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Reduction theorems of certain Landsberg spaces
to Berwald spaces

By S. BÁCSÓ (Debrecen) and M. MATSUMOTO (Kyoto)

Abstract. We shall show three theorems according to which, under certain con-
ditions a Landsberg space reduces to a Berwald space. These conditions concern the
Douglas tensor, the T-tensor and the quartic metric.

0. Introduction

We have several interesting theorems such that if a Finsler space Fn is
a Landsberg space (Chij|kyk = 0) and satisfies some additional conditions,
then Fn becomes a Berwald space (Chij|k = 0). Such theorems suggest
us to consider the existence of essentially Landsberg spaces which are not
Berwald spaces.

In a recent paper [3]1, which is a joint work of the first author and
his colleagues, the additional condition of the above mentioned reduction
([3], Theorem 1) is that the Douglas tensor of Fn vanishes. This theorem
holds, provided n > 2, but it should be remarked that Fn is assumed to
have a positive-valued fundamental function L(x, y) and a positive-definite
fundamental tensor gij(x, y). In fact, these assumptions are essential to
Deicke’s theorem ([5] §24) which is applied in the proof.

In the two-dimensional case this theorem was really proved by Ber-
wald [2]. In the proof he applied the so-called Berwald frame method [5],

The manuscript of the paper was written during the period when the second author
stayed in Debrecen between October 1 and October 19, 1995.
This research was supported by OTKA T-17261.
1Numbers in brackets refer to the references at the end of the paper.
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which was developed under the assumption of the positive-definiteness of
gij .

After some preliminary remarks on the modified theory of Berwald
frames, the first purpose of the present paper is to show that Bácsó’s and
Berwald’s reduction theorems hold also without this assumption.

The second section is devoted to the proof of a simple theorem, where
the additional conditinons are such that the dimension number is equal to
two and the T-tensor vanishes.

In section 4 another reduction theorem is presented on two-dimensio-
nal Finsler spaces with quartic metric. This represents a supplement to
the theory of Finsler spaces with m-th root metric recently developed by
the second author and his colleagues.

1. The modified theory of Berwald frames

The special and useful Berwald frame [2] was founded and developed
method in oder to study two-dimensional Finsler spaces. It works under
the assumption that the fundamental tensor gij(x, y) is positive-definite.
Then one can define a local field of orthonormal frame (l, m) called the
Berwald frame ([5], §28), and then gij is written as gij = lilj + mimj .
Positive-definiteness was an implicit assumption of Berwald which ap-
peared rather natural in his time. However, in our days we have to pay
attention to the recent rapid progress of Finsler geometry; we have various
applications of this geometry to other fields of science [1]. Consequently
it seems that positive-defineteness is too restrictive for the applications.

The modification of the Berwald frame method to the non-positive
definite case has been given in [1], §3.5. We sketch it for later use.

We are concerned with a two-dimensional Finsler space F 2 with fun-
damental function L(x, y), x = (xi), y = (yi), i = 1, 2. Then we have

li =
1
L

yi, li = ∂̇iL (∂̇i = ∂/∂yi),

hij = L∂̇i∂̇jL, gij = lilj + hij .

Since the angular metric tensor hij has the matrix (hij) of rank one, we
can define the vector m = (m1, m2) by

hij = εmimj , ε = ±1.

Then we get

gij = lilj + εmimj , det(gij) = ε(l1m2 − l2m1)2.
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The sign ε is called the signature of F 2.
Next, since the C-tensor Cijk = ∂̇i∂̇j ∂̇k(L2/4) has no components in

the direction li (Cijkyi = 0), it can be written in the frame (l, m) as

LCijk = Imimjmk.

The scalar field I thus defined is called the main scalar of F 2. Then we
have {

L∂̇j l
i = εmimj ,

L∂̇j li = εmimj ,

{
L∂̇jm

i = −(li + εImi)mj ,

L∂̇jmi = −(li − εImi)mj .

We deal with the covariant differentiations. Denote by (; , .) and (|, |)
the covariant differentiations in the Berwald connection BΓ = (Gi

jk, Gi
j , 0)

and in the Cartan connection (Γ∗ijk, Gi
j , C

i
jk) respectively. Then for a scalar

field S(x, y) we get

S;i = S|i = ∂iS − (∂̇rS)Gr
i , S.i = S|i = ∂̇iS.

We write S|i and LS|i in (l, m) as follows

S|i = S,1li + S,2mi, LS|i = S;1li + S;2mi.

(S,1, S,2) and (S;1, S;2) are called the h- and the v-scalar derivatives of S
respectively.2 If S(x, y) is positively homogeneous of degree r in y, then
we have S|iyi = rS. For zero degree scalar fields, we have LS|i = S;2mi.
For li and mi of (l,m) we have

{
li;j = 0,

Lli.j = εmimj ,

{
mi;j = −εI,1mimj ,

Lmi.j = −(li − εImi)mj ,{
li|j = 0,

Lli|j = εmimj ,

{
mi|j = 0,

Lmi|j = −limj .

Next, the torsion and curvature tensors appear in the commutation
formulae of covariant differentiations. For CΓ we have

h-curvature Rh
i
jk = εR(lhmi − limh)(ljmk − lhmj),

hv-curvature Ph
i
jk = 1

LI,1(lhmi − limh)mjmk,
(v)h-torsion Ri

jk = εLRmi(ljmk − lkmj),
(v)hv-torsion P i

jk = I,1m
imjmk.

R is called the curvature of F 2. The v-curvature Sh
i
jk = Ch

r
kCr

i
j −

Ch
r
jCr

i
k vanishes identically for F 2.

2In Berwald’s notation (S,1, S,2, S;2) = (Ss, Sb, Sθ).
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On the other hand, for BΓ we have

h-curvature: Hh
i
jk=ε{R(lhmi−limh)+R;2mhmi}(ljmk−lkmj),(1.1)

hv-curvature: Gh
i
jk=

1
L

(−2I,1l
i + I2m

i)mhmjmk,(1.2)

where

I2 = I,1;2 + I,2.

The (v)h-torsion Ri
jk coincides with that of CΓ.

The commutation formulae for scalar derivatives are written in the
form

(1.3)





(1) S,1,2 − S,2,1 = −RS;2,

(2) S,1;2 − S;2,1 = S,2

(3) S,2;2 − S;2,2 = −ε(S,1 + IS,2 + I,1S;2).

Finally the Bianchi identites for an F 2 reduces to the single identity:

(1.4) I,1,1 + RI + εR;2 = 0.

2. Landsberg spaces with vanishing Douglas tensor

A Finsler space Fn is called a Landsberg space, if Gh
i
jkyi = 0 or

equivalently Chij|kyk = 0. It is well-known that Fn is a Berwald (affinely
connected) space, if Gj

i
k are functions of position alone, that is Gh

i
jk = 0,

or equivalently Chij|k = 0.
From Gh

i
jk we get a projective invariant Dh

i
jk, called the Douglas

tensor ([2], [4]):

Dh
i
jk = Gh

i
jk − 1

n + 1
(
yiGhj·k + δi

hGjk + δi
jGkh + δi

kGhj

)
,

where Ghj = Gh
r
jr and Ghj·k = ∂̇kGhj . In particular the Dh

i
jk of a

two-dimensional Finsler space F 2 can be written in the form

3LDh
i
jk = −(6I,1 + εI2;2 + 2II2)mhlimjmk.

The purpose of the present section is to prove the following theorem
without the assumption of positive-definiteness:



Reduction theorems. . . 361

Theorem 1. If a Finsler space Fn is a Landsberg space and has van-

ishing Douglas tensor, then it is a Berwald space.

Proof. In the case of n > 2, an almost complet proof has been given
by Bácsó and his colleagues [3]. From Gh

i
jkyi = 0 and Dh

i
jk = 0 they

derived

(2.1)





(1) Ghijk = 1
n+1 (hhiGjk + hhjGki + hhkGij),

(2) Ghj = G
n−1hhj ,

(3) (n− 2)GCi = 0, Ci = Ci
r
r.

(3) implies G = 0 or Ci = 0. From G = 0 and (2) we immediately get
Ghijk = 0. On the other hand, from Ci = 0 and Ghj = Ch|j (p. 144 of [3])
it follows that (1) and (2) imply Gh

i
jk = 0. In both cases the space reduces

to a Berwald space. We note that originally (in [3]) Deicke’s theorem was
applied to get Ci = 0. This however is not necessary here.

In the case of n = 2 the theorem was proved by Berwald [2]. Now we
modify his proof for the case of gij with arbitrary signature.

From (1.2) it follows that F 2 is a Landsberg space if and only if

(2.2) I,1 = 0.

Let us remarke that F 2 is a Berwald space if and only if I,1 = I,2 =
0, as shown by (1.2). The Douglas tensor of F 2 vanishes if and only if
6I,1 + εI2;2 + 2II2 = 0 where I2 = I,1;2 + I,2. Consequently (2.2) leads to

(2.3) I,2;2 = −2εII,2.

Further we must pay attention to (1.3) and (1.4). Then the latter reduces
to

(2.4) R;2 = −εRI.

Now we are concerned with I,2,1 and I,2,2. Applying (1) of (1.3) to S = I,
we get

(2.5) I,2,1 = RI;2.

Next, applying (2) of (1.3) to S = I,2 and making use of (2.2), (2.3), (2.4)
and (2.5), we have

I,2,2 = I,2,1;2 − I,2;2,1 = (RI;2);2 + 2ε(II,2),1

= −εRII;2 + RI;2;2 + 2εI(RI;2).
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which implies

(2.6) I,2,2 = R(I;2;2 + εII;2).

Applying (3) of (1.3) to I,2, we get similarly

(2.7) 2ε(I,2)2 + R{I;2;2;2 + 3εII;2;2 + ε(I;2)2 + 2I2I;2 + εI;2} = 0.

If we apply the scalar differentiation (;2) to (2.7) and substitute from
(2.3) and (2.4), then we easily obtain

R{I;2;2;2;2 + 6εII;2;2;2 + (5εI;2 + 11I2 + ε)I;2;2

+(7I;2 + 6εI2 + 3)II;2} = 0.(2.8)

From R = 0 and (2.7) we get I,2 = 0, so that F 2 becomes a Berwald space
with R = 0, that is, a locally Minkowski space. In the case of R 6= 0 we
apply the differentiation (,2) to {. . . } of (2.8). Then we get the terms I;2,2,
I;2;2,2, I;2;2;2,2 and I;2;2;2;2,2. We will use the following formulae:





(1) I;2,1 = −I,2,

(2) I;2;2,1 = 3εII,2,

(3) I;2;2;2,1 = (4εI;2 − 7I2 + ε)I,2,

(2.9)





(1) I;2,2 = −εII,2,

(2) I;2;2,2 = (−εI;2 + I2 − ε)I,2

(3) I;2;2;2,2 = (−εI;2;2 + 3II;2 − εI3 + 4I)I,2,

(4) I;2;2;2;2,2 =
{− εI;2;2;2 + 4II;2;2 + 3(I;2)2 − 6εI2I;2

+ 8I;2 + I4 − 11εI2 + 1
}
I,2.

(2.10)

The proof of these relations is simple. We establish one of them only say
(3) of (2.10). Applying (3) of (1.3) to S = I;2;2, we get

I;2;2;2,2 = I;2;2,2;2 + εI;2;2,1 + εII;2;2,2.

Substituting from (2) of (2.10), (2) of (2.9) and then (2.3), we obtain (3)
of (2.10) immediately.

Now, applying (,2) to the {. . . } of (2.8) and substituting from (2.10),
we finally obtain

{εI;2;2;2 + 3II;2;2 + (I;2)2 + 2εI2I;2 + I;2}I,2 = 0.

Comparing this with (2.7), we can get I,2 = 0. Therefore the proof of
Theorem 1 has been completed.
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3. Some remarks

As it was shown by Berwald ([2],[4]), a Finsler space Fn is projectively
flat, if and only if

1) n > 2 : (a) Wh
i
jk = 0, (b) Dh

i
jk = 0,

2) n = 2 : (a) 3R,2 −R;2,1 = 0, (b) Dh
i
jk = 0,

where Wh
i
jk is the Weyl projective curvature tensor, a projectively invari-

ant tensor and R is the curvature.
(1) Wh

i
jk vanishes identically in the case of n = 2.

(2) It has been shown by Z. Szabó ([8],[4]) that Fn (n > 2) is of
scalar curvature K, if and only if its Wh

i
jk vanishes.

(3) It has been shown by S. Numata ([5], §30) that, if a Lands-
berg space Fn (n > 2) is of non-zero scalar curvature K,
then Fn is a Riemannian space of constant curvature K,
provided that Fn has a positive-definite metric.

Theorem 1 is concerned with Landsberg spaces satisfying the condi-
tions (b) above. What is a two-dimensional Landsberg space satisfying (a)
of 2)? This is an open problem.

Next we shall be concerned with the so-called T-tensor (§28 of [5]):

Thijk = LChij |k + lhCijk + liChjk + ljChik + lkChij .

In the case of n = 2 this is written in the form

LThijk = I;2mhmimjmk.

The following theorem has been shown by Szabó [9]: If Fn has the van-
ishing T-tensor, then it is a Riemannian space, provided that n > 2 and
the metric is positive-definite. In the case of n = 2 we show a reduction
theorem:

Theorem 2. If a two-dimensional Finsler space F 2 is a Landsberg
space and has vanishing T-tensor, then F 2 is a Berwald space.

Proof. Our assumptions are written as

(1) I,1 = 0, (2) I;2 = 0.

Then (2) of (1.3) immediately implies I,2 = 0. Thus F 2 is a Berwald space.

So we have a conclusive theorem on two-dimensional Berwald spaces.
See [5], §28 (positive-definite case alone) and [1], §3.5.
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4. Two-dimensional Landsberg spaces with quartic metric

Let Fn
4 be a Finsler space with a fundamental function given by

L4 = ahijk(x)yhyiyjyk,

where ahijk(x) are components of a covariant symmetric tensor of degree
four ([6], [7]). A metric defined by such an L is called a quartic metric.
The second author has proved the following theorem in the second paper
[6] of a series concerned with m-th root metrics:

If a Finsler space Fn
3 with a cubic metric is a Landsberg space, then

it is a Berwald space.
This theorem holds without any assumption on the dimension or on

the metric. The purpose of the present section is to show the

Theorem 3. If a two-dimensional Finsler space F 2
4 with a quartic

metric is a Landsberg space, then it is a Berwald space.

Proof. As has been shown in [6], F 2
4 has a quartic metric, if and

only if the main scalar I satisfies

(4.1) I;2;2 + 10εII;2 + 4I(3I2 + 4ε) = 0.

Since our F 2
4 is a Landsberg space, (2.2) holds also.

First, applying (2) and (3) of (1.3) to S = I, we have

I;2,1 = −I,2,(4.2)

I,2;2 = I;2,2 − εII,2.(4.3)

Let us apply the differentiation (,1) to (4.1), then we get I;2;2,1=−10εII;2,1.
Now (4.2) leads to

(4.4) I;2;2,1 = 10εII,2.

Next, applying (2) of (1.3) to S = I;2 and substituting from (4.2) and
(4.4), we get

I;2,2 = I;2,1;2 − I;2;2,1 = −I,2;2 − 10εII,2.

Then (4.3) leads to

(4.5) I;2,2 = −9
2
εII,2,

and (4.3) can be written in the form

(4.3’) I,2;2 = −11
2

εII,2.
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Next we consider I;2;2,2. Applying (3) of (1.3) to S = I;2, we get

I;2;2,2 = I;2,2;2 + εI;2,1 + εII;2,2.

Substituting from (4.2), (4.5) and then from (4.3’), we obtain

(4.6) I;2;2,2 =
(
−9

2
εI;2 +

81
4

I2 − ε

)
I,2.

On the other hand, (4.1) yields

I;2;2,2 = −10εI,2I;2 − 10εII;2,2 − 4(3I2 + 4ε)I,2 − 4I(6II,2).

Substituting from (4.5), the above is written as

(4.7) I;2;2,2 = (−10εI;2 + 9I2 − 16ε)I,2.

Consequently (4.6) and (4.7) give I,2 = 0, or

22εI;2 + 45I2 + 60ε = 0.

This together with (2.2) yields I;2,1 = 0, that is I,2 = 0 results from (4.2).
In any case we obtain I,2 = 0, and hence we can conclude that F 2

4

reduces to a Berwald space.

Remark. As we have mentioned, Theorem 1 is now completely proved,
54 years after Berwald. The authors conjecture that Theorem 3 may be
extended to arbitrary dimension.
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