation convention on repeated indices)

oL, _

m.\l = L.
It was shown by ZERMELO [2] and also by LisTER [3] in general that the parameter
invariance of (2) implies that L satisfies the m partial differential equations

(where 67 is the Kronecker delta)

m

!
(3) Z (r_:p)' g—\‘[:— Yyt =L for p=1,2 ..,m.
r=p . “p

(summation on i=1, ..., n). In this note we show that conversely (3) is sufficient
to guarantee the parameter invariance of (2).
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The second part of this note deals with the multiple integral problems of the
variational calculus, as in Areal spaces [4]. In V, an m-dimensional subspace S,,
is defined by the equations x' = x'(#*), where Greek indices assume the values | to
m=n. The functions x'(*) are usually assumed to be of class C?, and the multiple
integrals defined over S,, are of the form

i
(4) f...fL{xf, 2yditt...dt™ where I = g:; :
R:

here the Lagrangian L is a function of the n+nm arguments x' and x!. Under
a transformation 7* = t*(z”) of the Gaussian coordinates of S,,, the partial derivatives
x; become 24X} (summation on =1, ..., m) where ij=at*/d7". If (4)is to be in-
variant under such transformations then L must satisfy

(5) L{x', 28 %4} = 28] L{x, %)

where |A5| =det(43) is the Jacobian of the transformation, and should not vanish.

It was shown by G. Kobb [5] when n=3, m=2 and generally by W.

Grosz [6] pg. 84, that a necessary condition (assuming differentiability etc.)

for (5) to hold is that L satisfies the m? partial differential equations
oL

(6) ‘5}1‘*5 = ojL

where of course summation on i=1, ..., n is implied. RUND [7] has also shown
these equations to be sufficient, but the sufficiency proof required some assumptions
on the path of integration (see MARTIN [4]) and in this paper an alternate sufficiency
proof is gigen which avoids these difficulties.

Finally, the equation (5) is a particular case of a matrix functional equation.
Let [43] denote m X m matrices, while [x}] denotes rectangular m(row) X n(column)
matrices. If f is a real valued function on rectangular m X n matrices, then (5)
is equivalent to the functional equation

(7 A1 = 1251 Al

when k=1. If m=1 this is Euler’s homogeneity equation. If m=n, so that
(7) becomes f(XY)=|X[*/(Y) for square matrices X and Y, the equation is readily
solved. Let 7 be the identity matrix; it follows that f(X)=/f(X])= X*/(I)=c|X}

for arbitrary ¢ (see AczfL [8] pg. 242). In this note we discuss the general solution
of (7) for arbitrary m and n although our results cannot be considered a complete

solution of the functional equation.’)

Higher ordered Lagrangians
In this section we show that if L satisfies the m partial differential equations
e
(3) r;;(r_P)!‘(ﬁ“xi—p+l =6TL for pzl, —

) As pointed out by Prof. AcziL, equation (7) characterizes the scalar density concomitans
of weight &k defined on n vectors.
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where L is a function of the n(m+ 1) variables, L{x', x\, ..., x},}, then
. dxi d"xi| dxi dm xi
LY G - EL{“" ]

for any parameter transformation t=@(t) of class C™ satisfying ¢'(t) =0; we assume
that L has continuous partial derivatives for all x}, except perhaps for (x})*+ ...+
...+ (xP)?=0. (This latter restriction is imposed for simplicity and can be consider-
ably weakened, as indicated below, if so desired).

The following combinatorial formulas will be needed. Let A%(m) denote

0 if

k —
(8.1) Ag(m) = %’ﬁﬁl...w if o=k

where the summation is over integral ¢; =0 satisfying
(8.2) Qi+ g+ ... +qu=k
q1+29,+... +mq, =o.

The A%(m) are essentially multinomial coefficients [9], satisfying

9) (Aaz+2222 + oo+ Az = k! ) Ab(m)z°.
a

From (9) it follows (by differentiating with respect to 4,) that

aﬁggng_{o if o<p+k—1,
i, ~— |Azim) if o=k—p+1;

and also (differentiating with respect to z)

(10)

o—k+2
(11) 2 @ A5Zi i (m) = @+ D) Agy 1 (m).
Since (3) is to hold for arbitrary variables x!, then also for #} related to the x! by
(12) ui = D) xir! A3(m).
s=1
Replacing x{ throughout (3) by u{, the system of equations becomes
det - OL & i
(13) Q% 2t 2 x—p+ DAy () = 6 L(w),

where the left side defines the m quantities Q,.
If 2,0, we wish to show that by forming linear combinations of the
equations (13), one can obtain the system

OLG) 1 ., 9
3;-!, _"il_L(“r)"an

p=1,....m
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or, expanding and using (10) and (12),

(15) A% Z~QL-r: 2 X A= (m) = L6*;.{,.
7 XA Ay

However the required linear combinations of the equations Q,=d{L which yield

1 g . il 5 \
A OofL are relatively complicated and it is easier to reverse the process as

"o L
follows.
Let X, and Y, be arbitrary variables, p=1, ..., m, related by

m=p+1

(16) Yoo 20 ok Viioai . el iyt

=1
Then it is easily verified that, given 4, #0, the Y, are given by

m=p+1

(17) Y, = Zl (A X ee-1 P=1,0sm
where the Q7(4,) are polynomials in the A, except for the presence of 4, to negative
powers. In particular

=y ; o } PO
s i Pl R I Xp-1—2 72 b S

Instead of applying (17) to equations (13) and obtaining (15), it is sufficient
to apply (16) to equations (15) and verifying that (13) results. Explicitly, we will
show that

Y,

m—p+1
(18. 1) Q= 2 lhpuos  p=liom
m=p+1 1
(18.2) oL = Ghg [A—6f+“"‘L] p=l, ...
a=1 1

It will then follow that equations (15) are a consequence of (13) whenever 1, =0.
Equation (18. 2) is readily verified since the right hand side is zero unless p+0=2;
but since p=1 and ¢ =1, this can only happen for p=0=1, as required. To verify
(18. 1), substituting from the definition of A, given in (15), one obtains

m—p+1 m r=(p+e—1)+1

2

i
a=1 r=p+a-1 s=1 31:,

i -1
X P oA, A3 lyia=10

and interchanging orders of summation yields

m aL r=p+1 (r=p)=s+2

ZBu" r! 2 t; Z 0‘).‘,,4?,__1,,)_,+1.

r=p s=1 o=

By (11), this is Q, as required.
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It follows that applying (17) to (13) will yield (14) whenever 4, #0. But (14)
can be integrated since we may write it in the form
B Bk }._2_ Bt
M —5LiAT* = —{A7T' L(&)} = 0.
{ 19z, o4, LM = g i L))
An integration along a curve?) in the A, space from 1,=§! to an arbitrary 4,
avoiding 4, =0, yields
(19) Lu)=2;(x}) for 4,0

since, by (8.1) and (12), u} reduces to x! when 4,=4!.
But (19) is the required formula for parameter invariance since, by setting

,=—:Tg}§, equation (19), when fully expanded, becomes
df qi dm,r G
o d® x 1 dr dm drv  fdrx
] e —_ ——
o ;: de* r'%ql!...qm! 1 ) e dt L{ i }

But the arguments on the left are Faa di Bruno’s formula [10] for the r™® derivative
of the composite function x{®(r)}, verifying the parameter invariance q. e. d.

Multiple integrals

In this case the Lagrangian L {x', x{} is a function of the n+nm variables
Xi =0x'/0t* and x* where i=1, ...,n and a=1, ..., m=n. As indicated in the intro-
duction we wish to show that if L {x‘, x}} satisfies the m? partial differential equations

$bhg.
©) et = 5L

then L satisfies the functional equation
(5) L{x', A8x5} = |A5|L{x, %} for |A5]#0

and hence leads to parameter invarient multiple integrals.

This has already been shown by RuUND [7], and we briefly outline his method
in order to compare it with the method of this note. Let [4}] be an arbitrary m X m
matrix and set J = |45|. Assume J =0 and let A} denote the cofactor of A} in J. Replace
xj throughout (6) by uj = A}x} and multiply through by A4, The result may be written
in the form

oL
J—(,’u—i Xy = A: 5
" oF
2) We are using the fact lhalfﬁ di«-=Fi$f, (summation on r). Here P: is the point with
P
coordinates [1;#0, A,...,An) an’d P, has coordinates [1,0,...,0]. We are assuming that the
points P; and P can be joined by a curve along which 4,70, and for which F is continuously

differentiable. (This is the condition which should replace the original condition on L concerning
differentiability etc.).

D6
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But 9J/9i;= A* while BLIBA, (OL/0ul)x! so that this becomes

3)-, {(J-'L} =0 provided J=0.

Rund now integrates this equation along a path in the Aj space from the initial
point A3 =47 to an arbitrary A}, assuming that along the path J=0. Since J=1
at the initial point, the integrated equation becomes (5).

MARTIN [4], pg. 120, has raised some questions concerning this procedure,
mainly concerning the path of integration: is every point in A} space, even if J = || =0,
connected to the point 65 by a path along which J#0? We will not attempt to
answer this questions here.

In this note, the equation (5) is derived from (6) in a way which avoids such
prob[ems in the A7 space. Instead we assume snmply that (6) holds in a reglon of
the xj space for which the rank of the matrix [x}] is m. Since the system (6) is not
affected by interchanging the columns of the matrix [xX}] we assume for simplicity
that the variables have been re-labeled such that the ﬁrst m columns [¥j] have non-
vanishing determinant in the region in question. We write the matrix in the partitio-

ned form
[%] = [x5: x]

where p = m+1, ..., n. (Exception is made if m=n. This case is simple and will
be treated below). Since Xj 0 by assumption, let [Xj]=[xj]~", the inverse matrix.
We now perform the following change of variables on the system (6):
leave X} unchanged

2
(20) replace xX§ by uf = X/ x§, for p=m+1,..,n

Since the matrix [X]] has an inverse, this transformation is one-one. Finally,
replace L(x', ) by

(21) L(x, %) = |x5| I{x', X5, up}.

Since / is arbitrary and [x}| 0, this places no restriction on the system. In the
remainder of this section it will be shown that under the transformation (20) and
(21) the system of equations (6) are equivalent to the system

(22) 8‘2‘, =
so that the general solution of (6) is given by
(23) L{xX, 23} = | 23] 1, X7 22} p=m+1,..,n,
for arbitrary . In the case m=n, this reduces to

L{x, 55} = 1841 1),

Further, any function L of the form (23) satisfies the functional equation (5), given
|45 #0, as was required.



Sufficiency of parameter invariance conditions ... 83

In order to verify the assertion, let 4 =|xj|. Then, if C/ denotes the cofactor
of Xj in 4, it is clear that

24) 04

ale'rg—C’x,—ﬁg

Also, since Xjx¥ =47, it follows that

aX’ ' a a'x.’ o Sa
T il Rkt
and multiplying by Xix} yields
aX‘? v o ya a ya
(25) o5 Xp=—Xy XX} = -3 X5.
We now write (6) in the form
oL . (‘)L % o
X7 *+ 9% axr P = =

summation on y=1, ...,m and p=m+1, ..., n. Replacing L by L=A4[ as in (21),
this equation becomes

B oy O o NI
) S ltd g B tdGe S Xt A5

30 = 53l

Using (24), the first term cancels with the right hand side, while by (25) the third
and fourth terms cancell. Since 4 0, this equation reduces to

ax‘ JC, = 0

and multiplying by X7 yields (22). If m=n, then the variables u} are missing in
(26), but the result is the same. It remains to show that if L is of the form specified

in (23) then the functional equation (5) is satisfied. This will be shown with more
generality in the next section.

The matrix functional equation

In this section we discuss a generalization of the functional equation treated
(with differentiability assumptions) in the previous section. As before [4j] denotes
an m X m matrix, [xi] an m(row)xn(column) matrix where now » may be less than m,
and f'is a real valued function on rectangular m X n matrices, satisfying

() AU = 12451 Al

We do not give a complete solution of (7) since this seems to require many distinc-
tions in the possible ways in which the rank of the matrix [x!] can be m. This is
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analogous to the case F{ix, iy}=Ai*F(x, y) which requires the four distinct cases
(AczfL [8] p. 160): y#0, y=0and x#0, y ux 0 and k#0, y=x=0 and k=0.

'( —m)!

of choosing m distinct columns from the total of n columns).

Here, the matrix [x%] can have rank m in — ways (the number of ways

In this section we merely show that
(27) Al = IGFF{XE XD}, [xgl#0

for arbitrary F if the rank of the matrix [x§:x§) is m and |xj| is the non-vanishing
determinant, while
A} =0

if the rank of the matrix [x;) is less than m, while k 0. Here X and x¥ have the same
interpretation?) as in the previous section, and F is an arbitrary funct:on of the

(n—m)m variables Xjx?. In the case m=1 equation (27) reads.
Fot % ""}—(.’c‘)"z"{‘_l - ih ;—l—}, x!#0.
The above assertion may be verified as follows. If the rank of [x!] is less than

m, then [x!] is row-equivalent to a matrix with zero first row. Alternatively there
exists a non singular matrix [4j] such that the first row in [A3][x}] is zero. But then
if [o7] is the matrix

1.0

0 1 0

bil=]. . .p
0 PR I

the matrix [o][45][x:] is independent of ¢. It follows by substituting in (7) that the
right hand side of the equation

Alepl 1410l = o*| 4 Al k=0

is independent of ¢ and since |A3| =0, this implies f{[x]}= 0.
If the matrix [xj] = [xj:x}] has rank m (which implies that n=m), and if further
[x-,| #0, the [47] in (7) can be chosen as the inverse matrix [Xj]=[x3]"!, resulting

in the equation
FUAXRAG = x5} = A105: X X1} = | X[ A}

Since |Xj[*= |x3|~* it follows that f has the form spec1ﬁed in (27).
Conversely, if fis given by (27) then

(28) AT = A x5 23 x70} = |4 x31° F{Y{ »7}

3) This is but a slight generalization of the results of W. Grosz [6], pg. 82—83, for k=1,
In his notation po = \xj| and pnyx = —peXjxI 5.
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where y? = Ay x? and [Y]] = [43x3]~' = [x3]~ "' [43]~ . Therefore
[(Y¢¥5] = [X5[43] " [451 (x5l = [XjxT).
Hence (28) becomes

A1 = 143 1 1 F{X) X7} = |23 A1)

which verifies the assertion that the function fin (27) satisfies (7), and also completes
the proof of the previous section.
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