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On the normal structure of the automorphism
group and the ideal structure of the
endomorphism ring of abelian p-groups

By ADOLF MADER (Moscow, Idaho)

Introduction

This paper consists of an application of the results of the earlier paper [5]
to abelian p-groups. The results are part of the author’s PhD dissertation completed
in Spring 1964 at New Mexico State University. The author expresses his gratitude
for the help and suggestions of Prof. J. M. IRwIN and Prof. L. FucHhs. The research
was supported by the National Science Foundation under Research Grant GP 377.
The notation will be that of [5] (Cf. Section 0 this paper).

In non-abelian group theory one object of investigation is the normal structure
of groups. Thereby chains of normal subgroups and the corresponding quotient
groups are of particular interest. Analogously one may study the ideal structure
of rings. We already know that, for a characteristic subgroup H of an abelian
group G, Aut,G is a normal subgroup of Aut G. For a fully invariant subgroup
H we know that End,; G is a two-sided ideal of End G. It is thus the obvious thing
to consider natural chains of characteristic and fully invariant subgroups and the
corresponding chains of normal subgroups of the automorphism group and of
two-sided ideals of the endomorphism ring. The chains {Aut,;G} and {Autg G}
have been studied by SHODA ([6]) for finite abelian groups, FREeEDMAN ([1]) for
reduced countable abelian p-groups, and by FucHs ([3]) for arbitrary abelian
p-groups. We resume the study of these chains in the general case and obtain an
explicit representation of Aut,; G as a semidirect product of three groups [Cf. Def.
R 23] isomorphic to Hom (G/pG, pG), Hom (G/B, ©pG, pG) and Aut B;, where

B= @ B, is a basic subgroup of G. It is then easy, for example, to determine the

:.entcr of Aut,g G. Since Aut,i:ig G/Aut JGG is isomorphic with Autyi.:gp'G
if either 7 is an mleger or if G is countable and i is an arbitrary ordinal, the structure
of this factor group can be described in a satisfactory way in these important cases.
Our results improve the results of the previous papers. We also study the correspond-
ing chain {End,; G} of two-sided ideals in End G and determine the quotient
rings in the cases named above. It is easy to see that Autalp]G/AutG[p.n, G is an
elementary abelian p-group for i=1, but Aut G/Autg, G is conSIderably more
complicated. Therefore we attack lhls problem in Section 2 only in a special case.
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If G is divisible then Aut G/Autg,, G is isomorphic to the general linear group
GL(r(G), p) of dimension r(G) (=rank of G) over the prime field of characteristic
p- The results for the chain {Endg,, G} of two-sided ideals of End G correspond
to those for the automorphism group.

Section O. Preliminaries

In this section we state for convenience some definitions and theorems of [5]
which are needed in this paper.

[5] 1.4 Definition. For H<=G,let Auty G={acAutG: 2/H=1)}.

[5] 1. 6 Proposition. Let H<G and let ¢:G—~G/H be the natural homo-
morphism. Then the sequence

0-Hom (G/H, H) % Aut, G > Aut G/H
is exact, where

U: Hom (G/H, H)—~Auty G:{U = 1+¢¢, and T: Auty G-Aut G/H:
@(aT)=ap.
[5] 1.9 Lemma. Let H be a characteristic subgroup of G. Then the sequence

| -Aut, G ~ AutG = Aut H

is exact, where I is the injection, and R is the restriction map.

[5] 1. 11 Lemma. If H <H,<G and H,, H, are characteristic, then
] -*Auf.": G —f“' Aul"l G 'E' Autﬂl Hz

is exact, where I is the injection and R the restriction map.

[5] 1.12 Definition. For H<G, let End, G={d€End G: H5=0}.
[5] 1. 16 Proposition. Given

0+H 5~ G G/H —~ 0(ex),
t injection map, ¢ natural homomorphism. Then the sequence

0 - {0€¢End, G: G5<H)} * End, G ™ End G/H -
~Ext (G/H, H) -~ Ext (G| H, G) ~ Ext (G/H, G/H) - 0

is exact, where I is the injection map and T is given by @(0T)=0d¢. I and T are ring
homomorphisms.
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[5] 1. 19 Proposition. Given 0+H -~ G % G/H — 0(ex), t injection map:
¢ natural homomorphism, and given that H is fully invariant in G, then the sequence

0 - Endy; G - End G & End H ~ Ext (G/H, G)

is exact, where I is the injection and R the restriction map. I and R are ring homomor-
phisms.

[5] 1.22 Lemma. If H,<H,<G, H,, H, fully invariant, then
0 — End,, G + Endy, G % End,, H,

is exact, where I is the injection and R the restriction map. I and R are ring homo-
morphisms.

[5] 1. 23 Proposition. If H is a fully invariant subgroup of G and 1+ End ;GC
C Aut G, then :
(Aut G) R=group of units of (End G) R,

where R is the restriction map to H.

Section 1. The chains {Aut,.;G} and {End,.;G}.

In this section G denotes an abelian p-group. The groups p"G are fully invariant
subgroups of G. By [5] 1.9 and [5] 1. 19 the sequences

(1. 1) | - Aut,; G~ AutG = Autp" G
and
(1.2) 0—~End,.; G*~End G% End p" G - Ext(G/p" G, G)

are exact, where 7 is the injection, R the restriction map, in particular, Aut,.; G
is normal in Aut G and End,.; G is a two-sided ideal of End G.

What can be said about im Rin 1. 1 and 1. 2? For a first result we only need
to restate Lemma 1 in [3].

1.3 Lemma. If n is a positive integer and 6 € End p"G, then 6 can be extended
to a € End G in such a way that é is onto gf o is onto, and o is one-to-one if J is one-
to-one, in particular, if 0 € Aut p" G, then 6 € Aut G.

The next lemma which answers our question for countable groups and endo-
morphisms is more or less Exercise 39 in [4].

1.4 Lemma. If G is countable, then every d € End p"G, n arbitrary, can be extended
to 6¢ End G.
The corresponding lemma for automorphisms is due to ZiepiN (Cf. [3]) and

is contained in FREEDMAN [1], Fuchs [3] and more or less in KapLANSKY [4] (Exer-
cise 38).
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1.5 Lemma (Zippin). If G is countable, then every o€ Aut p"G, n arbitrary,
can be extended to o€ Aut G.

Immediate consequences of 1.1, 1.2, 1.3, 1.4, and 1.5 are the following
theorems.

1. 6 Theorem. The sequence
(1.7) 1+Aut,. cG>Aut GX Autp" G~ 1
is exact either for positive integers n and arbitrary p-groups G, or for arbitrary ordinals
n and countable p-groups G.

1. 8 Theorem. The sequence
(1.9) 0 ~End,.; G>End G2 Endp" G0
is exact either for positive integers n and arbitrary p-groups G, or for arbitrary ordinals
n and countable p-groups G.

Remark. In his dissertation (An Extension of Ulm’s Theorem, New Mexico
State University, May 1964) RoGer W. MiTCHELL constructed a number of interest-
ing and surprising examples of abelian p-groups with elements of infinite height

(Lemma 2. 1). The following is one of his examples. Let B= é(x,), o(x)=p',
i=1

and let B = [é *(x,}],. Then G = B/B[p]is a p-group with countable basic B/B[p] = B,
i=1

such that G‘== p°G =B[p)/B[p] is an elementary abelian p-group of order 2%,
This group shows that 1. 6 is not true for arbitrary abelian p-groups and arbitrary
ordinals n, since by [7], Thm 2, |Aut G| =28/ =2% while |Aut (G')| =22"" and thus
not every automorphism of G' can be extended to an automorphism of G.

We now turn our attention to the sequence

(1. 10) 0—Hom (G/pG, pG) y«»AutrG G % Aut (G/pG) (ex)
which follows from [5], 1. 6. First im 7 will be determined. Let
¢: G-~G/pG

be the natural homomorphism. Let B be a basic subgroup of G,B= éBi,
_ i=1
Blz@ <a‘>, ®‘Bi= @ <bﬁl>' ThllS G=BI®G1. Then
i€A ueEM

i=2
G/pG = (®(a,0))® (®(b,9)) = B,9DG, ¢.

1. 11 Definition. If, for any abelian group G, G=H&K, let [rH]: G~H
and [zK]:G — K be the projections.

Note that
(1. 12) [xB,\Jp=¢[nB,p] and [nG,lo=¢[rG,p].
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There are certain obvious subgroups of Aut G, namely

g A; = {1 +[nG,9)¢: E€Hom (G,9, B,p)} = Aut Go
an
Ay = {[nB,p]x+[nG¢]: 2 € Aut B¢} < Aut Go.

It is easy to see that 43-A4;=A3+ A3, in fact A5 <|4343, and 45 A5 =(1), there-
fore we have

1.13 Lemma. A;NA3=(1), A5-A3<Aut G, and A; < |A5+A;.
There are subgroups of Aut,; G corresponding to 43 and Aj. Let

Y: G—~G/(B, ®pG)
be the natural homomorphism. Then
A, ={1+y&:£cHom (G/(B, ®pG), B,) <Aut,; G,

Ay = {[nBJ2+[rG,]: x€ Aut B, } < Aut,; G.

and

Further we have analogous to 1. 13
1. 14 Lemma. AZ ﬂA3 =<l>, Az'A3{AutPG G, and Az = |A2'A3.
1. 15 Lemma. The map T in 1. 10 maps A,- Ay isomorphically onto Aj-Aj.

Proor. a) Note that
(1. 16) ©|B,: B, ~B,¢p

is an isomorphism, and that
(1.17) o: GY =G/(B; DpG) ~G,/pG, =G,¢: (gY)o =g[nG,lp =go[nG,¢]
is an isomorphism. Therefore
(1.18) F:Aut B, ~Aut B, ¢:aF = (¢|B,) 'up
is an isomorphism and
(1.19) S: Hom (G, By) ~Hom (G, B,p): (g0)(£S) =gyle
is an isomorphism.
b) Let (1+y&)([nBJx+[nG,]) be an arbitrary element in A,-A;. Then
@[(1 +yO([nByJo + [nG DT = (1 + &) ([nB,Jo +[nG ] =
=(1+y&)([nB,lo(¢|B,)~ 'ap + @[nG,¢]) = (1 + Y &)@ ([nB,p](F) + [nG ) =
=[p + Yo E[[7B,0) (xF) +[7Gy¢]] = p[ 1 + [2G, 0] ¢ S)][[xB,9) (=F) + [2G,0]],
hence
(1.20) [(1+y&)([xB,J+[7G\D]T=[1 +[nG, o) ¢ S)][[nB, 0] (xF) +[xG, o],
and it is now obvious that 7" maps A, A5 isomorphically onto A5-A43.
1. 21 Proposition. In 1. 10 im 7= A5+ Aj3.
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PROOF. It is left to show that aT€ A4;-4; for all x€ Aut,; G.

a) For all a€Aut,; G, («T)|B,p € Aut B,p. Proof: Let a€Aut,; G. Recall
B, = ®(a;). For all a;, o(ax)=p, hence aa=3 k,a,+pg, g€G. Now (a;p)
A€A ueA

(@T)=a2p = 2 k,(a,p)€ B,@, hence (B,p)(xT) < B,¢ for all aT. Thus in particular
A

(B,tp)(a“T):Equo. i. e. Byp<=(B9)(aT) and therefore (B,p)(aT)=B,p,
aT|Byp € Aut B, .

b) Let a€Aut,; G. By a) (aT)B,¢pcAut B,p, say (aT)|B,p=p""'. By
1.20 with&=0 [uﬁ[xBI](ﬁF")+[nGl])]Tz(aT)[[nqup]ﬁ+[7rquo]], and thus a7 -
[[(xB,9) B +[nG,¢]] €im T Auty ,Go.

c) Let y€Aut,;G be such that yT€Autg, Gp. Recall @B;=® (b,)-

iz2 HEM

p(byy—b,) = pb,y—pb, = pb,—pb, =0, hence b,y—b, = %’k;aj +pg, 2€G.
Then (b p)(yT—1) = bo(3T)—b,9 = byp—bo=(b,y—b)p = Zki(a,0)€ Bo,.
(yT—1){Byp = 0. Hence 3T = 1+(yT—1)€ A3, 3

d) For arbitrary x € Aut,; G we know by b) and ¢)

aT([nB,@] B +[nG,p]) €im TN Auty ,Gp < A3, where p~'=(aT)|B,p, hence
aT€ A3+ A which was to be proved.

The structure of Aut,;G now follows immediately from 1.15 and 1.21.In order
to formulate the result with ease we introduce the following notion.

1.22 Definition. Let A4 be an arbitrary multiplicative group. A4 will be
called the semi-direct product of its subgroups A,, 4,, Ay if A, < |4, A, A, <A,
A=A A,Ay, A;NA,=(1) and A;4,NA;=(1).

We now have the basic theorem

1. 23 Theorem. Let G be an abelian p-group. For some basic B= @ B;, write
i=1

G=B,®G,, and let [nB,) and [nG,) be the corresponding projections from G onto
B, respectively G,. Let ¢: G—~G/pG and : G ~G/(B, &pG) be the natural homo-
morphisms. Then

A, ={1+¢&: {€Hom (G/pG,pG)} < Aut6 G,

Ay = {1 +yn: n € Hom (G/(B, ©pG), B,)} <Aut,; G,
Ay ={[nB,lo+[rG,]: € Aut B, } = Aut,; G,

and Aut, G is the semi-direct product of A,, A, and A;.

Remark. The groups A,, A, and A5 are well-known groups. In fact
A, =Hom (G/pG, pG)= @* (pG)[p],
r(G/pG)

A,=Hom (G/(B, ®pG), B))= @®* @ Z(p),
r(pG/p3G) fG(0)

Ay = Aut B, = GL(f(0), p).

Here f;(n) is the n-th Ulm-invariant of G.

and
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Before we apply 1.23 we want to state some of the properties of Aut,; G,
in particular, we want to find the center Z(Aut,; G) of Aut,; G. First note that
Aut,; G contains a subgroup A isomorphic to Hom (G/(B, ®pG), B, @ pG), namely
let ( as before)

(1. 24) A = {1 +y¢: £cHom (G/(B, &pG), By ®pG)}.

Since Hom (Gy, B, &pG)=Hom (Gy, B,)®Hom (G, pG), A is a direct product,
in fact, if

(1. 25) C = {1 +y¢&: (€ Hom (G/(B, @pG), pG))
then
(1.26) A=CXA;.

Furthermore Hom (G/pG, pG) = Hom (Ge¢, pG) = Hom (B¢ ©G,p, pG)=
=[nB,¢] Hom (B,¢, pG) &[nG,¢] Hom (G,¢, pG). The isomorphism ¢ defined in
1. 17 yields the isomorphism

(1.27) S: Hom (G, o, pG) ~Hom (G, pG): (g¥)(nS) =gyon =ge[nG, 0]y

and therefore C = {1 +y&: £€ Hom(GY, pG)} = {1 + ¢[nG,0]n: n € Hom(G,p,pG)}.
If D={l1+y[rB,p)¢: £ Hom (B¢, pG)}, then

(1. 28) A,=DXC.

Since 4 and A, are abelian groups and C<=A4(14,, every element of C commutes
with every element of 4 and 4,. Let [nB,Ja+[nG,]€ A; and 1 + &€ C. Then the
equations

4 ([xB,)a +[=G (1 +y&) = [nB,Jx +[2G ]+ [nG, W& = [nB,]a+[nG\] + &
an
(1 +y&)([nB,]a +[nG,]) = [rB,]a+[nG,]+y&[rG,]=[nB,]a+[rG,] + <

show that

1. 29 Proposition. Let G be as in 1.23, G=B,®G,.

A) If G, =0, then Aut,; G=Aut B, =GL(fs(0), p) and the center is known.
B) If G=Z(2)®2G, then Aut,; G={1+¢&: {€ Hom (G/2G, 2G)} is abelian.
C) In all other cases

Z(Aut,g G)= {1 +y¢: ¢ € Hom (G/(B, ©pG), pG)}.

Proor. The cases A) and B) are clear. Therefore assume G, #0, i. e. pG =0,
and G#Z((2)@2G. We have Aut,; G=D-C-A,-A;. We show in a) that, for
B, #(0), ay € A,, a3 € Ay and o003 =oy040 for all § € D implies a3 =1. We show
in b) that, for B, #(0), €D and éx,2; =a,2,6 for all «, €45 and for all a;€ A4,
implies d=1.

a) Assume da,03 =a,%30 for o, € A,, %3 € Ay and for all € D. Let

a, =1+yn, nc Hom (G/(B, ®pG), B,), a3 =[nB,]x+[nG,], x € Aut B,,
and
0 = 1+o[nB,9]¢, € Hom (B,9, pG).
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Then

(1. 30) ooy = [nB,]a+[nG ]+ yna+@[nB,@]¢
and

(1. 31) 20030 = [nBy]a+[nG] +yna+[nB]apé + Ynapl.

It follows that
ol=apl{ on B, for all {€Hom (B,¢, pG).

If B, #0, then it follows easily that =1. With 2 =1 we have
yneé =0 for all ¢€Hom (B,¢, pG).

Since ¢ is onto, clearly n=0.
b) Assume that dx,x3 =a,x40 for d€ D, for all o, €A4,, and for all ay€ A4.
Using the notation of a) it follows using 1. 30 and 1. 31 that (choosing a =1)

Yyneé=0 forall néeHom (G/(B, ®pG), B,).
If G#B,®pG and B, #(0), then necessarily {=0. If G=B, @ pG, then n=0 and
apé=¢@¢ on B, forall x€AutB,.

If Aut B, #(1), then ¢=0. If Aut B,=(1), but B, #(0), then B, =2Z(2) and
G=Z(2)®2G.
c) Assume o, %% is a central element of Aut,; G where 2,€D, «, €C,

®,€A; and x3€ A3. Then for all 6€D

5&0311053&3: aoal a2a35,
hence

5&233:'&2&36 forall 56.0.
By a), if B, #(0), a,xy=1. If ay2, is central then a0, a0 =302, for all
%, €A, and for all ;€ 45, hence

Uy Uy = Uy U3y

for all &, € 4, and for all 3 € A5. By b), if B, #(0), @y = 1. This proves C) if B; #(0).
But if B, =(0), then Aut,; G=C and C) is also true.
Now consider the sequence

1 —-Aut,,..c G—I’Autp-wlg va-Aut‘,m:Gp" G (CX)

which follows from [5], 1. 10. Applying 1.6, then 1. 23 to Aut,..16p"G = Aut,,u6p"G
we obtain

1. 32 Theorem. The sequence
(1.33) 1 =AUty G Aut,uii g G2 Aut i g p" G 1

is exact either for positive integers n and arbitrary p-group G, or for arbitrary ordinals
n and countable p-groups G.
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If B™ = é B™ is a basic of p"G, p"G=B{" S G{", then Aut,..cp"G is the

i=1
semidirect product of groups A", A" and A" where

AP = Hom (p"G[p"*' G, p**'G), A = Hom (p"G/(B{" ®p"*'G), BY"),
and
AP = Aut B,
Remark. Note that

AP = ®F a6 G)p), AP = D7+ 16/p+26) D romZ (P)s

A" =GL(fg(n), p).
Remark. Theorem 1.32 contains an explicit determination of the factor groups
Aut . 1G/Aut,.G if n is a positive integer and for arbitrary n if G is countable.
We shall derive Fuchs’ results in [3] from ours. Aut,;G contains the normal subgroup

A (1.24) and A4-D (1. 28). Hence there are two normal subgroups A4; and A;* of
Aut,..:cG such that

and

Aut,,.GG{ 1A: = [Ar* - |Autp,.+ I.GG
and

A:/Autp"GG = @r(p"*lt};p'”!a)(l’u G)pl, A*/Ay = @}‘G(,)(p"”G)[p],
Aut 1 G/ AYF = GL(fG(ﬂ), p).

and

It is easy to check that

A: = Al.lta‘l"'@p;n-lg = Aut(,,n G)pl+p*t1 G G
and that

Ay ={a€Aut,..cG: for all g€(p"G)[p], gz=g mod (p"*'G)[pl}.

The above factor groups were determined by Fuchs ([3], Theorems 2, 3, 4). Thus
his results follow from our more precise results.

FREEDMAN ([1]) uses a different approach for reduced countable p-groups
and obtains the following somewhat abstract result on the structure of the quotient
groups Aut,...gG/Aut,;G (Cor. 5.4): “The factor group Aut,..:;G/Aut,.;G is
the product of a p-subgroup K,., and a subgroup isomorphic to GL(fs(n), p).
K,., is generated by two abelian p-elementary subgroups whose intersection is the
common center of K, ., and Aut,...;G/Aut,.;G, except when p"G is of exponent 1.”

K, corresponds to A{"-AY" in our notation. For a comparison it suffices
to consider 4,4, (cf. 1. 23). For 1 + @€ A, and 1 +ymn€ A, it follows by induction
that

[(1+ @O +ym]" = 1 +o@né+yny+Y1/2(n—1)npeé

and hence [(1 +@&)(1+yn))P=1if p=2, and if p=2|[(1 +Y&)(1 +yn)]*=1.Thus
AMAY is a p-group, and we have obtained all of Freedman’s results concerning
the quotient group Aut,.. :;G/Aut,.; G from our more explicit results.

We shall now carry through the analogous program for the ideal structure
of the endomorphism ring. Consider the exact sequence

0—~{ecEnd,;G: ims{pG}—’-Endp(,- G- End G/pG —~
(1.34)
- Ext (G/pG, pG) ~ Ext (G/pG, G) ~ Ext (G/pG, G/pG) ~0
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which follows from [5] 1. 17. We continue to use the notation introduced at the
beginning of the section. Note that

(1. 35) {0 €End,cG: im é = pG}=@Hom (G/pG, pG),

and we assume in the following (also in analogous cases) that ¢ Hom(G/pG, pG)
is a ring with the obvious compositions. Also

(1. 36)
End G =[nB,] End B, ¢[nB,] Hom (B,, G,)®[rG,] Hom (G,, B,)®[rG,] End G,.

Ob\uously [nB,] End B, <End,;G. Furthermore [zG,] Hom (G,, B,)<End,; G,
since, for all (€ Hom (G,, B,) and for all g€G, (pg)[rrG,]E p[g[rrG K]= 0. We
have similarly

(1.37) End Go =[nB,¢] End B,¢ &[nB,¢] Hom (B¢, G,¢) &[G, 0]
Hom (G,¢, B,¢) ®[nG,¢] End G,¢.

1.38 Lemma. 7: End,;G —~End G maps [nB,] End B, ®[nG,] Hom (G,, B,)
isomorphically onto [rnB,¢] End B,p @[nG,¢] Hom (G, B,o).

Proor. Note that

(1. 39) S: Hom (G, B,) ~Hom (G,¢, B,9): (gp)(£S)=glop,

g€G,, E€Hom (G,, B,), and that

(1. 40) F: End B, ~End B,¢: 6F=(¢|B,)"'dp, ¢ End B,,

are isomorphisms. Let {¢Hom (G,, B;) and 6€End B,. Then, using 1.12,
@([nB,]6 +[rG,)O)T =([nB,]6 + [7G,) )¢ = [ B ]p(@|B,) 109 +[nG |¢p =
=o[[nB,9](0F) +[nG,9](£S)]. thus ([nB,]é +[nG,])T = [nB,9)(3F) + [2G,9](£S)
which clearly implies the assertion.

1. 41 Proposition. /n 1.34 im T =[nB,¢] End B,¢ &[nG,¢) Hom (G, ¢, B,¢).
Proor. Let 6€End,;G. Then, for all g€gG, p(gﬁ) (pg)d =0, hence gé=
—Zkaa,a +pg’, and thus (g@)(0T)=(gd)p = Zk,\(aitp) Therefore im 7'<[nB,¢]-

.End B,p @[nG,0] Hom (G,0, B;¢) and 1. 38 concludes the proof.

1. 42 Theorem. Let G be an abelian p-group. For some basic B = é B;, write
i=1
G=B,®G,, and let [nB,] and [nG,] be the corresponding projections from G onto
B, respectively G,. Let ¢: G —~G/pG be the natural homomorphism. Then

(1.43)  End,;G = [zB,] End B, ®¢ Hom (G/pG, pG)©[zG,] Hom (G,, B,).

¢ Hom (G/pG, pG) is a two-sided ideal of End,cG with trivial multiplication,
¢ Hom (G/pG, pG) ®[nG,] Hom (G,, B,) is a two-sided ideal of End,G, and
[xB,] End B, is a subring of End,;G.
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PrROOF. 1.43 is an immediate consequence of 1.38 and 1.41. By 1.35
{0€End,cG: imé<pG}=¢ Hom (G/pG, pG). That ¢ Hom (G/pG, pG)@®[rG,]
Hom (G, B,) is a two-sided ideal of End ;G is easy to see.

As in the case of Aut,;G it is easy to find the center Z(End,;G) of End ;G.

1. 44 Proposition. Let G be asin 1.42, G=B,®G,. If G, =0, then End ;G =
=End G=End B,. If G,#0, then Z(End,;G)=[nG,J¢ Hom (G,/pG, pG), and the
multiplication in Z(End ;G) is trivial.

Proor. a) The case G, =0 is clear.

b) Assume now G, #0, i.e. pG#0. Further assume B,#0 and G0 #0.
(Z(End,;G)T<Z(im T). Let 1y, 6¢End B0, ¢, ncéHom (G,p, B;p).  Then
([=B, 0]y +[7G,9)5) ([ B,@]d + [2G,¢ln) =[x B,p]yd +[7G,9]s, and ([xB,¢]é+
+[2G,0In) (2B, 9]y +[rnG,9)l) = [rB,9)oy +[nG,@lny. If [xBoly +
+[nG@lé€Z(im T), then [nB,@]yd+[nG,@)d = [nB,@loy+[nG plny which
implies (multiplication by [zG,¢] from the left) {6 =ny for all 6€ End B,¢ and
all n€¢ Hom (G,¢, B;¢). Let 6 =0; then ny =0 for alln € Hom (G, ¢, B,¢) and hence
y=0. Let =0; then &3 =0 for all 6 End B,¢, hence ¢ =0. Thus under the stated
hypotheses Z(im 7)=0, Z(End,;G)-=¢ Hom (G/pG, pG).

c) Assume B, =0. ¢ Hom (Go, pG)=[nB,]J¢ Hom (Go, pG)®[nG,]¢ Hom
(Go, pG) =[nB,]o Hom (B, pG) & [nG,]o Hom (G,¢,pG). Let ¢eHom(B,9,p0),
n€Hom (G,p,pG), and y€End B,. Then ([nB,1y)([nB,lo¢+[nG,lon)=
=[nBilyp¢ and ([nBy]e<¢ +[nGlen)([rB,]y)=0. Hence if [nB,]oE+[rG,]on€
€ Z(End,;G), then yp¢ =0 for all y€End B,, i.e. £=0.

d) Let & neHom (Go, pG) and {€Hom (G,, B;). Then ([nGlltpé)(tpq)_-—-O
and (pn)([nG,]9) =0, ([nG,]e)([zG,){)=0 and ([rG,]){)([nG,]es)=0, since
[#G,] Hom (G,, B,)=[nG,]¢ Hom (G,/pG, B,).

e) If B;#0 and G,9 0, then by b) Z(End,;G)<¢Hom (Go, pG); by c¢)
Z(End,;G)<[rG,l¢ Hom (G,p, pG), and by c) and d) Z(End,G)=
=[nG,]J¢ Hom'(G ¢, pG). Clearly the multiplication in [zG,]e Hom (G,¢, pG)
is trivial. If B, =0, then End,;G=¢ Hom (G/pG, pG)=[rG,l¢ Hom (G,¢, pG)
which has trivial multiplication. If B, #0, G,¢ =0, i. e. G, is divisible, then End ,cG =
=[nB,] End B, ®[nB,]¢ Hom (B,¢, pG) and it follows easily thatZ(End,;G)=
=(0)=[nG,]¢ Hom (G,¢, B,).

Now [5] 1.22, 1. 8 and 1. 41 yield the following theorem analogous to 1. 32.

1. 44 Theorem. The sequence
(1.45) 0—+End,nG>End,. G2 End, . p"G—0,

I the injection, R the restriction map, is exact either for positive integers n and arbitrary
p-groups G, or for arbitrary ordinals n and countable p-groups G.

Let B" =@ B{™ be a basic of p"G, p"G=B{" ®G\", further let [nB\"] and

i=1
[rG\"] be the corresponding projections from p"G onto B\ respectively G\, and
finally let ¢,: p"G —~(p"G)/(p"*'G) be the natural homomorphism. Then

End,.16p"G =[nB{"] End B{” ®¢, Hom ((p"G)/(p"*'G). p"*'G)&®
®[2G] Hom (G\", B{").
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¢, Hom ((p"G)/(p"*'G), p"*'G) is a two-sided ideal of End,...qp"G with trivial
multiplication, and @, Hom ((p"G)/(p"*'G), p"*'G) @ [2G] Hom (G{", B") is a
two-sided ideal of End .. ;p"G.

Section 2. The chains {Autg,,G} and {Endg,,G}

The groups G[pf], i=1,2, ..., form a countable sequence of fully invariant
subgroups of G. By [5] 1.9 and [5] 1. 19 the sequences

2.1 1+ Autgq G~ Aut G = Aut G[ p]
and

2.2) 0 Endg,; G End G % End G[p'] - Ext (G/G[p), G)

are exact, in particular Autg,G is normal in Aut G and Endg,G is a two-sided
ideal of End G. Hence we have a chain

(2. 3) Al.lt G }AutGrP]G :"Autal‘pilc s >-Atll’.a[p|]G s
of normal subgroups of Aut G, and () Autg,,G=(1). Similarly
i

(2.4) End G > Endg,,G >Endg,5,G > ... > Endg,,G > ...
is a chain of two-sided ideals of End G, and obviously ] End,,G =(0).

Except for a special case we are unable to determine im R in 2.1 or 2. 2.
However with the help of [5] 1. 23 we obtain a relationship between im R in 2. 1
and im R in 2. 2. The following lemma is needed.

2.5 Lemma. Let G be an abelian p-group. Then, for all é€Endg,,G, 1—d¢
€Aut G, in_ﬁ!(‘f 1—-6¢ Auta[p.-]G.

Proor. a) W: Endg,G —~Hom (p'G, G): (p'g)(dW)=gd. g€ G, é € Endg,,G.
is an isomorphism: 6 W is well-defined since ker § = G[p'], d W is homomorphic iﬁ'om
p'G to G, W is obviously homomorphic and one-to-one. Let &€ Hom(p'G, G).
Then p'¢€Endg,yG and (p'g)(p'éW)=gp'¢, hence p'éW=¢. b) By a) every
0 € Endg,nG may be written in the form d=p'¢ where {=d0W¢eHom (p'G, G).
Now 1+4+0+0*+..=14+(p&)+(p'¢)?+...€End G since G is a p-group. If
o(g)=p", then g(1+0+0*+...)=g(1 +p¢+ (P& *+...+(p'¢)""") and g(1+d+
+0%4+ ..)(1=90) =g1-0)(1+5+6*+...) = g(1+p &+ ... +(P& ' — (p'E) —
— . —(P'O)") = g(1—(p'¢)") = g. Hence 1—4 has an inverse, 1 —3€Aut G.

The next proposition is now an immediate consequence of 2. 5 and [5] 1. 23.

2. 6 Proposition. Let G be an abelian p-group, i a positive integer. Let R: End G —~
—~End G[p'] be the restriction map. Then

[Aut G]R = {units of [End G]R}.

[5] 1. 11 yields for each i =0 the exact sequence

el 1= Autgpyi 1y G Autgryy G = Autgry G[p1].
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Furthermore it follows from [5] 1. 6 that
(2.8) 0--Hom (G/G[p), G[p) % Autgp,, G L Aut G/G[p]
and for i=1,2, ...
(2.9) 0—Hom (G[p'+1)/G[p1, G[P])*> Autep,y G[p+ 1] Aut (G[p'+1)/G[P])
are exact.
2. 10 Proposition. If G is an abelian p-group, then for i=1, 2, ...
0-Hom (G[p*+)/G[], G[P') * Autepyy G[p'* 1]+ 1

is exact, thus
Autgi G[p' 1] = D Jep+ 6 GLPL

PrOOF. Let ¢: G[p'*']=G[p'*')/G[p] be the natural homomorphism. For
x € Autg,G[p'* '], x€G[p'*'], we have px€G[p'], hence p(xzx) = (px)a = px,
xa—xGGfp]<G[p‘]. Thus 0 =(xx —x)¢ = xap —x¢ = (x@)(aT)—x¢@,i.e. aT=1.

Autg o G[p'* '] = Hom (G[p'*')/G[p'], G[P')) = &F6rp+ ry6rpnGLP)-

2.11 Corollary. For i=1,2,3, ... the factor groups Autg,nG/Autg,i+1,G
are elementary abelian p-groups.

The corresponding results for the endomorphism ring are the following. Let
@: G—~G/G[p] and, for i=1,2, ..., @;: G[p'*']-G[p'*')/G[p'] be the natural
homomorphisms. Then we get from [5] 1. 16 and [5] 1. 22 the exact sequence

s 0--¢ Hom (G/G[p], G[p)) > Endg,, G *~ End G/G[p] ~
' ~Ext (G/G[p], G[p]) ~Ext (G/G[p], G) ~Ext (G/G[p], G/G[p]) ~O,

furthermore for i=1, 2, ...
0@, Hom (G[p'*1)/G[p], G[P') ~ Endgppy G+ 1]~
(2.13) % End G[p*1)/G[p'] ~ Ext (G[p'* /G [p'), G[p']) ~
~Ext(G[p'*]/G[p], G[p**']) ~Ext (G[p'+)/G[pT), G[p'*']/G[P']) 0,
and finally for i=1, 2, ...
(2.14) 0 Endgppi+1; G = Endggp G % Endgp g G[p'+1).
2.15 Proposition. If G is an abelian p-group, then, for i=1,2, ...,

0-- ¢, Hom G[p'*1)/G[p)), G[p']) > Endg,, G[p'*']~0
is exact, thus
Endg,n G[p'*'] = e+ 6o G2

and has trivial multiplication.
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PROOF. x € G[p'* "] implies px € G[p‘] and thus (px)d =0 for all é € Endg,,G[p'*'].
Therefore, for all é € Endg,G[p'**], p(x8) =0, xé € G[p] = G[p], hence xdp;=0,
i.e. (x@)(0T)=xd¢p,;=0, 6T=0.

2.16 Corollary. For i=1,2,3, ... the quotient rings Endg,G/Endgp,-1,G
are as abelian groups elementary p-groups and have trivial multiplication.
The case of a divisible group is easy to handle.

2. 17 Theorem. If G is a divisible p-group then, for i=1,2, ..., the following
Sequences are exact.

(2.18) 0 - Endgp,y G~ End G% End G[p/]+0,
(2.19) 0 Endgyi+ 1y G > Endgp,iy G = Endgp G[p'+1] 0.
Therefore there is a ring isomorphism

End G/Endg,,,G = End G[p),

and for i=1,2, ... there is a group isomorphism

*
EndG[pl] GlEndG[pf + 1]G = @ @ Z(p),
rG) r(G)

and Endg,G/Endg,+/G has trivial multiplication.

Proor. If G is divisible, Ext(G/G[p], G)={0), and therefore 2. 18 follows
from 2. 2. Then 2. 19 follows in turn from 2. 18. The first isomorphism is just a
restatement of 2. 18 for i=1, the second isomorphism follows from 2. 19 using
2.15 and the fact that for a divisible p-group r(G[p])=r(G) and r(G[p'*']/
[G[p]) =r(G).

We may use 2. 6 to derive from 2. 17 information on the automorphism group
of a divisible p-group.

2. 20 Theorem. If G is a divisible p-group, then, for i=1.2, ..., the following
sequences are exact:

(2.21) 1 - Autg, G~ Aut G5 Aut G[p] - 1,
(2.22) 1 Autgpy 1y G~ Autgpy G & Autg g G[pH+ 1]~ 1.
Therefore

Aut G/Autg G = GL(r(G), p),
and for i=1,2, ... "
AutG[Pi]G/AUtG[pi + |]G = @ @ Z(p).

r(G) r(G)

Proor. Since Aut G[p]= {units of End G[pf]}, 2.21 follows immediately
from 2. 18 using 2. 6. Then 2. 22 follows from 2. 21. G[p]can be taken to be avector
space over the prime field of characteristic p of dimension r(G), hence Aut G[p] =
%GL(r(G), p) and the first isomorphism is immediate from 2.21. 2.22 together
with 2. 10 implies the second isomorphism using the relations between the ranks
stated in the proof of 2. 19.
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We conclude the case of a divisible group with two remarks: Firstly
(2. 23) EndG[pl]G=piEnd G

in this case. Obviously p'End G < Endg,,G. Let 6 € Endg,,G. Since G is divisible,
p'G =G and every element of G may be written in the form of p'g. Let 6" be defined
by(p'g)d’ = gé. Then &’is well defined since (G[p])é =0, and clearly 3’is homomorphic.
Now g(p'd") =(p'g)d’ = gd, hence é =p'd” € p'End G which proves Endg G = p'EndG.

Secondly, for a divisible p-group G, End G is the ring of row-finite r(G) X r(G)
matrices over the p-adic integers (Cf. [2], 212—13). This fact constitutes another
powerful approach to the structure of End G.
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