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On the number of independent complete subgraphs
By BOHDAN ZELINKA (Liberec)

At the Symposium on theory of graphs in Smolenice P. ERDGs has asked the
following problem (see [1]):

Let /=1, assume that G has /n vertices and every vertex has valency =(/—1)n.
Is it then true that G contains »n independent complete /-gons (i. e. no two of which
have a common vertex).

This conjecture was not still proved in general, but it was proved for some
values of / at arbitrary n. For /=2 it is a consequence of a well known theorem of
Dirac and for /=3 it was proved by CorrADI and HAINAL in [2]. For /=4 CORRADI
proved that G contains n—1 independent complete quadrilaterals and an n-th
complete quadrilateral independent of the previous ones with perhaps one edge
missing.

In this paper one goes to the problem from another side. The problem is solved
for arbitrary /, but only for the values n=2 and n=3. (For n=1 the conjecture
holds trivially.) Let n=2. The graph G has 2/ vertices and every vertex has valency
=2/—2. So in the complement G of G every vertex has valency =1, i. e. every
component of G is either a single edge with its end vertices, or an isolated vertex.
Therefore we can number the vertices of G as follows. If two vertices are joined
by an edge in G, we assign the number 1 to one of them and the number 2 to the other.
Then we decompose the set of isolated vertices of G into two disjoint sets of equal
cardinality (this is possible, as the number of isolated vertices is even), to all vertices
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of one of the sets we assign the number 1, to all vertices of the other set we assign
the number 2 (see fig. 1). The set of all vertices numbered by 1 (resp. by 2) consists
of 1 vertices and is evidently independent in G, therefore it generates a complete
l-gon in G,
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Let n=3. The graph G has 3/ vertices and every vertex has valency =3/—3.
So in the complement G of G every vertex has valency =2; i. e. every component
of G is either a circuit, or a path, or an isolated vertex. Now we shall construct
the set K as follows. If a circuit in G has the number of vertices congruent with
2 modulo 3, we choose two neighbouring vertices of that circuit and these will
be contained in K. If a circuit in G has the number of vertices congruent with 1
modulo 3, we choose one vertex of that circuit and it will be contained in K. All
vertices of G which are not contained in any circuit will be also contained in K.
Other vertices are not contained in K. All components of the subgraph of G generated
by the set K are paths orisolated vertices and the cardinality of K is divisible by
three (as the number of vertices not contained in K is evidently divisible by three).
So it is possible to number all vertices of K by the numbers 1, 2 and 3, so that neigh-
bouring vertices in G might have different numbers and the sets of vertices equally
numbered have equal cardinality. When a circuit has the number of vertices congruent
with 0 modulo 3, we can go around it, starting with an arbitrary vertex, and number
its vertices mutually by 1, 2 and 3. Now let a,, a,, a; be some permutation of the
numbers 1, 2, 3. When a circuit has the number of vertices congruent with 1 modulo 3
and its vertex belonging to K has number a,, we start in one vertex neighbouring
with it and go along the circuit (with exception of the vertex belonging to K) number-
ing its vertices mutually by a,, @,, a;. When a circuit has the number of vertices
congruent with 2 modulo 3 and its vertices belonging to K have numbers @, and a,,
we start in one vertex neighbouring with the vertex numbered by a4, and go along
the circuit (with exception of the vertices belonging to K) numbering its vertices
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mutually by a,, a;, a,. This numbering is seen on fig. 2. In such a numbering the
set of vertices numbered by the same number has again the cardinality / and is
independent in G, therefore it generates a complete /-gon in G.
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