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On limitings and topogenous orders
By SANDOR GACSALYI (Debrecen)

In Chapter 7 of his book [2] A. CsiszAr has shown how topological spaces,
uniform spaces and proximity spaces are capable of a unified treatment within the
framework of the theory of syntopogenous structures. In this little note we wish
to carry through similar investigations with respect to so-called limitings as introduced
by H.-J. KowaLsky and independently by H. R. FiscHeR. (Earlier than both authors
mentioned, G. CHOQUET has introduced ,,structures pseudo-topologiques™ which
are closely related to limitings, and ,structures pré-topologiques” which are in
fact the same as principal limitings. See [1], [3] and [4]. We shall adopt the terminology
and notations of [3].)

§ 1. Preliminaries

Let us begin by recapitulating for the reader’s convenience the basic definitions
we shall need in the sequel. Let £ be a nonvoid set, ®(E) the set of all filters defined
on E with its natural partial ordering, and P(®(E)) the power-set of the set ®(E).

We start with the following

- Definition 1. A mapping t of E into B(P(E)) is a limiting on E, if for any
x¢€ E it satisfies the following conditions:

(L)) F,9ct(x)>F N Ge1(x),
and
F €t(x)
g;.ﬁ}:ger(")'
(L) i={H|xe HSE} €1(x).

The set T=T(E) of all limitings on E can be endowed with a partial order:

Definition 2. Let 7,7€T. Then 1St means that t(x)=1'(x) holds ') for
any x€E.
An important subset of the set of all limitings on a given space is characterized by

Definition 3. A mapping t of E into B(®(E)) is a principal limiting on E,
if for any x € E it satisfies the following conditions:

(L,) X €1(x).

') KowaLsky and FiscHer adopt the reverse of our convention: they write t,=1; iff r,21..
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(L3) There exists a filter B(x) on E such that
(x) = {F|F =B(x)}.

Condition (Lj) clearly implies (L,), so principal limitings are limitings in the
sense of Definition 1.
We still need the following

Definition 4. A relation <= between subsets of the space E is a perfect
topogenous order on E, if it satisfies the following conditions:

(0)) <=0, E<E.

(0,) A=B=ACB.

(0,) AS A <B'SB=A<B.
A<=B

O

(P") A;<B(iel)=>U{A,lieI}<B.

for any index-set /.
The set of perfect topogenous orders on E possesses a natural partial order,
namely the one induced by set-theoretical inclusion in B(E) X P(E):

<,S <, iff A<,B=A<,B.

,}:bA NA"<=BNPB.

§ 2. On principal limitings

Our first aim is to show that the concept of principal limiting is equivalent
to that of perfect topogenous order. This equivalence is established by the following

Theorem 1.
(1) If < is a perfect topogenous order on E then for any x€ E

B(x)={V|x<V}
is a filter, and the mapping
()= {FIF=BQ)) (€E)

is a principal limiting on E.

(2) If 7 is a principal limiting on E with

1(x) = {F|F =B(x)}
Jor any x€E then the relation <, defined by
A=B iff x€A=BecB(x)

is a perfect topogenous order on E.

(3) The mappings < —~t. and t -~ <, are one-to-one correspondences, inverse
to each other, between the sets of all perfect topogenous orders and all principal
limitings on E which invert the respective partial orders.
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PROOF.
(1) The proof is straightforward.
(2) (0)):9<9, E<.E is clear.
(0,): Conditions (L,) and (L,) together imply Xx=3(x), i. e. BEB(x)=
=x € B. Thus, by the definition of <., we have A< B=>ACB.
(04): Let ASA"< B’ B. Then x€ A=>x€A"=B’ € B(x)=> B B(x).
(Q'): Let A<,B and A"<,B’. Then

=XxEA=BecB(x)

=MA,mﬁ,g@(x)} =B B €B(x).

xeAﬂA'}

(P’): Let A;<.Bforicl. Thenx€ |J A;=(x€ A, forsome i, € I)= B€B(x).
icl
(3 Let<-—+1,; 1<

If t=1. then <, = <. As a matter of fact, A <2B iff xc A=BcB(x). Now,
if t=t. then B(x)={V|x<V}, and so A<.B iff xéA=x<B, and this is true
iff A< B, the second ,,ifl”” being a consequence of the fact that the relation -= sa-
tisfies condition (P’).

Again, let 71— <,; = —-1_,

If <= <, then 7. =7. As a matter of fact, for = =<, we get

B, _(0)={Vix<V}={VVeB(x)}=B(x).
THUS T.=T.
It is not hard to see that <=, C <, iff . 27,.
Indeed, each of the following statements is equivalent to the next one:

<& <2,

B, ()= {V|]x=,V}S{V|x=,V}=B,(x)
for any x€E,?)

T, ()= (F|F =B,()) 2 (F|F =8,(0)} =1,(x)
for any x€E.

it e

This shows that the one-to-one correspondence considered inverts the respective
partial orders, completing thus the proof of Theorem 1.

One easily sees that part (1) of the theorem just proved remains valid if we
drop condition (P”) from the definition of the relation =, i. e. if we start with what
might be called semi-topogenous (-orders. Then, however, part (2) of the theorem
will not reproduce the relation < originally given; it will lead to the smallest perfect
topogenous order containing =, i.e. to <7 in the terminology of [2]. Thus the
correspondence between semi-topogenous [(-orders and principal limitings on

%) Il'_l tﬁcr to establish
B ()EBr(x)(xc E)=><,E =,

one has to make use of condition (P).
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a given space is many-to-one. A one-to-one correspondence between equivalence
classes of semi-topogenous [-orders and principal limitings results, if we define

e ke iff "-‘-:r= {g

Of course, Theorem 1. states just this equivalence, with the equivalence classes
replaced by their perfect representatives.

§ 3. The general case of limitings

So far, we have characterized principal limitings as being equivalent in a natural
way to perfect topogenous orders. The question naturally arises, whether a similar
characterization could not be found also for (general) limitings in the sense of
Definition 1. In order to obtain such a characterization, we shall have recourse
to filters of perfect topogenous orders. Let us give for completeness’ sake a formal

Definition 5. A nonvoid set J# of perfect topogenous orders on a set E
is a filter of perfect topogenous orders on E if it satisfies the filter-axiom:

(F) <q, <€ =<, <€,

We are able to prove at once the following

Proposition 1. Let # be a filter of perfect topogenous orders on the set E. Then
for any x€E and < € H#
F(x)={V|x<V}
is a filter on E, and

T(X)={%|%=F .(x) for some < ecH}(x€E)
is a limiting on E.

PROOF. # _(x) is clearly a filter for any x€ E and < €. Let 9,, 9, €1,.(x),
.e. 9, =F_ (x)and ¥, =F _ (x) for some <,, <,€#. Then 4, A ¥, =F . (x)\
AF L (X)=F . n<,(x), with <, <,€#. The remaining part of (L) is clear,
and so is (L,).

Two filters of perfect topogenous orders on a set E will be said to be t-equivalent
if they give raise to the same limiting in the sense of Proposition 1.:

f]"‘,\xpz lff Tr.zrrz.

A filter of perfect topogenous orders will be said to be T-maximal, if it contains
every filter t-equivalent to it. In other words, J#,, is t-maximal iff

H~ Ky implies HCSH,,.

Of course, we have still to prove the existence of r-maximal filters. The first
step in this direction will be made by establishing the following
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Proposition 2. Let t be a limiting on E. To each element {#F .(€1(x))x€E)
of the cartesian product X {t(x)|x € E} we make correspond the relation < defined by

A=B iff x€A=>xEcBeF .

The set H', of the relations < so defined is a filter of perfect topogenous orders
on E, and the product of the mappings ©—# . and H —1, is the identity mapping
on T(E).

Proor. Each relation <= is a perfect topogenous order. The conditions laid
down in Definition 4. can be checked in much the same way as in the proof of
Theorem 1. (2). Moreover, the set 5, is a filter of perfect topogenous orders on E:

Let <,,<,€,. Then

A<B ff x€A=>x€BeF,,

A<,B iff x€A=x€BcY,,

and so, for <=<;N=<,,A<B iff x€cA=xcBcF NY,.

Thus <= € #,, since 7(x) contains with &, and %, their intersection # A\ %,.

Again, let <€, i.e. A<Biff x€A=>x€BeF ., and let < € <, with <,
a perfect topogenous order on E. Then we have A<, B iff xé A=x-<B, and if
we put B,(x)={V|x<,V} then A<,B iff xé A=>BcB,(x). Now B,(x)=F A
AXE1(x), and so B,(x)€1(x). This proves <, €H#,.

Now, let 1 —+3¢.; H —1T,.

If # =, then 7, =1. As a matter of fact, for # = #_, we have

Tx(X)={%|9=F _(x) for some < €#_}.
Now, = €#, means that A<B iff xéA=x€BeF c1(x). Thus one has
F . ()={VIx<V}={V|x€cVEF }=FAx.

This yields # .(x) EF,, and s0 F,€1,(x). Thus we get 7(x) S14(x). (If < runs
through ., 7, in the above reasoning will run through 7(x).)

In order to establish the reverse inclusion 7,(x) < t(x), it suffices to show that
F (x)€1(x) for any < € .. This, however, is true since as we have just seen
F . (x)=F AXx, and x€1(x). — This completes the proof of Proposition 2.

Next we have

Proposition 3. If # is a filter of perfect topogenous orders and t =1, then H#.
is t-equivalent to H and H S H ..

PrOOF. By the proposition just proved, the mapping # —1, transforms J#,
into 7. On the other hand, the filter # we start with has this same image 1, =1
(this is, in fact, the definition of 1), and so # and J#, are t-equivalent. Moreover,
for < €# we have A<=B iff x€ A=BEcF _(x), and in view of F _(x) € 1,(x) there
results < € #,. Thus we have # S ..

Propositions 2. and 3. together yield the following

Theorem 2. Any filter of perfect topogenous orders on a set E is contained in
a t-equivalent t-maximal filter, or equivalently, each t-equivalence class contains
a t-maximal member.

D 12
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ProoF. To an arbitrary filter # of perfect topogenous orders there corresponds
by Proposition 2. a limiting t,, and to t =1, there corresponds by Proposition 3.
a filter . such that # ~_ o, and o# C # .. Since #. depends only on 7 and not
on ¢ itself, it is T-maximal.

The results so far obtained enable us to characterize limitings as being equivalent
to t-maximal filters of perfect topogenous orders:

Theorem 3.
(1) Let # be a t-maximal filter of perfect topogenous orders on the set E.
Then for any x€E and < €N
F(x)={V|x<V}
is a filter on E, and
To(X)={9|9=F .(x) for some <cH} (x€E)

is a limiting on E.
(2) Let t be a limiting on E. To each element {F .( € 1(x))|x € E} of the cartesian
product X{t(x)|x € E} we make correspond the relation < defined by

A<B iff x€A=>x€Be#F,.

The set 3, of the relations < so defined is a T-maximal filter of perfect topogenous
orders on E.

(3) The mappings H —~1, and ©—~H, are one-to-one correspondences, inverse
to each other, between the sets of all T-maximal filters of perfect topogenous orders
and all limitings on E, which preserve the respective partial orders. )

PRrROOF.

(1) This is a special case of Proposition 1.

(2) o#.is a filter by Proposition 2., and it is t-maximal by Theorem 2.

(3) Let o +14; T—=H,. If 1=1,4 then ', =5. As a matter of fact, T=1,
implies J# ~, ), and by the t-maximality of both # and ., equality follows.

Again, let 1 —+#,; H# —~14. If H# =5, then 1,=1. This is the concluding
part of the statement of Proposition 2. and was proved there.

Finally, the relation 2, S, iff 1, S, is an easy consequence of the way
we defined the #”s with the help of the s and the 7’s with the help of the #s.

Of course, with respect to the one-to-one correspondence just established,
a situation analogous to that described in connection with Theorem 1. prevails:
r-maximal filters of perfect topogenous orders can be replaced by t-equivalence
classes.

§ 4. Direct characterization of t-equivalence and r-maximality

In the previous section t-equivalence of two filters of perfect topogenous
orders has been defined to mean equality of the corresponding limitings. Here
we are going to characterize t-equivalence directly,*) without reference to limitings,
and this direct characterization will throw additional light also upon t-maximality.

3) The partial order of the s is of course the one defined by set-theoretical inclusion for

sets of perfect topogenous orders.
4) The fundamental ideas underlying this section have been suggested to the author by Pro-

fessor A. CSASZAR.
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Let us adopt first of all the following convention: If <; and <, are two perfect
topogenous orders on E then for x€ E we say that <, is smaller at x than —,
(written =,S.=,) iff x<,V=>x-<,V for any VEE. — Making use of condition
(P’) in Definition 4. we immediately get the following

Proposition 4. If <, and <, are perfect topogenous orders on a set E then
=, S <, if and only if <=, S,<; holds for any x€E.

It is also clear that Proposition 1. implies

Proposition 5. If o and #, are filters of perfect topogenous orders on the
set E then T4, S, if and only if for any x € E and any <, € K  there existsa <, € H# ,
satisfying <=, < . <.

If the condition just described holds (i. e. if 7, S 7,,) then we say that J, is
t-coarser than J#,. We clearly have the

Proposition 6. Two filters of perfect topogenous orders on a set E are t-equi-
valent iff each of them is t-coarser than the other.

This is the direct characterization of r-equivalence hinted at previously. Its
usefulness will be shown by the following considerations.

Let #,, o, and #, be filters of perfect topogenous orders over the given
set E. If we put

{#y, #H}={<|<N=<,E< for some =<;€#, and =,€,)

then {#,, #,} is clearly a filter of perfect topogenous orders on E (in fact the
smallest filter containing both 3¢, and ¢ ,), and we have the implication expressed by

Proposition 7.
”1 ~ Ko
‘”’:2 ~ *#0 }:;»[‘#1 ’ '#2} e ‘#o .

Proor. For <= €#, and x€E given, there exist perfect topogenous orders
<,€#, and <,€ ¢, such that <,C < and <,S,<, and so <,N=<,C,<
follows with <, N <, € {#,, #,)}.

On the other hand, let < € {#,, #',},i.e.let =, =, < for some <, €H#,
and <,£,. Then for x€E given there exist <,,<,€#,! such that <, C, <,
and <;S,<;, and consequently <,N<S,<,N<,S<, whence =,
M <3S, = results with <, (| <; € #,. This completes the proof of the proposition.

The existence of a r-maximal filter in each r-equivalence class now follows by

Proposition 8. If ', is a filter of perfect topogenous orders on a set E then
the set-theoretical union

is a filter of perfect topogenous orders on E, t-equivalent to ¥ .

PrOOF. % is nonvoid because J#, is. Moreover, % satisfies condition (F)
of Definition 5. Indeed,

“:l, {2E@ﬁ '{ln {26%
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is a direct consequence of Proposition 7. The remaining part of condition (F)
is clear, and so is the equivalence % ~ ¢ .

The proposition just proved clearly implies Theorem 2. As a matter of fact.
here we have established slightly more, namely the following

Theorem 2a. Any filter of perfect topogenous orders on a set E is contained in
a t-equivalent t-maximal filter, which is the set-theoretical union of all the filters
t-equivalent to the given one, or equivalently, each t-equivalence class contains a
t-maximal member, namely the set-theoretical union of the filters contained in that class.

§ 5. Some further remarks

To any limiting 7 on a set E there corresponds in a natural way a principal
limiting Yt on E. (See [3], p. 273.) Let indeed be B(x) = A {F | F € 1(x)}, and

Yr(x)={¥%|%=B(x)}.

The connection existing between the t-mammal filter #, and <, is described
by the following simple

Proposition 4.
{'t= n{{|{ G'#,!}'

Proor.

We have A<, B iff xcA=BcB(x), i.e. iff xcA=>BcF for any Fc1(x).

On the other hand, putting <p,= N {<|< €#.}, we obtain A<,B iff 4<B
forany <= €., i.e. iff x€¢ A=BcF forany # € t(x), the same condition as before.
(If <= rims through ., # will run through t(x). Of course, x€ B is implied by
x€1(x).

In [2] a central role is played by syntopogenous structures. (See [2], Chapter 7.)
One might ask what is the connection between syntopogenous structures and limit-
ings. It is not hard to see that the natural link between these two concepts is formed
by the topologies (in the usual sense of the word).

One indeed has the following

Proposition 5. If & is a syntopogenous structure on the set E, then for xc E
B(x)={V|x<V for some =¢cF}

is a filter, and the filters B(x) (x € E) are the neighborhood filters of a topology on E.

Any topology on E as defined by its neighborhood filters B(x) (x€ E) can be
derived in this manner from the corresponding simple and perfect syntopogenous
structure.

The PROOF of this Proposition is implicitely contained in [2]. (See [2], (15.10)
and (7. 20).)

Thus any syntopogenous structure on a set £ gives raise in a natural way to
a principal limiting on E, and a principal limiting corresponds in this way to a
syntopogenous structure if and only if its generating filters B(x)(x€E) are the
neighborhood filters of a topology on E. (These principal limitings are simply called



On limitings and topogenous orders 181

topologies in [3].) In order to get a one-to-one correspondence between equivalence
classes of syntopogenous structures and those principal limitings which are topolo-
gies, one has to put

: S~ if FP=Y.

(See [2], (8. 54).)

§ 6. Pseudo-topologies and prae-topologies in the sense of G. Choquet

As we mentioned right at the outset, prior to the introduction of limitings by
H.-J. KowALskY and H. R. FisHEr some closely related notions have been considered
by G. CHOQUET *) in his paper [1].

Choquet’s “structures pseudo-topologiques™ (see [1], pp. 79—80) can be defined
in our terminology as follows:

Definition 6. A mapping ¢ of E into R(P(E)) is a pseudo-topology on E,
if for any x¢€ E it satisfies the following conditions:

F € o(x)
F) gy

(F,) Feo(x)=2BFNF =F)&F' =F"-F"§o(x)]}.
(F3) X € o(x).

One sees that condition (F,) can be given the following equivalent formulation:

=F'€ o(x).

(F,,) If # 4 o(x) then % ¢ o(x) for some ultrafilter % containing #.

A partial clarification of the relation in which pseudo-topologies stand to
limitings, is achieved by the following

Proposition 6. Every pseudo-topology on a set E is a limiting on E.

PRrROOF. We have only to show that #, 4 € g(x) =F A\ % € g(x). Suppose F, ¥ € p(x)
and # A\ %< o(x). Then, by (F,,) there exists an ultrafilter % such that FA\ ¥ =%
and % ¢ o(x). From this we infer

(#) F =4 andlor G=U.

As a matter of fact, # £% and ® = % together imply E— Fe% and E—GEW
for some Fc# and some G€ %. Then, however

(E—F)(W(E—G) = E-(FUG)eu

follows, and this contradicts FUGEF NG =U.

Thus the hypothesis we started with implies (%), and (%) in turn implies by
(Fy) %€ po(x), a contradiction. The contradiction obtained proves F A 9 € o(x)
and establishes thereby the proposition. ©)

5) 1 am indebted to Professor A. CsAszAr for having kindly directed my attention to G.
CHoOQUET's paper [1].
6) The statement to the contrary in [3], p. 280., bottom, seems to require correction.
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It might be conjectured that the converse of the proposition just proved is
not true, i. e. that not every limiting on a set is a pseudo-topology.

Among pseudo-topologies so called prae-topologies (“structures pré-topolo-
giques”, see [1], p. 83) merit particular attention:

Definition 7. A pseudo-topology on a set E is a prae-topology on E, if for
any x€E it satisfies the additional requirement

(U3) MF|IF ca®)}ee(x).

A characterization of prae-topologies is given by the following

Proposition 7. The concept of prae-topology and that of principal limiting
coincide: Every prae-topology on a set E is a principal limiting on E, and conversely.

Proor. If a pseudo-topology ¢ satisfies also condition (U3) then it is not only
a limiting but a principal limiting, (L;) being satisfied with

B(x)=A{F|F €co(x)} (XEE).

On the other hand, a principal limiting t always satisfies (F,,). As a matter
of fact, let # ¢ 7(x). Then % ¢ (x) for some ultrafilter % satysfying # =%, since
otherwise we would have

F=ANU|F =u)er(x),
a contradiction. 7)
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7) Here we made use of the following known fact, which we prove for completeness’ sake:
Any filter on a set E is equal to the intersection of the ultrafilters containing it.

Proor. It will be sufficient to prove the following statement:

If H¢ F then there exists an ultrafilter % such that F =% and CHe%.

Now, H¢F implies CHN F#@ for any Fe %, since CHNF=0=Fs H=>Hc%. Thus
CH and % generate a filter, and any ultrafilter containing this filter has the required properties.



