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as the only solutions having points of continuity of Cauchy’s equation

e(x+y) = ex)+o(y).

This equation is equivalent to the equation

(1

2

where @ and g are unknown, a;; constants.
Can equation (2) serve to a characterization of some type of functions? Yes.

e(xy+ ... +x,) = k,z; @ (xy)
(cf. AczEL—KIESEWETTER [3]).

A natural generalization of equation (1) is the equation

o(xy+ .. +x,) = i JZ_,' ai; ¢ (x;)g(x;),

%)
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It is known that the functions @(x)= Bx (B=const.) can be characterized

For n=3 it is characteristic for the functions @ (x) = Bx + C (B =const., C =const.).

(3)

e(x+y) = o(x)g(») +o(»)g(x)
which was considered e. g., in [1], [4], [5], [6].

If n =2, the solutions of equation (2) can be obtained from those of the equation

By the results of [5] it is easy to show that in the case #=2 the only non-zero

solutions ¢, g of equation (2) which have at least one point of continuity in common
are the following couples of functions

1 o
20
30
40

where A, a, b (A #0, b #0) are arbitrary constanst, and « =a— e
12 21

@(x) = Ae™,

@(x) = Axe™,
@(x) = Ae**sin bx,
¢@(x) = Ae**sinh bx,

g(x) = ae™ cos bx,
g2(x) = ae** cosh bx,
1 1
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It can be proved that for n=3 the only non-zero solutions of equation (2)
which have a point of continuity in common are

1° 0() =Bx+C, g()=——,
' Z aj
Li=1
i
z @(x) = Bx, g = —— = ,,1 y
Z aij 2 a;j
Je=1 Jj=
i#]j i#j

where B, C (C#0, B0 in 2°) are arbitrary constants.

Thus the functions ¢(x) = Bx+ C can be defined as the only functions having
at least one point of continuity for which there exists a function g continuous at
this point, such that ¢, g constitute the solution of equation (2).

Before we solve equation (2), we shall prove some theorems on the regularity
of its solutions. We shall restrict ourselves to the case n =3, since for n =2 equation
(2) can easily be reduced to equation (3) for which adequate theorems were given
in [5]. (Notice that the proof of Theorem I remains valid for n =2, too).

Theorem 1. If the functions ¢, g which satisfy equation (2) have at least one
point of continuity in common and ¢@(x)Z0, they are continuous everywhere.

Proor. Let @ be a common point of continuity of the functions ¢ and g.

In order to prove that the function ¢ is continuous at an arbitrary point &,
we fix xy,...,%,—y such that x,+...+x,_1=8§—a. If x,~a, x;+... +x,~{.
Since the right side of equation (2) is continuous at a, the function ¢ is continuous at £.

We shall show that the function g too is continuous everywhere. Since ¢(x)# 0,

it follows from (2) that > a;;*0and for some j it mustbe > a;; =0, Without loss
' ! i)
of generality we can assume that 2 a;,#0. Given b such that ¢(b)#0 we
im]

IRKE Xi == a s = X, =x. Then {2) can be written as

n—1 n—1 n—1
((n—1)b+x) = ' jZ_.‘l a; p(b)g(b)+ 2 ai@(b)8(x)+ 2l a,; ¢(x)g(b)
‘e j P e
whence T, ok
¢((n—1b+x)— 3 a,2(B)o(x)— 3 a;;¢(b)g(b)
@ g(x) = s “in)

:I;f Ay @ (b)

and it follows from the continuity of the function ¢ that the function g is continuous
everywhere.
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Now we can make use of Aczél’'s method (cf. [2]) and prove the following

Theorem 2. If the functions ¢, g satisfy equation (2), are continuous, and moreover
@(x)Z0, they are functions of class C*.
Proor. Consider first the case ¢(0)#0, e. g. ¢(0)=1. Then
1
2(0) = e,
2 a4

f,j=1
i%j

n—1
Similarly as in the proof of Theorem 1 we can assume that > a;, 0. Substituting
i=1

X1 =..=X,-1 =0, Xx,=x into (2) we obtain

o) = 3 0,050+ 3 aug )+ 3 ay0)

i#j
Hence
(5) g(x)=Agp(x)+ B,
where
n—1
2 anj
- 1
P =1
4=1 n n—1 o+
Z aij| 2 Qi
ij=1 =
izj
n—1
a”
Il_;!"l 1
B=- a =1
2 aU Zam
=1 =
iJ

Substituting (5) into (2) we obtain
oy +...+x,) = i é’la;;¢(x£)(A¢(xj)+B).

kY]
Putting x; =...=x,_,;=s, x,=x and integrating by s from « to f, we obtain
B
(6) f(p((n— 1)s+x)ds = Co(x)+ D,

where

3 # ok
C=A3 @ +ap [ o6)ds+BS a,,(8-0),
=1 - y=1

n-1 " n-1 4
D= 3 a;[0(s)(A9(s)+B)ds+B 3 a, [ p(s) ds.
i, j=1 e i=1 «

i#j
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If @ (x)# const, one can choose the numbers «, f such that C#0. Then we obtain

from (6)
B

Pp(x) = .é.f¢((n—l)s+.t)rf —g—.

Since the function ¢ is continuous, the right hand side of the last equality is
differentiable, hence it follows that the function ¢ is differentiable.

Now, we can differentiate the right hand side of equation (2) with respect
to x,, ..., X,, and therefore the function ¢ which appears on the left hand side
of equation (2) must have derivatives of order =n. From (4) it follows that this
is the case also for the function g.

Similarly we conclude that the derivatives of order =n exist.

If @ (x) =const, the theorem is trivial (in view of (4)).

In the case ¢ (0) =0 we substitute x; =x, x;=0forj=1, ..., n, j #i and we obtain

@(x) = .;f.;a;,«CP(x)g(O). (i=1,...,n).
12]
Hence
I .

) 20) = ——, Gl

2 a;

J=1

%)

Putting x, =0 for k=1, ..., n, k #i, k #j into (2), we obtain after computations

ai; o (x)g(x)) +aj; p(x)g(x) = o(x;+x;) — ké: (au o(x)+aj @ (-‘fj))g(o)-
kti k#]

In view of the last equality and in view of (7) we obtain from (2) the equality

®) PxXy+ e X)) = élfp(xa+x1)—(n—2)*=21¢(-n)-
i<j
Setting in (8) x;=...=Xx,_; =5, x,=x and integrating for s from « to f, we
obtain after computations

] ]
9) qO(x)=Pftp((n—1)s+x)ds'+Qf(,0(.s‘+x)ds+R,

where
| n—1

4 =" 6-"

T 0-)(B-9

p s
R= --E:%—[ftp(s)ds—%f(p(h)ds].
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Since we can differentiate the right hand side of equality (9), the function ¢
must have a first derivative. In view of equality (4) (which was obtained in the proof
of Theorem 1), we conclude that the first derivative of the function g exists too.

Making use of equation (2) it is easy to show that the second derivative of
the function ¢ also exists. The existence of the second derivative of the function g
follows automatically from (4).

The proof of the existence of the higher derivatives of these functions is ana-
logous.

As a simple conclusion from theorem 1 and 2 we get the following

Remark. If the functions ¢, g which satisfy equation (2) have at least one point
of continuity in common and ¢(x)#0, they are functions of class C~.

Now, one can easily find the solutions ¢, g of equation (2) which have a point
of continuity in common.

Theorem 3. The solutions ¢, g of equation (2) with n=3 which have a point
of continuity in common, and such that ¢ (x)Z0, must have the form

1
1° ¢(x) =Bx+C, gx)=—7—,
2 @
i,j=1
i
or
20 (P(x):Bxs g(x): nl . ("-:ls---,n)s
2 a;;
i=1
i#]j

where B, C (C#0, B0 in 2° are arbitrary constants.
PrOOF. By the Remark the functions ¢ and g have all the derivatives. Differen-

tiating equation (2) for three different variables, we obtain ¢”(x)=0. Hence it
follows that the function ¢ has the form
(10) @o(x) = Ax*+Bx+C.

Differentiating equation (2) by x; and x; (i #/), we obtain

@ (xy+ ... +x,) = a;;0"(x)g'(x)) +a;0"(x;)g"(x).

Hence, in view of (10), we have
(11) 24 = a;;(24x;+ B)g'(x;) +a;;(24x;+ B)g'(x)).

Differentiating (11) by x; and x; (i /) and putting x; = x; =X, we obtain

(a;; +a;;)Ag"(x) =0.

It must be Ag”(x)=0, since in the contrary case we would have a,;+a;;=0 for
i,j=1, ..., n, i#]J, and then (in view of (2)) ¢ (x)=0.

D38
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Now, we shall prove that g”(x)=0. In fact, 4g"(x) =0 implies either g"(x)=0
or A=0. If A=0, it follows from (11) that (a;;+a;)Bg"(x)=0 (i, j=1, ..., n, i #)).
Since the assumption Bg’(x) 0 yields ¢ (x) =0, it must be either B=0 or g’(x)=0.
We shall prove that g’(x)=0. Indeed, if B=0, then ¢(x)=C and it follows from
(2) that

g(x) = — g
2 4 Gt
i, j=1 .
ST i#j v

and we have g’(x)=0. Thus it must be g”(x)=0 and g(x)=Dx+E.
Equality (11) can be written now as

(12) 24 = a;;(2Ax;+ B)D +a;;(2Ax;+ B)D
whence we obtain for x;=x;=0

Differentiating (12) for x; and x; (i#j), we obtain a;;AD=0 and a;;4AD=0.
It must be 4D =0, since in the contrary case we would have ¢(x)=0. We shall
show that 4=0. In fact, if 40, then D=0, but this contradicts (13). Thus the
function ¢ has the form
@(x) = Bx+C.

Now, one can write (12) as (a;; +a;)BD =0. It must be BD =0, since BD =0
yields @(x)=0.
If B=0, then ¢@(x)=C (C #0) and we conclude from equation (2) that

g(x) = —

2 @
i, j=1
i ]

If D=0, then g(x)=E and it results from (2) that

1

E=— = for C#0
2 aij
hi=1
i*j
and
n | s
E=—; = — =1 ..n for C=0.

Zau 2 a;;

Li=1 j=1

i i j

Thus the solutions of equation (2) have either form 1° or 2°,
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