On a generalization of homogeneous functions
By S. TOPA (Krakow)

§ 1. Introduction The notion of homogeneous function introduced by L. EULER
(1755, 1768, 1770) and nextly developed by C. HALPHEN (1911) [5] and A. FAVRE
(1917) [3] was lately studied by V. ALact (1923, 1943, 1950, 1952, 1955) [2].

The developement of the notion of homogeneous function, received up to
now, can be presented as follows:

Definition 1. A solution ¢(x) of the functional equation

@e(Ix)=39¢(x) x€R,, IER,
is named a classical homogeneous function (of the first order).
Definition 2. A solution ¢(x) of the functional equation
e(Ix)=9¢(x) Xx€ER,, IER!
is named a classical positive-homogeneous function (of the first order).
Definition 3. A solution ¢(x) of the functional equations
p(Ix)=%p(x) xER,, IERT
is named a classical positive-homogenous function of the order u.

Definition 4. (given by V.ALACI in 1923)
A solution @(x) of the functional equation

(N @(xy 9%, ..., x,9%) = P @(xy, ..., X2) XER,, 9€ERY?
in named a pseudo-homogeneous function.

Definition 5. (given by V. ArLAct in 1923).
A solution @(x) of the functional equation

(2) ‘p(xl gl(s)s naiy -‘-ngn('g)):k(‘g)(p(x[ Ly xn) xX€ Rm 369

where 0 R,,, m=n, and functions g/(3), k(3) are given, is named a generalized
pseudo-homogeneous function.

Definition 6. (given by V. ALAcI in 1952).
A solution ¢@(x) of the functional equation

(3) (p(xl +gl(3)v weny Xy +gn(‘9))=k(9)$(xl A ] xn) Xe R,,, SEU
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where 0 C R,,, m=n, and functions g,(9), k(3) are given, is named a quasi-homo-
geneous function.

In the present paper we give a further generalization of the notion of homo-
geneous function.

Let be given three arbitrary sets X, P and 0 and two functions

[ XX0-+X, h: PX0—P,

Definition 7. A solution

p: X—-P
of the functional equation
@) o(f(x, 9)=h(p(x),9)  x€X, 9€0
is named a general homogeneous function with respect to the given functions

f and h. \

The equation (4) may have no solutions if the functions f and & are arbitrary.
In this paper we give a necessary and sufficient condition of the existence of solutions
of the equation (4) under some initial assumptions.

The main purpose of this paper is to present some method of solving functional
equations of the type (4). This method is based on the group theory so it does not
require any regularity assumptions for given functions f, 4 and unknown function ¢.

V. ALAcI in solving functional equations of the type (2) or (3) has used differen-
tial equations. His method can not be used for functional equations of the
general type (4).

We shall show in another work that in order to solve differential equations
of some type it is more suitable to use functional equations of the type (4), than
inversely.

It can be easily observed that the equation (4) contains the functional equation
of concomitants of geometric objects (see [1], [6], [7]).

§ 2. Now we shall give some notions and facts of the theory of transformation
groups (see [4], [8]).
Let in a set X be given a group # of transformations
y=f(x, 9) x,yeX, 93¢0
with a parameter group 0.

A group operation in 0 we denote by o.
We define a relation R in the set X by

(5 XRy < {Jpeo: y=1(x, 9}
This relation is an equivalence.

Definition 8. The class of equivalence [x] of a point x€ X with respect to
the relation R is named a domain of transitivity of the group #, corresponding
to the point x. Of course we have x¢€[x].

Definition 9. A set which is the sum of the domains of transitivity of the
group # is named a bundle of domains of transitivity.
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The bundle of the domains of transitivity of the group # is identic with the
factor-set X/R of the set X with respect to the relation of equivalence R defined above.
Let x, y€ X be settled. In the set  we consider a subset

E(x, 1) > {9: 9€0 Ay ={(x, 9}

The set Z(x, y) is not empty if and only if xRy.
If we put

E(x,»)0Z(y,2) > {Sopu: 9€E(x, p) Au€E(y, 2))

then for all x, y, z€ X we have

E(x, y)oE(y, 2)=Z(x, 2).

For each point x€ X the set
(6) E(x)Z E(x, %)
is a subgroup of the group 0.

Definition 10. The subgroup Z(x) of the group 0, defined by (6), is named
the stationary subgroup of 0 corresponding to the point x.

Definition 11. For x€X and u€0 the set

E(x)on {Sou: 9€E(x))

being a subset of 0, is named a right coset of the group 0 with respect to the sub-
group Z(x).
It is known that
HEE(x, y) = E(x, y)=E(x)op.

Definition 12. A set é(cX which has exactly one point in common with
each domain of transitivity of the group # is named a generator of the bundle X/R.

Definition 13. We name X/R a homogeneous bundle of domains of transitivity
if it exists a generator 61’ of the bundle X/R for which the stationary subgroup Z(x;)

of the group 0 is still the same subgroup for all points x, E}lo’. Such a generator

we name a homogeneous generator.
The definitions 12 and 13 are the propositions of the author.
We have the following

Theorem 1. If for given transformation group  the bundle X|R is a homogeneous
bundle and gl’ is one of it’s homogeneous generators, then for each uc0 the set X
u

defined by
X = {x:xeXnx =f(xo, W), Xo€ X}

is also a homogeneous generator of the homogeneous bundle X|R.
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ProOF. We have to prove that the stationary subgroup Z(x) of the group 0
does not depend on x€ X.
We state that .
S(xo, @) =f(xo, p) = wEE(xo)op.

Let x€X. Then we have x=/f(x,, 1), xoe,(l].’, and
u

f(x! v)-:,\' ﬂ_f(f(.\'o, P)» "l) =f(x39 .u) o
< flxg, pov)=f(xg, u) @ poveZ(xp)opu <
< (e V=0""080p) & Z(x)=p"" 0 Z(xp) op
what was to be proved.
Now we introduce some transformations which play an important role in the
announced method of solving functional equations of the type (4).

Let be given a transformation group # such that the bundle X/R (R defined
by (5), f€F) of the domains of transitivity is the homogeneous bundle and OX be

one of it’'s homogeneous generators.
The right cosets =(x,, Xx), .\-OE,[\J’, x€X of the 0 we denote shortly by x, v, ...

and the set of them we denote by $. According to this notation the stationary sub-
group Z(x,) we denote by x,. Of course we have: xy, x, ... €9.

From the definition of symbol Z(x,, x) it follows the following implication
XOEXA-YE[-"O] = (f(xg, )= x, pEE(Xq, X)).

In consequence of that we state that the function f(x,, u), \OEX ued is constant
with respect to the variable px in each right coset x.
Therefore we can introduce a function F(x,, x) defined in z'\; X $H by

(N F(xq, x)=f(x0, 9) d€x.
It may be observed that the transformation
(8) x=F(x,x) (X0, )EXXH, xeX

gives a one-to-one correspondence between the points (x,, x) and x. That means
that this transformation is integrally inversible in the set )&o’xs_ﬁ.

The inverse transformation to the transformation (8) we write in the form
{-"o = Fx(x)

x = Fg(x)

This yields the identities

F(Fx(x), Fg(x)) = x XEX
(10) Fy (F(-\’o» x)) = X

Fg(F(xo,%) = x

From the implication

Xo € XN xa (x4 € X) = (Fx(x) = xo, x€[x.])

©) XEX, (X0, DEXXS.

('t()s x)eoxxﬁ-
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it follows that the function Fy(x) may be interpretated as an operation of the pro-
jection of the set X onto the generator 4‘}’ by means of the bundle X/R.

The function Fg(x) gives a one-to-one correspondence between the domains
of transitivity of the transformation group # and the right cosets of the group
0 with respect to the subgroup x,.

Let us put now

xopm{.?o,u:-?véx} neo.
Then we may write the equivalence

D=X0uEH S>xEH.
Now we shall prove the

Theorem 2. /If g{ is @ homogeneous generator of the homogeneous bundle of the

domains of transitivity of a transformation group F then each transformation f¢ F
may be written in the form

(11) fx, )= F(Fx(x), Fg(x)on)  x€X, p€o
where F, Fy and Fg are defined by (7) and (9).

Proor. It follows from the definition of a transformation group that

(12) S(fx, 9), W) =f(x, 9op)  x€EX, 9, peo.

If we make in (12) the substitution x = Xx, € X then we obtain
j(j.(-YOv 3)1 au) =f(x09 ‘90 1“) -"OEE’Ys '9, “69-
Hence in view of the definition in (7) it follows that

(13) [(F(xo, %), p) = F(xo,xop)  Xo€X, x€9, peo.

If we use the formulas (8) and (9) then from (13) we obtain the formula (11).

§ 3. Now we are going to the problem of the solvability of equations of the
type (4) and to a method of solving this equations.

We take the following assumptions about the functions f(x, 3) and h(p, 9)
in the equation (4):
1. Let transformations
y=f(x, 9) X, yeX, 9¢€0
and
g=h(p.3) p,qeP, 9¢0

form transformation groups # and #, respectively, with the same parameter group 0.
2. Let the factor-set X/R (R defined by (5)) be a homogeneous bundle of the
domains of transitivity of the transformation group # and %’ be one of it’'s homo-

geneous generators to which it corresponds a stationary subgroup x, of the group 0.
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Let us denote by n(p) the stationary subgroup of the group 0 corresponding
to a point p € P. We introduce the following subset of the set P:

(14) P2 {p:pePAx,cn(p))

where x is the subgroup of the group 6 which appears in the assumption 2.
We shall prove by the assumptions 1. and 2. the following two theorems
(3 and 4).

Theorem 3. If a function ¢ is a solution of the functional equation (4) then the
Jfollowing condition holds

(15) p(X)c Py,
where (p(;}’ ) denotes the image of the generator ,}’ by the function .

ProOOF. Let us suppose that ¢ is a solution of the functionnal equation (4) by
the assumptions 1. and 2. Then we have the identity

(16) o(f(x,9)=h(e(x), 9) x€X, 9¢b.
If in (16) we make the substitution x = x, Eon , then for each 30 we have (we
rememeber that f(x,, 3)=Xx, for each 3€x,)
@(xo) = h(p(xo), 9) Xo€ X, d€x,
or

(17) Po=h(po, 3) JExg
where po=@(x,).

It follows from the definition of the symbol n(p,) that the identity (17) must
be also true for all 3€x(p,). But we surely know that it is true for all 3€x, so in
consequence of that we may conclude the following relation

(18) (9exo=9€n(py)) < 2o 7(po)-

The relation (18) is true for all points x, 6%’ (we remember that p, = (x,)).

From that and the definition in (14) we get immediately the condition (15), which
was to be proved.

Theorem 4. If we assume that
(19) P,,#9 (O empty-set)
then for an arbitrary function ¢(x,), x, Eg( , of the property that
(20) ¢(6Y )
there exists one and only one solution ¢ of the equation (4) such that the condition
(21) @(xo) = P(x0)  Xo€X
is satisfied.
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Proor. Let us observe that the following implication is true

Po€ Py, = (h(po, 9)=po, Y €x,)
(see (4) and (14)). In consequence of that we get the implication

po€P,, = (h(po, 9) =conste P, 3€x).
In fact, if we take one of the points of the set x (x€9), for example ,;, then each

another point u€x can be represented in the form p:ﬂofg where 3€x,. Thus we
get (we remember that h(py, 9)=p, for all 5€x,)

h(pos 1) = h(po, 90 1t) = h(h(po, 9), 1) = h(po. 1)

what was to be shown.
In view of this situation we may introduce a function H(p,,x) defined in
P,, X9 by the relation

(22) H(po,x)=h(po, )  pex.
Let us make now in the equation (4) the substitution x=x, e%’ . Then we get

the relation
o(f(xo, 9))=h(e(xo), 9) on%', Jeb
from which in view of the condition (21) we obtain

(23) o(f(x0,9)=h(P(x0), §) xp€X, 9€80.

But we have assumed that ®(x,)€ P, (see (20)). Therefore using the definition
of the function H(p,, x) (given by the relation (22)) and the definition of the function
F(xq, %) (given by the relation (?)) we can write the relation (23) in the form

(24) @(F(xq, x)) = H(P(x,), %) Xo € oX’ XED.
If now we use the formulas (8) and (9) then in consequence of (24) we obtain
(25) @ (x) = H(P(Fx(x)), Fg(x)).

The function ¢(x), given by the formula (25), is a solution of the equation (4).
In fact, if we use the representation (11) for the function f(x, ) and the identities
(10), then after putting the right-hand side expression of the formula (25) instead
of the function ¢(x) in the equation (4) we get

1. On the left side:

o(f(x, 9)) =0 (F(Fx(x), Fg(x)°9))=
= H(®(Fx(F(Fx(x), Fg(x)09))), Fg(F(Fx(x), Fg(x)09))) =
= H(®(Fy(x)), Fg(x)o 9).
2. On the right side (let uy denotes an element of x = Fg(x))
h(@(x), 9)=h(H(P(Fx(x)), Fg(x)), 9)=

=h(h(P(Fx(x)), pg), 9) =
=h(®(Fx(x)), ppo9)=
= H(®P(F(x)), Fg(x)o9).
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The expressions obtained in 1. and 2. are identical what proves that the function
@(x) determined by the formula (25) satisfies the equation (4).

We easy observe that the formula (25), where instead of the function @ may
be taken an arbitrary function satisfying the condition (20), gives us the general
solution of the functional equation (4) by the assumptions 1. and 2.

Corollary. A necessary and sufficient condition for the existence of solutions of
the functional equation (4) under the assumptions 1. and 2. is that to be

P, #9.

Necessity is a direct consequence of Theorem 3 and the sufficiency was proved
in the Theorem 4.

Remark. In the method of solving functional equations of the type (4), presented
in this paper, it is necessary to possess the inverse transformation (9) to a tran-
sformation (8). This inverse transformation may be obtained by the following way:

We take an arbitrary generatorg of the set $ (of the right cosets x of the group

0 with respect to the subgroup x,) — which may be treated as a bundle of right
cosets — and in the transformation (8) we put instead of x it’s representative element
3o such that it belongs to g. We get the transformation

(26) X = f(x‘} ’ 190) Xo E X., \90 E H, xE X
0

where
f(x0, 99) = F(xo, %) o€ x, xEé{
X0
(it may be observed that the function f(x,, 9¢) is identic with the restriction of the
function f(x, 9) to the set ‘{’)(XQG).

If the inverse transformation to the transformation (26), which is integrally
inversible, we note in the form

{ xo = fx(x)
Jo =fp(x)

then the transformation (9) inverse to the transformation (8) may be written in the

form
{«\’o = Fx(x) = fx(x)
X = F&(x)aso Z_fs(x).

Of course, in the case when x, is equal to the identity of the group 0 the generator
g is identic with the set 0 and the transformations (8) and (26) are the same.

Now we shall give an example for illustration of the described method of
solving functional equations of the type (4). This example concerns the case when
xo is different from the identity element of the group 0.

The functional equation, or saying more exactly, the system of functional
equations which will be solved there, is connected with the problem of determining
the algebraic concomitants of the mixed tensor of the valency (1, 1) in the 2-dimen-
sional space. Such a problem, treated in n-dimensional space, was solved with using
an another method by A. Zairz [10].

x€X, 'Y°€‘3"’ JOEQ
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Example. Let X be the set of the real matrices |xi|| of the 2"-degree with two
different real characteristic roots, which will be noted by ¢, t,. The transformations
of the transformation group # are given by

(28) X = Al X A x,€X, det |4l =0 (@(,j=12)

where | A{| denotes the inverse matrix to a matrix || 4/

The parameter group 6 of the transformation group # is the group of non-
singular matrices IIA}. | which is usually denoted by £3.

Furthermore let be given a group J# of transformations

(29) p; — hl(pk’ Ai') P,p'E P! ” Ai'” EG (1= l! il nI)

with the parameter group 0 equal to £}.
We consider the following system of functional equations

(30) @ (A} x5 A)) = hy(pe(x), 43)  IXleX, |45le€0 (=1, ....m)

where ¢, are the unknown functions.

In order to find the general solution of the system (30) by meance of using the
described method, we must go to built a transformation of the type (26) and to
determine it’s inverse transformation.

The domains of transitivity of the transformation group # of transformations
(28) are the classes of similar matrices. We know that two similar matrices have the
same characteristic roots. Hence it follows from that that the set

£,0
hFt
0’ IZJ. | 2

is one of the generators of the bundle X/R.
For all points x, € 61’ the stationary subgroup x, of the group 0 is steel the same

(31) X ={

0

subgroup and is given by
Ay, 0

(32) Xg = { 0 i

from where it follows that the bundle X/R (R defined by (5), f given by (28)) and
it’s generator 6\’ are homogeneous.

:).,-).,,;‘0}

The right cosets x of the group 0 with respect to the subgroup x, are of the form

Ay, 0
‘_ 0, 4,
One of the generators, 9’ of the family $ of right cosets (33) may be, for example,

Oy1s %2 ! A
- Ay 'f-z;ﬁo ||'1U'"Ex<

(33) x= {

LITERS T

represented by

(34) (()):[
where
(35) M={(uy, 1;):0=p, <aAO=p, <7 A 1y # psy).

COS fiy, Sin

Sy, Pz)eM}

COS [, SN i,
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To see this it suffices to verify the following facts:

1. For every non-singular matrix ||«;;| €0 there exists the matrix ” 0:’22 €0
and the point (uy, u,) € M such that the following relation holds
| cos uy, sinp, || - ‘ Ay, 0 ." Uy1s anz.i
COS Uy, Sinp, || [0, Az || 21, @22l

2. Ifis (uy, us) #(uy, p3) then the elements of 0 corresponding to them belong
to two different right cosets of 0.

Therefore from the transformation regula (28) it follows that the transformation
(26) may be written in the form

4 'xi, X3 ||cospy, sinpy |7t |2y, O] | cospy, sinp,
(%) ‘x%, 3 |°°Sﬂz, sin i, 0, 1, ._' COS fy, Sin u,

which the transformation gives a one-to-one correspondence between the elements
x€X and (xo, (i1, u2)) EXXO.

Thus way a transformation of the type (26) is obtained. Now we are going
to get the inverse transformation to it.
COS [y, Sin u, |

COS 5, SiN p,

| we receive

Using the left-side multiplication in (36) by matrix |

xjsinpy = (1, —xj)cos y,

xjcos py = (t; —x3)sin

xisin p, = (t; —x}) cos u,

x3cosp, = (t, —x3)sin u,.
Because of the fact that t,, 7, are the characteristic roots of the matrix |x%]|
we may write the formulas

(37

= 5 [+ )~ VT P AT x5 ]
(38)

1
=5 [(xi+xD)+ Vxi+x3)? —4(xi x3—x1x]) ]

For calculation u,, u, it is necessary to consider the following four cases:

I xi=0Ax}=0=p, =0, m=
xi
II x}=0Ax}#0=pu, =0, M, = arcetg ———
X2 — Xy
(39) ; x! — x2 .
I x}=0Ax}=0=pu, =arcctg =2, pu, =~
X3 2
2 le’ Xf
IV x}#0Ax}#0=u, = arc B 3y Jas MU =T

gt | S |
where t,, 1, are given by (38).
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Now we proceed to constract the general solution of the system (30) of functional
equations.

From Corollary, given in the papar, it follows that for the existence of the
system (30) it is necessary to assumpt that the set P, (given by the definition (14))
corresponding to the stationary subgroup x, (given by (29)) — is not the empty-set.

So suppose that:

P, #9.
We make now the following substitutions for the equations of the system (30):
’lr,, 0
TR P [ ¢

|| cos py, Sinpu
[ 1 1 Eg

Al = y
1451 | cos py, sinp, |

4,0 |
|

0, 1.’

In consequence of that we obtain the system of functional equations

€S py, sin | =t |1,,0 .”cos,u,, sin iy - | coS py, sin ,ul"
(p" COS My, SiNp,| |0, 1, |lcos u,, sin ;12! ] I (go,‘ (| COS fiy, SIin fty !]
(40) (=1, ....m)

which is equivalent to the system (30). This fact follows from the theory of the
equation (4).
If we put

1,0 ‘]
0 ik =1, ....m)

Py(ty, 1) = ‘P:[

and use the formulas (36), (38) and (39) then from (40) we get, respectively to the
cases 1—IV, the formulas

h 1 a3 |10 I
D,.(x3, X35),
] i l( 1 .1'..) iO, l !|
1, 0 \
K10 Xt 3 x|
| PO X2 | g are ctg 5——, sinarcctg——— ||
\ X3 — X x3—x} |
e 1 2 1)
: Xg — X2 & X3 —X3
(41) @, (IIx51) = 1 cos arcctg , Sinarcct
% hy | @2, 1), x3 . X3
! 0, 1
: x4 ; x5 1
cosarcctg ———, sinarcctg———
tl _xl fl _"xl
hl d:'.k(rl. ] 12), x; xz
cosarcctg ———, sinarcetg——
| t; — x| =1

where ¢,, t, are given by (38).
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From the theory of the equation (4) it follows that for arbitrary functions
@, such that is valid (20) the functions ¢, given by the formulas (41) are the solutions
of the system (30). That means that the formulas (41) gives us the general solution
of the system (30).

In the paper [9] I give an another example which concerns the equation (1).
Further examples will be published.
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