On the summability factors of infinite series

By S. M. MAZHAR (Aligarh)

1. Let {p,} be a sequence of non-negative real constants such that P,= Zp,,
tends to infinity with n. The sequence

l n
In N Pn “é‘)pvsvc
where s, is the n-th partial sum of a given infinite series Za,, defines the (N, p,)
means of {s,}.
The series Za, is said to be summable |N, p,|, if the sequence {r,} is of bounded
variation.

Hp.= , we have P,~log nand P,/log n€ BV, and therefore summability

1
n+1
N, "_:_ li is equivalent to the summability (R, logn, 1.

2. Recently BHATT ([1]) has proved the following theorem.

Theorem A. If {4,} is a convex sequence such that i, [n<cc and the sequence
{s.} is bounded, then the series Xi,a,logn is summable |R,logn, 1|.

Later on he [2] gave a generalisation of this theorem in the following form.

Theorem B. If {4,} is a convex sequence such that Xi,[/n < o=, and if the sequence
{k,}), the (R, logn, 1) mean of the sequence {na,log (n+ 1)}, satisfies the condition

Q2. 1) k,|=0flog (n+ 1)} (C, 1), k=0,

then the series Xi,a,{log (n+1)}'~* is summable

The object of this paper is to obtain a further generalisation of this theorem.
3. We shall prove the following theorem.

Theorem 1. If {4,} is a convex sequence such that XA,p, <<=, where {p,} is a
non-increasing positive sequence, and the sequence {1}, the (N, p,) mean of {a,P,/p,},
satisfies the condition

(3. 1) I, =0 {7} (C, 1),
11
v, being a positive non-decreasing sequence such that !Az . ‘ =0 and A4y, = O{paynl Pn}s

then the series Xa,i,P,|y, is summable N, p,|.
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It is clear that if we take &= and y,={log (n+ 1)}, Theorem B from
our theorem.
4. The following lemmas are pertinent for the proof of this theorem.

Lemma 1. If {/,} is a convex sequence such that Zi,p,< =, where {p,} is a
sequence of real positive constants such that P, — <, then {2,} is a non-negative monoto-
nic decreasing sequence tending to zero and A,P,=o0(1), as n —~==.

This generalises the following lemma of CHow ([3]).

Lemma A. If {4,} is a convex sequence such that Xi,/n< =, then {4} is a non-
negative decreasing sequence and 2,logn=o(1), as n—-cs.

PrOOF OF LEMMA 1. Since 424,=0, it follows that 4/, is non-increasing and
/4, either tends to a finite limit / or to + e or —e=. Also since Z4,p,= == we have

4.1) }% Zn‘ Aom P = 0(1), (n—+e2).
1

Now let lim 4, =s, where s is any number finite or infinite but not zero. Then by

n=+ o=

virtue of a well known result we have

1 n
lim — 2> A, pn, = 5.
Nim , & *nP

Since s # 0 we get a contradiction by virtue of (4. 1). Hence s must be zero so that
7,0 and therefore lim 44,=0. Thus 44,=0. This means that {4,} is a non-
increasing sequence and by virtue of the fact that lim 4,=0, it follows that {4,}

n=t e

is non-negative and decreasing sequence tending to zero.
We know that if Za, << and {f,} is any monotonic increasing sequence of

positive numbers tending to infinity with n, then lim— > a,f,=0. Taking

A=+ ﬁn 1

B.=1/2, and applying this result to the series X p,4,, which is convergent, we have

f B A i,
1

that is to say P,4,=o(l), as n oo,
This completes the proof of the lemma.

Lemma 2. If {«,7,} satisfies the same condition as 2, in Lemma 1, then
2 Puyuda, = O(1), m— oo
]

where {y,} is a positive non-decreasing sequence such that

47, = O(pyyal Py
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If we take p, :;;L—T and y,=1, we get the following lemma due to PaTI ([4)).

Lemma B. If {/,} is a convex sequence such that XA,/n< -, then

3 log (n+ 1) 44, = O(1),
1

as m-—- oo,

On the other hand, if we take y,={log(n+1)}*, k=0 and p"zh:il-l . we

obtain the following result of PRASAD and BHATT ([6]).

Lemma C. If {(log (n+ 1))*a,} satisfies the same condition as 7, in Lemma A, then

Zm' {log (n+ 1)}**! 4o, = O(1), (m — o).
1
PrROOF OF LEMMA 2.

m m=— 1
IZI TnOnPn = 12| A(}'nmn)Pn'f'?m&m Pm =

m=-1 m=1 m—1
— Z (?;ndau+an+14?u)Pn+0“): .Z }'uPuAan'\LZ an+IATnPn+0(l):
1 1 1

m—1 m—1 m—1
= Z }',,P,,A-ﬂn'{-O[Z pn},ngn+I]+o(]): 2 TnPnAan',“O(l)-
1 1 1

Therefore

Zm' Va Pada, = O(1) (m o).

Lemma 3. If {y,2,} satisfies the same condition as 7, in Lemma 1, where {y,}

; i p |
is a positive non-decreasing sequence such that A*> — =0 and

Ay, = O(}’npn)!Pn)-
and {p,} is non-increasing sequence, then we have

2 nP,y, 4% a, = O(1),
1

and
mP,y 4%, = 0(1) (m — =),

The following lemmas are the special cases of this result.
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Lemma D (PaT1 [5]). If {4,) satisfies the condition of Lemma A, then

mlog (m+1)44,,=0(1),
and

m
> nlog(n+1)4%4, = O(1),
1

as m- o,

Lemma E (BHATT [2]). If {(log (n+1))*%,}, k=0, satisfies the same condition
as 4, in Lemma A, then

m{log (m+ D}**+! 4a,, = O(1),
and

Zm' n{log (n+ 1)}**' 42a, = O(1),
1
as m—- oo,

Proor or LEMmMA 3. We have

m m—1
S'= 3 aPada, = 3> (+1)A(y, P, d%)+ (m+ 1)y Py 42y =
1 1

m=-1
== 12' (ﬂ+ I){?nPnAZ 5(l'r—'_Actlm+l A('}'n Pn)}+(,n+ l)?m PMA"IM =

m-— m=1

=2 M+ 1)y P Ao+ 5 (n+1)A4ct, ., 4y, P+
1 ]
m=—1

+ 3 (n+ DA%y Yas 1 (—Prs ) +(m+ Dy, P da, = Z,+ Z,+ 23+ Z,.
1

Applying Lemma 2 we have 2’ =0(1) and

m=1 m-=1
2, =0 [12' nPy Vn P,,(Ad,+1)/P,,] = Ollz P,,}’,,A-ﬁ‘,+1] = 0(1),

since 4%x,=0. Similarly

m=1
2= O[IZ Phiy }'uﬂd‘xnl] = 0(1),

so that X, + X, =0(1). Since X, and Z are positive the results follow.
5. PROOF OF THEOREM 1. Let C,=a,P,Ay/Vns %="20/Vu>

Ty =

0[\43

1 n
Cn‘ and f::P_‘oZ'PmTM'

n



On the summability factors of infinite series 233

Then we have

) l n l n4+1
r:_(:'kl :? ")Z'pnrrm—'P+‘ gpmrm=

n
= A(I/Pn)gpmrm—pn+lTs+l/Pu+l =

n=1
:—A(l/Pn)Z Pmcm_{_l-’-d(llfpn)PNT“__pf_t_l& =
¥ T

— _A(]/Pn) g‘ Pmcm-ivl'
Now

n n
.62 PmCm+l —~ g PIH;"NI+1 Pm+lam+l/?nl+l -

n—1 Pm)‘m m Pn)‘n n
= ‘(TS: A[ ___+l_] Z 'l[:'n+l"",u-i-l‘i'__"'_'LL Z Pﬂ+la.u+l —

Ym+1 u=0 Ya+1 u=0

Pll‘z'n+l

n+1

(Uns1 Posy—ao Pg) =

n=1 P A
- OZ' A[ -'-"--"f-'—] (Hm+ 1 Py — o Po) +

?m+l
n—1
=~ —GOPO(PUAI/YI “‘Pnj'n+l/}'n+l)+ g A(Pm";'m+l/?ui+l)“m+lpm+l =

"a()POPu;‘n+ l/?n+l+Pn‘;'.||+lnun+1Pn+l/},u+l —

Pplnsy Puty Pasy

n+1

n—1
= g AP 2t 1/Vm+ 1) Mt { P 1 + +0(1) =

— g A(Pminl+l/}'m+1)um+1Pm+l+Pn2+l Hnsq ;'n+2/}’n+2 +O(]) =

2 1 -
= ,02 (m+I}A(PmﬂA(Pmﬁml/?mﬂ)}m'gﬂrn+

n

i .
+Pn+IA(PnAn+l/?n+|)("+l) (n+1) ﬁ‘ﬂ

r+]+

+Prrz+l.|un+l }'u+2/?n+2+o(l) -

= Ly+Ly+Ly+0().
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It is therefore sufficient to prove that

Now SAQ/P)IL =0(1)  (r=1,2,3).

m m n—1
2.. A(]/Pn)iLi| = 0{}2‘ A(I/Pn) 02' (r+])?r+l .A{Pr+l A(Pr)‘r+1/},r+ 1)]}} _—

- 0{'"2-,1 DV 1A{P,. A(Prﬂfrn)}!} .
0 Pr+l

m—1
o Z (r+l)}'r+l P P'+IA CX.+1}+

0 r+l

m=1
+0 Z (r+'l)}’r+l'Pr+lpr+l Adr+2}+
0 Pr+|

m-1 (r+1)7,.
+O{Z %ar+3|dpr+lpr+t|l=
0 r+1

=0 {"}:' (r+ )9t Py A’a,+.}+0{"§' ikt Aa,+1}+
+0{";2' (r+ 1Ay 14(pys P,+.)|/P,+1} =
= 0(1)+0{".'§' -+ P,+.(Ap,+1)/P,+.}+
+0{".'0>__7' (r+ n.:.,ﬂpfuzP,H} -

m 1

“0(1)4‘0[2 4p, 4, Z}]'*'O 2 Prir? r+1]=0“)’

by virtue of lemmas 2 and 3, the hypotheses and the fact that

m=1 r m m
Z Apr 2 ;'5 = Z ;'rpr_'pm 2 A =
0 ] 0 0

(5.1)
__0(1)40[ Z,lp,] o(1).
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Next
IZM|A(IF‘IP")|L11 — O[IZM' A(]/Pn)Pn+l("+l)?n+l|A-Pnan+l|] =

=0 [12‘ Pus1(N+1)Vns 1 Puss an+z){Pu]+
+O [.IZ‘P«+|("+ l)}’n+1 Pn(AaaH» l)/PnJ =

= 0($Pn+1 ;-n+1]+o[;m' J AR Aaaﬂ—l] = 0(l),

by the hypotheses and lemma 2.
Again

ZA(”Pn”LJ| = 12' A(]J!Pu)'PuZ+1Iﬂn'l-li)'u-i-z,?n-l-z =

m o i
s %’ qp"‘*_]_ ).,.+2 Pn+l|pu+1.,fP" = ?’ A(pn-i-] Pu+] 1,,+2/P,,) %‘ iour+1| 4

Tn+2

+(Pm+1 Pt 1 %m+2/Pm) %' 4] =

.m—l
=0 (? P+ 1) 7041 [A(Pas g Pu+1’1n+2/Pn)]]+

+0(pm+l Pm+l(.m+ ])um+2 }'m+2/Pm) - L.Sl +L32'

Now

L32 = O(Pm+ 1 )‘."'+|) - 0(!) (f??-"m].
Since

A(Pusy Pusy/Py) = O(Pf:'+ 1/Pa)+0(4py+y),
we have

m=—1
Ly, = O[]Z‘ (n+ 1)Vt 1 Puss Pn+1(5an+z).fpu]+
m—1
+0[Z (n+])}'n+lun+3|A{pu+]Pn+|f|an).] =
1
m=1 m=1
:0[12‘ ?n+1Pn+IA“n+1]+O[IZ‘ ("+l))‘n+lp$+lfpn]+

m= 1
+o0|> (n+l).5.,,+,Ap,,+,] -
1

m=1 "m— n
—o)+o|> ;.,,,,,p,,+,]+o[2 Apii S ;.,] = 0(1),
| 1 0

by Lemma 2, the hypotheses and (5. 1).
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Finally, we have
3 40/P)=0(1)  (m~e).

This completes the proof of Theorem 1.
~ 6. We deduce the following theorem for |C, 1| summability factors of infinite
series.

Theorem 2. If {/,} is a convex sequence such that ZJ,< = and the sequence
{ta}, the (C. 1) mean of {na,}, satisfies the condition

x| =0 (C, 1),

V. being a positive non-decreasing sequence such that A? },L =0 and Ay, = 0(y./n),
n
then the series Zna,A,/y, is summable |C, 1|
This generalises a result of PRASAD and BHATT [6] for the summability |C|
of order 1. A theorem of TRrIPATHI [7] can also be deduced as a corollary from
this theorem.
The author is highly grateful to Prof. B. N. PRasAD for his constant encoura-

gement and helpful suggestions.
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