On the summability factors of infinite series

By S. M. MAZHAR (Aligarh)

1. Let $\{p_n\}$ be a sequence of non-negative real constants such that $P_n = \sum_{i=0}^{n} p_i$ tends to infinity with n. The sequence

$$t_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v,$$

where s_n is the *n*-th partial sum of a given infinite series Σa_n , defines the (\overline{N}, p_n) means of $\{s_n\}$.

The series Σa_n is said to be summable $|\overline{N}, p_n|$, if the sequence $\{t_n\}$ is of bounded variation.

If $p_n = \frac{1}{n+1}$, we have $P_n \sim \log n$ and $P_n/\log n \in BV$, and therefore summability $|\overline{N}, \frac{1}{n+1}|$ is equivalent to the summability $|R, \log n, 1|$.

2. Recently BHATT ([1]) has proved the following theorem.

Theorem A. If $\{\lambda_n\}$ is a convex sequence such that $\Sigma \lambda_n / n < \infty$ and the sequence $\{s_n\}$ is bounded, then the series $\Sigma \lambda_n a_n \log n$ is summable $|R|, \log n, 1|$.

Later on he [2] gave a generalisation of this theorem in the following form.

Theorem B. If $\{\lambda_n\}$ is a convex sequence such that $\Sigma \lambda_n / n < \infty$, and if the sequence $\{k_n\}$, the $(R, \log n, 1)$ mean of the sequence $\{na_n \log (n+1)\}$, satisfies the condition $|k_n| = O\{\log (n+1)\}^k (C, 1), k \ge 0$,

then the series $\sum \lambda_n a_n \{\log (n+1)\}^{1-k}$ is summable $|R, \log n, 1|$.

The object of this paper is to obtain a further generalisation of this theorem.

3. We shall prove the following theorem.

Theorem 1. If $\{\lambda_n\}$ is a convex sequence such that $\Sigma \lambda_n p_n < \infty$, where $\{p_n\}$ is a non-increasing positive sequence, and the sequence $\{\mu_n\}$, the (\overline{N}, p_n) mean of $\{a_n P_n / p_n\}$, satisfies the condition

(3. 1)
$$|\mu_n| = O\{\gamma_n\} \ (C, 1),$$

 γ_n being a positive non-decreasing sequence such that $\left|\Delta^2 \frac{1}{\gamma_n}\right| \ge 0$ and $\Delta \gamma_n = O\{p_n \gamma_n/P_n\}$, then the series $\sum a_n \lambda_n P_n/\gamma_n$ is summable $|\overline{N}, p_n|$.

It is clear that if we take $p_n = \frac{1}{n+1}$ and $\gamma_n = \{\log (n+1)\}^k$, Theorem B from our theorem.

4. The following lemmas are pertinent for the proof of this theorem.

Lemma 1. If $\{\lambda_n\}$ is a convex sequence such that $\Sigma \lambda_n p_n < \infty$, where $\{p_n\}$ is a sequence of real positive constants such that $P_n \to \infty$, then $\{\lambda_n\}$ is a non-negative monotonic decreasing sequence tending to zero and $\lambda_n P_n = o(1)$, as $n \to \infty$.

This generalises the following lemma of CHOW ([3]).

Lemma A. If $\{\lambda_n\}$ is a convex sequence such that $\Sigma \lambda_n / n < \infty$, then $\{\lambda_n\}$ is a nonnegative decreasing sequence and $\lambda_n \log n = o(1)$, as $n \to \infty$.

PROOF OF LEMMA 1. Since $\Delta^2 \lambda_n \ge 0$, it follows that $\Delta \lambda_n$ is non-increasing and λ_n either tends to a finite limit l or to $+\infty$ or $-\infty$. Also since $\Sigma \lambda_n p_n < \infty$ we have

$$\frac{1}{P_n} \sum_{1}^{n} \lambda_m p_m = o(1), \qquad (n \to \infty).$$

Now let $\lim_{n\to\infty} \lambda_n = s$, where s is any number finite or infinite but not zero. Then by virtue of a well known result we have

$$\lim_{n\to\infty}\frac{1}{P_n}\sum_{1}^n\lambda_m\,p_m=s.$$

Since $s \neq 0$ we get a contradiction by virtue of (4.1). Hence s must be zero so that $\lambda_n \to 0$ and therefore $\lim \Delta \lambda_n = 0$. Thus $\Delta \lambda_n \ge 0$. This means that $\{\lambda_n\}$ is a non-increasing sequence and by virtue of the fact that $\lim_{n \to \infty} \lambda_n = 0$, it follows that $\{\lambda_n\}$ is non-negative and decreasing sequence tending to zero.

We know that if $\Sigma a_n < \infty$ and $\{\beta_n\}$ is any monotonic increasing sequence of positive numbers tending to infinity with n, then $\lim_{n\to\infty} \frac{1}{\beta_n} \sum_{n=1}^{\infty} a_m \beta_m = 0$. Taking $\beta_n = 1/\lambda_n$ and applying this result to the series $\Sigma p_n \lambda_n$, which is convergent, we have

$$\lambda_n \sum_{1}^{n} \lambda_m p_m 1/\lambda_m \to 0,$$

that is to say $P_n \lambda_n = o(1)$, as $n \to \infty$.

This completes the proof of the lemma.

Lemma 2. If $\{\alpha_n \gamma_n\}$ satisfies the same condition as λ_n in Lemma 1, then

$$\sum_{1}^{m} P_{n} \gamma_{n} \Delta \alpha_{n} = O(1), \qquad m \to \infty$$

where $\{\gamma_n\}$ is a positive non-decreasing sequence such that

$$\Delta \gamma_n = O(p_n \gamma_n / P_n).$$

If we take $p_n = \frac{1}{n+1}$ and $\gamma_n = 1$, we get the following lemma due to PATI ([4]).

Lemma B. If $\{\lambda_n\}$ is a convex sequence such that $\Sigma \lambda_n/n < \infty$, then

$$\sum_{1}^{m} \log (n+1) \Delta \lambda_{n} = O(1),$$

as $m \to \infty$.

On the other hand, if we take $\gamma_n = \{\log (n+1)\}^k$, $k \ge 0$ and $p_n = \frac{1}{n+1}$, we obtain the following result of PRASAD and BHATT ([6]).

Lemma C. If $\{(\log (n+1))^k \alpha_n\}$ satisfies the same condition as λ_n in Lemma A, then

$$\sum_{1}^{m} \{\log (n+1)\}^{k+1} \Delta \alpha_{n} = O(1), \qquad (m \to \infty).$$

PROOF OF LEMMA 2.

$$\sum_{1}^{m} \gamma_{n} \alpha_{n} p_{n} = \sum_{1}^{m-1} \Delta(\gamma_{n} \alpha_{n}) P_{n} + \gamma_{m} \alpha_{m} P_{m} =$$

$$= \sum_{1}^{m-1} (\gamma_{n} \Delta \alpha_{n} + \alpha_{n+1} \Delta \gamma_{n}) P_{n} + o(1) = \sum_{1}^{m-1} \gamma_{n} P_{n} \Delta \alpha_{n} + \sum_{1}^{m-1} \alpha_{n+1} \Delta \gamma_{n} P_{n} + o(1) =$$

$$= \sum_{1}^{m-1} \gamma_{n} P_{n} \Delta \alpha_{n} + O\left(\sum_{1}^{m-1} p_{n} \gamma_{n} \alpha_{n+1}\right) + o(1) = \sum_{1}^{m-1} \gamma_{n} P_{n} \Delta \alpha_{n} + O(1).$$

Therefore

$$\sum_{1}^{m} \gamma_{n} P_{n} \Delta \alpha_{n} = O(1) \qquad (m \rightarrow \infty).$$

Lemma 3. If $\{\gamma_n \alpha_n\}$ satisfies the same condition as λ_n in Lemma 1, where $\{\gamma_n\}$ is a positive non-decreasing sequence such that $\Delta^2 \frac{1}{\gamma_n} \ge 0$ and

$$\Delta \gamma_n = O(\gamma_n p_n/P_n),$$

and $\{p_n\}$ is non-increasing sequence, then we have

$$\sum_{1}^{m} n P_n \gamma_n \Delta^2 \alpha_n = O(1),$$

and

$$mP_m \gamma_m \Delta \alpha_m = O(1)$$
 $(m \to \infty).$

The following lemmas are the special cases of this result.

Lemma D (PATI [5]). If $\{\lambda_n\}$ satisfies the condition of Lemma A, then

$$m \log (m+1) \Delta \lambda_m = O(1),$$

and

$$\sum_{1}^{m} n \log (n+1) \Delta^{2} \lambda_{n} = O(1),$$

as $m \to \infty$.

Lemma E (Bhatt [2]). If $\{(\log (n+1))^k \alpha_n\}$, $k \ge 0$, satisfies the same condition as λ_n in Lemma A, then

$$m\{\log(m+1)\}^{k+1}\Delta\alpha_m=O(1),$$

and

$$\sum_{1}^{m} n \{ \log (n+1) \}^{k+1} \Delta^{2} \alpha_{n} = O(1),$$

as $m \to \infty$.

PROOF OF LEMMA 3. We have

$$\begin{split} \sum' &\equiv \sum_{1}^{m} \gamma_{n} P_{n} \Delta \alpha_{n} = \sum_{1}^{m-1} (n+1) \Delta (\gamma_{n} P_{n} \Delta \alpha_{n}) + (m+1) \gamma_{m} P_{m} \Delta \alpha_{m} = \\ &= \sum_{1}^{m-1} (n+1) \{ \gamma_{n} P_{n} \Delta^{2} \alpha_{n} + \Delta \alpha_{n+1} \Delta (\gamma_{n} P_{n}) \} + (m+1) \gamma_{m} P_{m} \Delta \alpha_{m} = \\ &= \sum_{1}^{m-1} (n+1) \gamma_{n} P_{n} \Delta^{2} \alpha_{n} + \sum_{1}^{m-1} (n+1) \Delta \alpha_{n+1} \Delta \gamma_{n} P_{n} + \\ &+ \sum_{1}^{m-1} (n+1) \Delta \alpha_{n+1} \gamma_{n+1} (-p_{n+1}) + (m+1) \gamma_{m} P_{m} \Delta \alpha_{m} = \Sigma_{1} + \Sigma_{2} + \Sigma_{3} + \Sigma_{4} \,. \end{split}$$

Applying Lemma 2 we have $\Sigma' = O(1)$ and

$$\Sigma_2 = O\left(\sum_{1}^{m-1} n p_n \gamma_n P_n(\Delta \alpha_{n+1})/P_n\right) = O\left(\sum_{1}^{m-1} P_n \gamma_n \Delta \alpha_{n+1}\right) = O(1),$$

since $\Delta^2 \alpha_n \ge 0$. Similarly

$$\Sigma_3 = O\left(\sum_{1}^{m-1} P_{n+1} \gamma_{n+1} \Delta \alpha_{n+1}\right) = O(1),$$

so that $\Sigma_1 + \Sigma_4 = O(1)$. Since Σ_1 and Σ_4 are positive the results follow.

5. Proof of Theorem 1. Let $C_n = a_n P_n \lambda_n / \gamma_n$, $\alpha_n = \lambda_n / \gamma_n$,

$$T_n = \sum_{0}^{n} C_m$$
 and $t_n^* = \frac{1}{P_n} \sum_{0}^{n} p_m T_m$.

Then we have

$$t_n^* - t_{n+1}^* = \frac{1}{P_n} \sum_{0}^{n} p_m T_m - \frac{1}{P_{n+1}} \sum_{0}^{n+1} p_m T_m =$$

$$= \Delta (1/P_n) \sum_{0}^{n} p_m T_m - p_{n+1} T_{n+1}/P_{n+1} =$$

$$= -\Delta (1/P_n) \sum_{0}^{n-1} P_m C_{m+1} + \Delta (1/p_n) P_n T_n - \frac{p_{n+1} T_{n+1}}{P_{n+1}} =$$

$$= -\Delta (1/P_n) \sum_{0}^{n} P_m C_{m+1}.$$

Now

$$\sum_{0}^{n} P_{m} C_{m+1} = \sum_{0}^{n} P_{m} \lambda_{m+1} P_{m+1} a_{m+1} / \gamma_{m+1} =$$

$$= \sum_{0}^{n-1} \Delta \left(\frac{P_{m} \lambda_{m+1}}{\gamma_{m+1}} \right) \sum_{\mu=0}^{m} P_{\mu+1} a_{\mu+1} + \frac{P_{n} \lambda_{n+1}}{\gamma_{n+1}} \sum_{\mu=0}^{n} P_{\mu+1} a_{\mu+1} =$$

$$= \sum_{0}^{n-1} \Delta \left(\frac{P_{m} \lambda_{m+1}}{\gamma_{m+1}} \right) (\mu_{m+1} P_{m+1} - a_{0} P_{0}) + \frac{P_{n} \lambda_{n+1}}{\gamma_{n+1}} (\mu_{n+1} P_{n+1} - a_{0} P_{0}) =$$

$$= -a_{0} P_{0} (P_{0} \lambda_{1} / \gamma_{1} - P_{n} \lambda_{n+1} / \gamma_{n+1}) + \sum_{0}^{n-1} \Delta (P_{m} \lambda_{m+1} / \gamma_{m+1}) \mu_{m+1} P_{m+1} -$$

$$-a_{0} P_{0} P_{n} \lambda_{n+1} / \gamma_{n+1} + P_{n} \lambda_{n+1} \mu_{n+1} P_{n+1} / \gamma_{n+1} =$$

$$= \sum_{0}^{n-1} \Delta (P_{m} \lambda_{m+1} / \gamma_{m+1}) \mu_{m+1} P_{m+1} + \frac{P_{n} \lambda_{n+1} \mu_{n+1} P_{n+1}}{\gamma_{n+1}} + O(1) =$$

$$= \sum_{0}^{n} \Delta (P_{m} \lambda_{m+1} / \gamma_{m+1}) \mu_{m+1} P_{m+1} + P_{n+1}^{2} \mu_{n+1} \lambda_{n+2} / \gamma_{n+2} + O(1) =$$

$$= \sum_{0}^{n-1} (m+1) \Delta \{P_{m+1} \Delta (P_{m} \lambda_{m+1} / \gamma_{m+1})\} \frac{1}{(m+1)} \cdot \sum_{0}^{m} \mu_{r+1} +$$

$$+ P_{n+1} \Delta (P_{n} \lambda_{n+1} / \gamma_{n+1}) (n+1) \cdot \frac{1}{(n+1)} \cdot \sum_{0}^{n} \mu_{r+1} +$$

$$+ P_{n+1} \mu_{n+1} \lambda_{n+2} / \gamma_{n+2} + O(1) =$$

$$= L_{1} + L_{2} + L_{3} + O(1).$$

It is therefore sufficient to prove that

Now
$$\sum \Delta(1/P_n)|L_r| = O(1) \qquad (r = 1, 2, 3).$$

$$\sum_{1}^{m} \Delta(1/P_n)|L_1| = O\left\{\sum_{1}^{m} \Delta(1/P_n)\sum_{0}^{n-1} (r+1)\gamma_{r+1} |\Delta\{P_{r+1} \Delta(P_r \lambda_{r+1}/\gamma_{r+1})\}|\right\} =$$

$$= O\left\{\sum_{1}^{m-1} \frac{(r+1)\gamma_{r+1}}{P_{r+1}} |\Delta\{P_{r+1} \Delta(P_r \alpha_{r+1})\}|\right\} =$$

$$= O\left\{\sum_{0}^{m-1} \frac{(r+1)\gamma_{r+1}}{P_{r+1}} \cdot P_r P_{r+1} \Delta^2 \alpha_{r+1}\right\} +$$

$$+ O\left\{\sum_{0}^{m-1} \frac{(r+1)\gamma_{r+1}}{P_{r+1}} \alpha_{r+3} |\Delta p_{r+1} P_{r+1}|\right\} =$$

$$= O\left\{\sum_{0}^{m-1} (r+1)\gamma_{r+1} \alpha_{r+3} |\Delta p_{r+1} P_{r+1}|\right\} =$$

$$= O\left\{\sum_{0}^{m-1} (r+1)\gamma_{r+1} \Delta^2 \alpha_{r+1}\right\} + O\left\{\sum_{0}^{m-1} \gamma_{r+1} P_{r+1} \Delta \alpha_{r+1}\right\} +$$

$$+ O\left\{\sum_{0}^{m-1} (r+1)\lambda_{r+1} |\Delta(p_{r+1} P_{r+1})|/P_{r+1}\right\} =$$

$$= O(1) + O\left\{\sum_{0}^{m-1} (r+1)\lambda_{r+1} p_{r+2}^2 |P_{r+1}|\right\} =$$

by virtue of lemmas 2 and 3, the hypotheses and the fact that

(5.1)
$$\sum_{0}^{m-1} \Delta p_{r} \sum_{0}^{r} \lambda_{s} = \sum_{0}^{m} \lambda_{r} p_{r} - p_{m} \sum_{0}^{m} \lambda_{r} = O(1) + O\left(p_{m} \frac{1}{p_{m}} \sum_{0}^{m} \lambda_{r} p_{r}\right) = O(1).$$

Next

$$\sum_{1}^{m} \Delta(1/P_{n})|L_{2}| = O\left(\sum_{1}^{m} \Delta(1/P_{n})P_{n+1}(n+1)\gamma_{n+1}|\Delta P_{n}\alpha_{n+1}|\right) =$$

$$= O\left(\sum_{1}^{m} p_{n+1}(n+1)\gamma_{n+1}p_{n+1}\alpha_{n+2}/P_{n}\right) +$$

$$+ O\left(\sum_{1}^{m} p_{n+1}(n+1)\gamma_{n+1}P_{n}(\Delta \alpha_{n+1})/P_{n}\right) =$$

$$= O\left(\sum_{1}^{m} p_{n+1}\lambda_{n+1}\right) + O\left(\sum_{1}^{m} P_{n+1}\gamma_{n+1}\Delta \alpha_{n+1}\right) = O(1),$$

by the hypotheses and lemma 2. Again

$$\begin{split} \sum \Delta(1/P_n)|L_3| &\leq \sum_1^m \Delta(1/P_n) \cdot P_{n+1}^2 \, |\mu_{n+1}| \lambda_{n+2}/\gamma_{n+2} = \\ &= \sum_1^m \frac{p_{n+1}}{\gamma_{n+2}} \, \lambda_{n+2} \, P_{n+1} \, |\mu_{n+1}|/P_n = \sum_1^{m-1} \Delta(p_{n+1} \, P_{n+1} \, \alpha_{n+2}/P_n) \, \sum_0^n \, |\mu_{r+1}| + \\ &\quad + (p_{m+1} \, P_{m+1} \, \alpha_{m+2}/P_m) \, \sum_0^m \, |\mu_{r+1}| = \\ &= O\left(\sum_1^{m-1} \, (n+1) \, \gamma_{n+1} \, |\Delta(p_{n+1} \, P_{n+1} \, \alpha_{n+2}/P_n)|\right) + \\ &\quad + O(p_{m+1} \, P_{m+1} \, (m+1) \, \alpha_{m+2} \, \gamma_{m+2}/P_m) = L_{31} + L_{32} \,. \end{split}$$
 Now
$$L_{32} = O(P_{m+1} \, \lambda_{m+1}) = o(1) \quad (m + \infty).$$
 Since
$$\Delta(p_{n+1} \, P_{n+1}/P_n) = O(p_{n+1}^2/P_n) + O(\Delta p_{n+1}),$$
 we have
$$L_{31} = O\left(\sum_1^{m-1} \, (n+1) \, \gamma_{n+1} \, p_{n+1} \, P_{n+1} \, (\Delta \alpha_{n+2})/P_n\right) + \\ &\quad + O\left(\sum_1^{m-1} \, (n+1) \, \gamma_{n+1} \, \alpha_{n+3} \, |\Delta(p_{n+1} \, P_{n+1}/P_n)|\right) = \\ &= O\left(\sum_1^{m-1} \, \gamma_{n+1} \, P_{n+1} \, \Delta \alpha_{n+1}\right) + O\left(\sum_1^{m-1} \, (n+1) \, \lambda_{n+1} \, p_{n+1}^2/P_n\right) + \\ &\quad + O\left(\sum_1^{m-1} \, (n+1) \, \lambda_{n+1} \, \Delta p_{n+1}\right) = \\ &= O(1) + O\left(\sum_1^{m-1} \, \lambda_{n+1} \, p_{n+1}\right) + O\left(\sum_1^{m-1} \, \Delta p_{n+1} \, \sum_0^n \, \lambda_r\right) = O(1), \end{split}$$

by Lemma 2, the hypotheses and (5.1).

Finally, we have

$$\sum_{1}^{m} \Delta(1/P_n) = O(1) \qquad (m \to \infty).$$

This completes the proof of Theorem 1.

6. We deduce the following theorem for |C, 1| summability factors of infinite series.

Theorem 2. If $\{\lambda_n\}$ is a convex sequence such that $\Sigma \lambda_n < \infty$ and the sequence $\{t_n^1\}$, the (C, 1) mean of $\{na_n\}$, satisfies the condition

$$|t_n^1| = O(\gamma_n) (C, 1),$$

 γ_n being a positive non-decreasing sequence such that $\Delta^2 \frac{1}{\gamma_n} \ge 0$ and $\Delta \gamma_n = O(\gamma_n/n)$, then the series $\sum n a_n \lambda_n / \gamma_n$ is summable |C, 1|.

This generalises a result of PRASAD and BHATT [6] for the summability |C| of order 1. A theorem of TRIPATHI [7] can also be deduced as a corollary from this theorem.

The author is highly grateful to Prof. B. N. PRASAD for his constant encouragement and helpful suggestions.

References

- [1] S. N. Bhatt, An aspect of local property of |R|, $\log n$, 1| summability of the factored Fourier series, *Proc. Nat. Inst. Sci. India* 26 (1960), 69—73.
- [2] S. N. Bhatt, On the summability factors of infinite series, Rend. Circ. Mat. Palermo 11 (1962), 237—244.
- [3] H. C. Chow, On the summability factors of Fourier series, J. London Math. Soc. 16 (1941), 215—220
- [4] T. Pati, The summability factors of infinite series, Duke Math. J. 21 (1954), 271-284.
- [5] T. Pati, Absolute Cesàro summability factors of infinite series, Math. Z. 78 (1962), 293-297.
- [6] B. N. Prasad and S. N. Bhatt, The summability factors of Fourier series, Duke Math. J. 24 (1957), 103—117.
- [7] L. M. TRIPATHI, On the absolute Riesz summability of the factored Fourier series, Rend. Circ. Mat. Palermo 14 (1965), 195—201.

(Received Oktober 15, 1965.)