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Systems of one quadratic and two bilinear
equations in a finite field

By A. DUANE PORTER (Laramie, Wyo.)

1. Introduction

Let F=GF(q) be the finite field of ¢ =p" elements, p odd. At the turn of this
century, L. E. DicksoN ([5], pp. 46—48) found the number of solutions in F of
a single qudratic equation, and in 1954 L. CArLITZ [3] found the number of simul-
taneous solutions in F of certain pairs of quadratic equations. These results were
followed in 1957 by the formulas of E. CoHEN [4] for the number of simultaneous
solutions in F of pairs of linecar and quadratic equations. In this paper, we wish to
generalize to the system of three equations

(1. 1) 12'1 a;x; = a; ;2; bjx;y; = b; ;Z; dix;y; = d,

where all coefficients are from F, and a;b;d; =0, all /=j=n. Explicit formulas
are obtained for the number of simultaneous solutions in F of this system. As is
the case in Dickson’s results, the number of solutions depends upon whether n
is even or odd. We remark that among the systems (1. 1), there occur also unsolvable
ones. Consider, e. g. the case when b;=d;, | =j=nand b=d.

2. Notation and preliminaries

If 2 is an element of F, we define

2.1 e(a) = e2™@/p; t(a) = a+af+...+af",

where by its definition 7(x) is an element of GF(p). From (2. 1), we may prove
2.2) e(x+p) = e(@e(p),

" 5 q, if a=0,

ot 2¢ =10 it amo,

where the indicated sum is over all f in F. If we let  denote the Legendre function
for F, so Yy(x)=0, 1, —1, according as «=0, a nonzero square, or a non-square
of F, we can define

(2. 4) v(a) = 1 —y?(a).
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In view of (2. 3) and (2. 4), one may easily prove

@.5) 3e@h) = v@q— 3 eh)  B#Brba. o b
The well known Gauss-sum ([1], § 3) for F and its values will be denoted by
(2.6) 6@ = 3 e@p) {"‘ b
. — e —
7 ﬂZ'#(ﬁ)e(ﬂﬁ) =yY(@)G(1), a#0,
where

2.7 G*(1) = y(—1gq.

The Cauchy—Gauss sum will be denoted by G(z, f) and has, by [2], § 1, the values

q, a=0, p=0,
(2.8) Gz, ) = 2 e(@y*+2py) =10, =0, B0,
X e(—p*)G(x), a=0.

If s,,...,5 are nonzero integers such that s, +...+s, = n, and fy, ..., i
are distinct nonzero elements of F, then we rearrange the system (1. 1) such that

_f‘ = _dj/bj’ Sl 4+ ... +35_1-=:j§.s‘l + ... +Sf‘

2.9) for i=2,...,k, andfor i=1, we define s,=1.

It is clear that (2. 9) does not impose any restrictions on the system (1. 1).
Finally, we define
A=aa,..a,

(2. 10) Ai=a,_,4y...8,, 2=i=k, and for i=1,
So=0.

3. The number N=N(A,n, a, b, d, f,, s,

We may now prove the
Theorem. The number N=N(A,n,a,b,d, f;,s;) of simultaneous solutions in F

of the system (1. 1) when a;b,d; #0, 1 =j=n, is given by
N = g3 +v(a) [{v(b)g—1}g"~ 2 +v(b) {v(d)g — 1}¢"~' | +

£ 3 i+ d)— [ — v@) g2 +

(3. l) 7 i=1
R, n even,
+qsl-3¢ﬂ(Ai)H(sl)]+ T n Odd
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where
R = Y (A2 (~ )[p(@)g — 1]ger-o72
T = Y(ad)yn+32(—1)gen-912,
W3 (D@ —11g@-=072, 5, even,
H(s) = {lﬁ(ﬂ)lﬁ“"””z (—1)g@n=s+DI2 5 odd,

V is the Legendre function for F; v(x) is defined by (2.4); s; and f; are defined by
(2.9); A and A; are defined by (2. 10).

Proor. In view of (2. 3), we have

N=g3 Z‘Ze{ Zn’a,.r}—a]a}-

Xj,¥j « J=1
.%‘e{Z'Jél b,xjy,-—b] ﬁ}%’el!! Ié; djxjyj—d] y},

where the first sum to the right of the equality sign indicates a sum in which each
X;, ¥;» 1=j=n, takes on all values of F independently, and we have multiplied
the bilinear equations by the constant 2 in order to simplify application of the
Cauchy—Gauss sum below. 1If we now note (2. 2), interchange the order of sums
and products, collect terms involving x;, and sum over x; in accordance with (2. 8),
we obtain

(3.3) N =g-3 Ze(—aa—Zbﬁ—Zd?)_é 3 Glayz,y,lb,B+d;1)).

a, B, 7

(3.2)

To evaluate N, we write N=N, + N,, where

{N, =sum of terms of (3. 3) corresponding to « =0,

(32 N, =sum of terms of (3. 3) corresponding to « 0.

When o =0, we must have y;[b; +d;y) =0, 1=j=n, or in view of (2. 8), the value
of the product over j in (3. 3) will be zero. Hence, we break N, into M, + M,, where

3. 5) { M, =sum of terms of N, corresponding to y =0,

M, =sum of terms of N, corresponding to y#0.

When y =0, by the same reasoning as above, we must have y;(b;8) =0, 1 =j=n.
Thus, to evaluate M,, we break the sum over f in (3. 3) into =0 plus the sum
over 0. If we recall that b; 0, 1 =j=n, so when =0, then y;=0, 1=j=n,
we obtain

(3.6) M, =q*"">+[v(b)g—11¢"">.

When y #0, then b, +d;y=0 if and only if f = —d,/b;y so, in view of (2.9),
if and only if f=f;y for some 1 =i=k. Since the f;, 1 =i=k, are distinct, if f=f;7,
then fi+=f;y for all j=i. Thus, if we choose f=f;7, then y; must be zero for all
J except s, +...+5,_,<j=s,+...+s;, or else y;[b;f+d;y] will not be zero for
all 1=sj=n.
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With these comments, simple calculations will show that if we pick f=f;y, the
product over j in (3. 3) has the value ¢"+*. Also if f#/fy, all 1 =i=k, then the
product over j in (3. 3) equals ¢". If we now break the sum over f in (3. 3) into
B=fy., 1=i=k, plus the sum over f=f;y, 1 =i=k, and for each f use the corres-
ponding values of the inner product indicated above, we have after rearranging terms

k
M, =q-3 ‘g: (qn+8|?§)e{—2(bj;+d)}’})+ y,;’oe(—zd?)gfe(—%ﬂ)q'] ,

where the indicated sum over 8 is a sum over all f#f;y, | =i=k. Thus, in view
of (2.5)

3.7 Sre(-26f) = v(b)q—hz*l e(—28f; ).

If we substitute (3. 7) into the above expression for M, , regroup terms involving
y and f;, sum over y in accordance with (2. 5), and note that ¢(0)=1, we obtain

(3.8 M= é'l [o(®fi+d)g—11(g"* =3 —g" )+ v(b)[v(d)g — 11g"~2.

When a0, if we recall a;0 and make the substitution required by (2. 8)
into (3. 3), note also (2. 6) and (2. 10), sum over y;, and recall that { is multiplicative,
we have

(3.9) Ny=¢q-33 2‘e(—arr—2bﬁ—2d?)w(A)G"(l)¢"(a)J£Il G(—[b;B+d;y1a;0).

az0 8,7
We now let
..t Q, =sum of terms of (3. 9) corresponding to y =0,
(.10) Q, =sum of terms of (3. 9) corresponding to y #0.

For y =0, if we note (2. 6), break the sum over f in (3. 9) into =0 plus the
sum over f#0, and note (2. 6), (2. 10), Q, may be written as

0, =¢q3 ;;llf"(&)e(—ﬂd)lll(:‘l)G”(U[e"+[v(b)q— " (= DY (AP (@) G" (D]

We can see by (2. 6) that the value of Q, depends upon whether » is even or odd.
If nis even (so Y"(x)=y"(—1)=1), then

G-11) Q) = Y(Alv(a)g—1Y"2 (= 1)gB"= 2 + [v(a)g — 1][v(b)g — 1]¢"~2,
where v(2) is defined by (2. 4).

If n is odd (so Y"(x) = (), Y"(—1)=y(—1)), then
(3.12) 9, = Y (aA)yYC+I2(=1)qgC"=9"2 +[v(a)g— 1] [v(b)g — 1]¢"~>.

For y #0, if we use the same reasoning as used in the first paragraph under
(3. 6), and choose f =f;y, for some fixed 1 =i=k, the product over j in (3. 9) has
the value

(3.13) Y (Y (AP = (@) G"=*(D)y"=%(=1),
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where A and A; are defined by (2. 10). Similarly, when f=f;y, all 1 =i=k, this
product over j has the value
(3.14) Y (A" (@) G ()Y " (—1).

To evaluate Q,, we break the sum over f in (3.9) into f=f;y, 1 =i=k, plus
the sum over B#f;y, and for each choice of f use (3. 13) or (3. 14) as the value
of the corresponding value of the product over j. Thus, we have

le = g3 WA)G () 3 e(-a' @ | 3 (3 ef—20+dyy))-
a#0 i=1 7#0

NS AW @G ()= 1)+ 3 e(~2dh).

I-Z'e(—zbﬁ)wm*(m)G“(l)qb"(—1)].

[

where the indicated sum over f is a sum over all f=/;y, | =i=k. If we substitute
the value of this sum, given by (3. 7), into (3. 15), regroup terms involving y, , and
/:, sum over y and « in accordance with (2. 5), we obtain

0, = é’l [v(bfi +d) — 11[g% 3 (AYYn—si(— 1) G2—5i(1)
2 ysi(x)e(—anx)—[v(a)g — 11" 3]+ v(b)[v(a)g — 1] [v(d)g — 1]~ 2.

a#0

(3.15)

(3. 16)

If we let

H(s) = y"=5(—=1)G*"~=(1) g:)#l"(a)e(—ad),

then, in view of (2. 6) and (2. 7), the value of H(s;) depends upon whether s; is even
or odd.
If s; is even (so Y*(x)=1), then

(3.17) H(s) = y#/2(=)[v(a)g — 1]q2n=12,
If s; is odd (so Y*(x) =y (x)), then
(3.18) H(s;) = Y(a)y3ee+ D2 gQ@n-si+ D)2,

Hence, recalling that N=N;+N,=M,;+ M, + Q,+ Q,, noting (3. 6), (3. 8),
(3. 11), (3. 12), (3. 16), (3. 17), (3. 18), and regrouping terms, the Theorem is estab-
lished.
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