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The block-cutpoint-tree of a graph
By FRANK HARARY" and GEERT PRINS (Ann Arbor, Mich.)

It has often been observed that a connected graph with quite a few cutpoints
bears a resemblance to a tree (see Figure 1A). In this note this idea will be made
definite by associating with every connected graph G a tree 7(G) which displays
this resemblance. The definition of 7(G) is a natural extension of the definitions
of the block-graph B(G) and the cutpoint-graph C(G), defined in [1]. We recall
the following definitions from that paper. A cutpoint ¢ of a connected graph G is
a point whose removal results in a disconnected graph. A block B of G is a maximal
connected subgraph of G which has no cutpoints. The block-graph B(G) is the
graph whose points are the blocks of G and in which two points are adjacent
whenever the corresponding blocks have a point (which must be a cutpoint of G)
in common (see Figure 1B). Thecutpoint-graph C(G) is the graph whose points are
the cutpoints of G, and in which two points are adjacent provided they lic on a
common block of G (see Figure 1C).

We now define the block-cutpoint-tree T(G) as the graph whose set of points
is the union of the set of blocks and the set of cutpoints of G, and in which two
points are adjacent only if one corresponds toa block B of G, and the other to a
cutpoint ¢ of G and c€ B in G (see Figure 1D).

Theorem 1. If G is connected, T(G) is a tree.

Proor. If T(G) has a cycle, this cycle must contain at least two blocks of G,
say B, and B,, as points. There are two paths from B, to B, in T(G), and therefore
also in G. But then B, and B, are contained in the same block of G, which is non-
sense. Hence T(G) is acyclic. As the connectedness of G implies that of 7(G), we
conclude that 7(G) is a tree.

A graph is bicolorable if its points can be divided into two classes (colors),
such that points of the same class are never adjacent. A graph is bicolored if its
points are divided into two classes, such that points of the same class are never
adjacent. A bicolorable connected graph can be bicolored in only one way, except
for the naming of the colors. Hence we do not need to distinguish between bi-
colorable and bicolored connected graphs. The block-cutpoint tree 7(G) of a
connected graph G is bicolorable by assigning one color (say blue) to the points
corresponding to the blocks of G, and another color (say coral) to the points
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corresponding to the cutpoints of G. As stated above, this is essentially the only way
this tree can be bicolored. We also note that the endpoints of 7T(G) are all colored
blue.

G: B(G): C@Q):

(A) (B) (€)
T(Q): 4 it

(D) (E) (F)

Fig. 1

We now define a bec-tree as a bicolored tree in which every endpoint has the
same color. Alternately, we may define a be-tree to be a tree 7 which has a point u.
such that for every two endpoints e, e, of T, d(u, e;)=d(u, e;) mod 2, where
d(u, v) is the distance between u and v.

Theorem 2. Every bce-tree is the block-cutpoint-tree of a connected graph and
conversely.

ProOF. We only need to show the direct part of the theorem. We shall construct
a graph G, corresponding to an arbitrary be-tree 7 such that 7= T(G) (is isomorphic).
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Let T be colored blue and coral with blue endpoints. We first construct a bicolored
tree T, which has all the points and lines of 7" and in addition for every endpoint
b, of T a new coral point ¢; and a new line b;c;, as shown in Figure 1E. We now
construct a graph G,, whose points are the coral points of 7;, and in which two
points are adjacent whenever the distance between them in 7, is 2. It is easy to
verify that 7(G,)= T see Figure IF.

We briefly note some properties of the graph G, constructed in the preceding
proof. If G is another graph with 7(G)= T, then the number of points of G, is
less than or equal to the number of points of G. Also, G, is the only graph with
complete blocks with this property. The set of graphs G, contains the one-point
graph and further all connected graphs with complete blocks in which every point
is a cutpoint or an endpoint, except for the 2-point complete graph. If every (complete)
block of G, is replaced by one of its Hamilton cycles, we obtain a graph H which
is also minimal as to number of lines among all graphs G for which 7(G)=T.
However, H is not unique, as different choices of Hamilton cycles may lead to
non-isomorphic graphs. Finally, the graph obtained from G, by deleting its end-
points is its cutpoint-graph, and that of all graphs G with 7T(G)=T.

Graphs with the same block-cutpoint-tree also have the same block-graph
and the same cutpoint-graph. The converse also holds

Theorem 3. Two connected graphs have the same block-graph if and only if
they have the same block-cutpoint-tree.

Proor. The blocks of B(G) correspond to the cutpoints of G. We construct
a new graph G* whose points are the points of B(G) and the blocks of B(G), with
two points adjacent in G* whenever one is a block in B(G) and the other a point
in that block. Clearly, G*= T(G).

Conversely, construct a graph G” which has as points the blue points of 7(G),
and let two points be adjacent in G’ if and only if they are adjacent to the same
coral point in 7(G). Then G"= B(G). As both constructions are unique. the corres-
pondence is one-to-one.

Corollary. There is a one-to-one correspondence between bc-trees and connected
graphs with complete blocks, such that in corresponding tree and graph the number
of blue points of the one equals the number of points of the other.

Proor. It is proved in [1] that every connected graph with complete blocks
is a block-graph. The corollary now follows from Theorem 2. It can also be proved
directly by the method of proof of Theorem 3.

In Figure 2, we show the diagrams of all be-trees with 4 blue points and the
corresponding block-graphs with 4 points.

We now proceed to count the number of be-trees. The methods and notation
used are those of HARARY and PRINS [2]. We review briefly the main concepts:
S, is the symmetric group of degree n; Z(S,) is its cycle index, Z(S,, f(x, y)) is
obtained by substituting f(x*, y*) for each variable 7, in Z(S,), and Z(S..) is symbolic

notation for _E’Z(S,,). We state the well-known identity given by POLYA:
0

Z(S.,f(x, ) = exp lZf(x', V)" Y
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We shall enumerate be-trees in the form of a generating series,

o

t(x’ y) o Z rm.uxmyn

m=1,n=

where 7,, , is the number of be-trees with m blue points and » coral points. Similarly
let T(x, ¥), Tg(x, y), Te(x, y) be the generating series for rooted be-trees, be-trees
rooted at a blue point, and be-trees rooted at a coral point respectively.

Fig. 2
Theorem 4.
TB(X! )’) :.‘CZ(S,,, TC(-‘-: .V))'Z(S-u .VTB(X, y))'
Te(x, y)=y[Z(S., Ts(x, y)) = Tp(x, y) - 1].
T(x, y)=Ty(x, ») + Tc(x, p).
1(x, ») =T(x, y) — Tp(x, Y[Tc(x, ) +yTa(x, y)).

Proor. Consider a be-tree rooted at a blue point ». This tree is completely
determined by its branches at v. By removing the point ¢ from such a branch, we
obtain a bicolored tree R, rooted at a coral point u. If u is not an endpoint of R,
then R is a be-tree rooted at a coral point. If u is an endpoint of R, then R—u is
a be-tree rooted at a blue point. The trees R are counted in the first instance by

Te(x, y), in the second instance by yTg(x, y). As there may be arbitrarily many
trees of each type at the root-point v, we have:

Tﬂ(xs J’) '=.\‘Z(S.., TC(x, _V))Z(S_, }'Tg(x, _}’))-

Now consider a be-tree rooted at a coral point. Again, this tree is completely
determined by the branches at the root, and we notice that there are always at least
two branches. Therefore:

Te(x,)) =y 22’ Z(S;, Ts(x, ) = y [Z(S.., Ts(x, ) — Ts(x, ) —1].

We may now calculate Ty(x, ¥) and T¢(x, y) up to any desired power x™y” by alternate
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consideration of the two generating functions. Since T'(x, y)=Tg(x, y)+ Tc(x, »),
we find explicitly:
Tp(x, y) = x+x2y+x*(r+20) +x*(y + 3y* +4°)
+x5(y+ 52+ 1003 +9Y + ...
T(x,y) = x+x2(20) +x3(2y+3y?) +x* 2y + 52 + 1)
+ 52y +82 + 1713 + 15y + ...
Finally, we find the generating series #(x, y) for unrooted bec-trees by applying
Otter’s Theorem. As a be-tree does not have a symmetry line (every line joins a blue
point to a coral point), this theorem reduces in our case to:
t(x, y) = T(x, y) s L(x’ y)
where L(x, y) is the generating series for be-trees rooted at a line. By an argument
similar to the ones above, we obtain:

3 - t(x, ) = T(x, y) = Ts(x, PITc(x, ) +yTp(x, ).
Explicitly,

t(x,y) = x+x2y+x3(+y)+x*+y*+ 2+ x3(0+ 22 + 3 + 3y + ...

In [3], NORMAN obtained the generating function for graphs in which every block
is complete, i. e. for block-graphs, but had to use rather sophisticated methods
to obtain this result. By applying Theorem 3 to Theorem 4, we obtain the same
result in a more elementary way:

Corollary. Let b, and b, be respectively the number of rooted and unrooted block-
graphs with n poeints, and let

B(x) = S'an" and B(x) = jb,x"
1 1

be their generating series. Then A
B(x)=Ty(x, 1)
B(x)=1(x,1).
Explicitly: =
B(x) = x+x2+3x3+8x*4+25x% + ...
B(x) = x+x2+2x3+4x* +9x5 + ...
We note that the series B(x) is the same as the counting series for ordinary

rooted trees as for as given. This is purely accidental and does not hold for higher
powers of x.
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