On ring classes defined by modules

By. P. VAMOS (Sheffield)

1. Introduction

Let a be a property of modules and define R, to be the class of rings for which
every module has the property a. It isknown that many types of rings can be defined
in such a way i.e. with the aid of modules. The class of semi-simple, hereditary,
Dekind, Priifer, e.t.c. rings is a list of the most important examples. Let R, be the
class of rings R with L.g.d. R=n. This class is of great importance. The generalization
to modules of certain theorems holding for Abelian groups is actually nothing
else but the characterization of those rings with the property that the theorem
holds for every R-module. Sometimes it occurs that if every R- and S-module
has the same property, so does every R® S-module and every module over the
residue class rings of R or over the full matrix ring over R.

Our main object is to show that under certain conditions concerning property
a, class R, is closed under the above ring operations. The conditions ragarding
property a depend only on the logical formalization, and not on the algebraic
character of the module property a, although there is close connection between them.

In order to show this it is necesary to create a “language’. This is done
in § 2.

We shall mean by a ring in this paper a ring with unit element, and by an

R-module we shall mean a unitary left R-module.

2. The language

For the sake of simplicity we will not give syntactic rules and meaning for
the language. This will be quite clear without saying anything after the following
definitions.

Variables A4, A4,,...,4,,B,C, ..., X modules
00 ot W homomorphisms
0 the zero homomorphism
Atomic formulas (i) o(A4, B) means a€ Hom (4, B),

(i) «f|f means Im x=Ker f,
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(iii) arithmetical formulas containing multiplication and
addition in the ordinary sense,

(iv) Af.g. means A is finitely generated,

(v) Ac. means A4 is cyclic module.

If a and b are formulas which are already defined, then

VA(a); Va(a); 3A(a); Fa(a); aAb; a-—-b

are also formulas.

Thus we have got a well-defined language in which the well-formed formulas
are obtained by combining the atomic formulas (i), ..., (v) using conjunction,
implication, and quantification of the variables.

There is distinguised a module variable X. Any formula a is understood as
a one-variable formula in which X is a free variable. The other free variables which
occur are considered as constants. Let ¥(R) be the category of R-modules. We
assume that every variable of a is in €(R) and in this case we shall say that a is over ¥(R)

If we neglect the atomic formulas (iv), (v) the language can be interpreted
in any Abelian category.

To show the capacity of the language in formalization of properties of modules
we give some examples.

1. X is projective

a(X)e= VAV BYaV B(x(A, B)YAB(X, B)Aallo—~ 3y(v(X, A)\ay = f)).

2. X has injective dimension =n

a(X) < 34,...34,3a, ... Ja,(a, (X, A)Aolla; Aoy (A, A)Aayllaz A ..
o Nty ( Ay 1s ANyl Acyllo A ¥ AYBYaV B(a(A.B)Aolah
i=1

AB(4, 4)) — 3y(y(B, A)Aya = B)).

Here we used the following familiar definition: X has injective dimension=n
if X has injective resolution of length ».

0= TR =i w0

3. X is a direct sum of cyclic modules.

To formalize the above property our language is insufficient. We have to use
infinite formulas: e.g. if 37’4, means “there exist a family of {A4;};¢c,”: V'A4,;
means ,for any family of {4;},¢,”: and A denotes infinite conjunction, then the

iel

formula
a(X) « 374,37 [_Q!(di(/‘b X)NAge)A VBVIﬂ:[_/E\’ Bi(4;, B) —~

9 (?(X- B)Ai,e\l 1% = ﬁi]]] .
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is equivalent to the statement that X is a direct sum of the cyclic modules {4,},¢;.")
In spite of the above example, for the sake of brevity we will use only the
“finite language™. However, our results are valid for the infinite case as well.
We shall say that a formula is of Jength n if n sign occur in it.

3. Functors

Let o/ and # be categories of modules and a a formula over «/. Given a
functor F: of - % let a; be the formula over # obtained by changing the con-
stantes in a for the coresponding ones in F(&/). The quantified variables are
automatically understood to be in the same category. If the functor F is onto,
i.e. for every diagram f: B, - B, in # there is a diagram «: A, - 4, in &/ such
that F(A,)=B,, F(4,)=B,, F(x)=p, and if ag(X)«<a(X) whenever a is an
atomic formula, then F is said to be completely faithful.

1. Theorem. If a functor F: s/ -3 is completely faithful then, for any formula
a(X) over o a(A) < ax{F(A)), Aco.

Our pPROOF is based on induction. If a(X) is one of the atomic formulas then
the theorem is valid by hypothesis. Let a(X) be of length n=1. Now suppose that

the theorem is valid for any formula of length=n. According to the structure
of a(X) we have four cases.

L o) = Vi4,a'0)) <t olX) = Yea"(X)

Obviously it is sufficient to discuss only one of the above formulas, say the
former. Assume that for some A4 € o7 a(A4) is true, and let B€ # be arbitrary. Since
F is onto there exist an 4, €&/ such that F(A4,)= B. By the inductive hypothesis,
a'(4) (puting A, as constant) implies aj(F(A4)) with F(4,)=B. Since B was
arbitrary ¥ A,ap(F(A)) true. The verification of the converse statement is similar.

2. a(X)= 34,a'(X) or e(X)= 3e;a’(X)

Suppose that a(A4) is true. Then there exists an appropriate 4, €./, If we take
F(A,), the formula aj(F(A4)) will be true. Since F is onto a,—(F(A)):a(A) can
be proven similarly.

3. a(X) = al(X)A2(X)
Trivial.
4. a(X) = a'(X) - a?(x)

Suppose that a(A4) is true. We wish to show that a,{F(A)) is also true. Evidently
the only interesting case is when ap(F(A)) is true. By induction this implies that
a'(A) is true. Whence a?(4) is true. Again by induction we can complete the proof.
The verification of the converse statement is similar.

) This is the formalized definition of direct sum given by families of maps.
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REeMARK. Observe that, except in the last case 4. the verification that a(A4)
implies ag(F(A4)) needs only the assumption that the same holds for atomic
formulas. In case 4. we used the assumption that aj(F(4))=a'(4). We obtain
the

COROLLARY 1. Let F: of -~ be a functor which satisfies all conditions for
a completely faithful functor except that there may exist one atomic formula a° such
that af=>a° Then

(i) if the formula a over o/ does not contain o° then a(A)<>a(F(A));

(i) if a% is not contained in the conclusion of any implication in a, then

a(A)«=ag(F(A));

(iii) if a° is not contained in any premise of any implication in a, then

a(A)=ap(F(A)).

Let ¢: A;~A, be an isomorphism. We can define a functor 7,: o/ -/
such that T,(A4,)=A4,, T,(A4;)=A4,, T,(A)=A otherwise. T, is a completely
faithful functor and naturally equivalent to the identity functor. Thus the assumption
in Theorem 1 that F is onto is not essential, and can be replaced by the condition
that, for every diagram B,l’k-,!i2 in # there is a diagram A,> A4, in o and
a completely faithful functor T from # to # which is naturally equivalent to the
identity functor and which is such that TF(4,)=B,, TF(A,)= B, and TF(x)=p.
(7 depends on the chosen diagram). From this we conclude

COROLLARY 2. Let F . d +~B, F,: B~ be functors such that F\F, and
F, F, are naturally equivalent to the identity functors, and such that a(A)<ap(F{(A))
for any atomic formula (i=1, 2). Then a(A)<=a;(F(A)) (i=1, 2) for any formula.

Let R" be the n-th order full matrix ring over R, and e; the matrix with 1
in the (i, k)th position and zero elsewhere. Thus e;e; = d; ;. If A€%(R") then we
can give ¢, A the structure of an R-module by writing r(e,,a)=(re,,)a rée R ac A.

Assume that a: A — B is a homomorphism in (R ). Then there is a mapping
*":¢,,A—~e B in which a'(e,,a)=e,(xa).

1. Lemma The mappings A—-e,A, a—~a  define a functor M from €(R")
to 6(R) such that a(A)eay(M(A)) for the atomic formulas (i)—(iv) and there
exist a functor M from %(R) to €(R") with the sume property for atomic formulas
(i)— (iv) such that MM and MM are naturally equivalent to the identity functors.

It is easy to see that M is an additive covariant functor. Let
(1 A A2
be an cxact sequence in €(R"). For the exactness of the sequence
(2) M(A,) MO M(A,) M2 M(45)

the only thing we have to show is that Ker (23)SIm (a7). If o=a3(e;,a,)=
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=e,,%,(a;)=0a,(e ,a;) a, €4, then by the exactness of (1) there exist a,€A4,
such that a,(a,)=e, a,. Hence

ai(e @) =ey 2 (a;)=ef a,=ey,a;.
This proves that (2) is exact.
In order ro define M, let C% D be a diagram in %(R) and C"= é &
C" becomes an R"-module when the product is defined by e

elk(cla €2y +vey C,l) — (os verg Cpy vuny 0)

and f becomes an R"-homomorphism from C" to D" defined by

By, ..y c)=(B(cy), .., Blew)).

It follows immediately from the definitions that the mappings C—~C", f—f"
define an additive covariant exact functor M from %(R), to €(R"). It is easy to
check that MM is naturally equivalent to the identity functor. On the other hand,
if A€%(R"), then the mappings @,: MM(A)—~A, u,: A~MM(A) defined re-
spectively by

O4le1ay, ..., €1,a,) =€ a,+eya, + ... +e,a,

pala) =(ey,a, ey ..., €,,a)

are well-defined because e¢;, =e;,e,, and e,;=e,,e,;. Furthermore ¢, and pu,
are R"-homomorphisms and ¢@,u,=1, and p,0, = lgyu)- The diagram

A= B
_Bat _ b g
MM(A) ™. MM(B)

is commutative which means that p, is a natural isomorphism lggm —~MM.
By application of the functor M we can obtain that the exactness of (2) implies
the exactness of (1), and if M(a)=o0 then x=o0. Thus in the above we have proved
that if a is one of the atomic formulas (i)—(iii) then a<ay and ae=ag. It is
evident that M(A)f.g. (finitely generated) implies Af.g. Let 4 be an R"-module
and let the elements a,, ..., a, form a system of generators for 4. Since an element
r, of R" can be written in the form

Fn =”‘Z'1"ﬂ:eik (ra€ R, ry € R),
the elements e, 4, ..., €;,0;, €11T2, ..., €202, ..., €11Gx, ..., €1,8; fOrm a system
of generators for the R-module e, 4.

If the R-module e,,4 is cyclic then the R"-module A4 is also cyclic, but the
converse statement is not necessarily true.

The next case we propose to discuss is the direct sum of rings.

Let R and S be rings and let 4 be an R® S-module. Every element a€ 4
can be written as a=(l,0)a+(0, 1)a. Moreover, if (1,0)a=(0, 1)a’ (a, a’ € A)
then (1,0)a=(1,0)(1,0)a=(1,0)(0, 1)a’=0. Hence A=(1,0)4®(0, 1)4. Also
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we may regard (1,0)4 and (0, 1)4 as R- and S-modules respectively. If a: A - B
is an R S-homomorphism, then

(1, 0)a—(1, O)a(a), (0, 1)a—~(0, 1)x(a)
define the respective R- and S-homomorphisms,
a':(1,004—-(1,0)B and o": (0, 1)4—-(0, 1)B.

2. Lemma The mappings A —~(1,0)4, a—ao" and A +(0,1)A, o —o” define functors
D', D" from €(R® S) onto €(R) and €(S) respectively. If a is any of the atomic
Jormulas, then a<apAap..

For atomic formulas of types (iv), (v) the result is immediate.

Next, both D’, D” are additive, covariant, exact functors from #(R® S)
onto €(R) and %(S) respectively. It is sufficient to prove this only for D’. The
first two statement are trivial. Let

A1 ﬂ"“ Az ""' A3

be an exact sequence of R® S-modules. Take an element (I, O)a, € Ker f’. Then
p’(1, 0)a, = B(1, 0)a,, which implies the existence of an element a, € 4, such that
a(a;)=(1,0)a,. Thus a'(l.0)a, =(1,0)a,, and this shows that Ker f/’SIma’".
Since fx=0 implies Im o’ & Ker f’, we have proved that «'| f".

Before we prove the converse we make a number of observations. An R-
module A" can be regarded as an R& S-module by the definition

(r,8)a’=ra’ (d’€A’, (r,5)ERIS).

Let A” be an S-module which is regarded as an R® S-module, then 4"® A" also
an R@® S-module. If o’: A”+B" and «”": A” -~ B” are R-and S-homomorphisms
respectively then the mapping x=a’ @ a” given by a(a’, a”)=(x'a’,a"a") (@’ €A’,
a’€A”) is an R@ S-homomorphism, It is easy to see that

D'(A'$A”)=A' Dn(A,r@A;r)____A»
and

D'(a,f@a”): a’ D.”(:I@a”) :a”'
We wish to show that, for atomic formulas
3) ap-\ap =a
Let o, p': A"~ B and o”, p”: A” - B” be homomorphisms. Then

(X + D" +p))a’,a") = (' + B)a, (" +p")a") = (¥, 2"a") +
+(Ba,p ") = (D) +(B'BP))@,a"), ie («+p)B"+p") =
= (£’ D)+ (' DP").

Now consider A'%<B'LXC’ in %R) and A”%B"%2C” in %(S). Then
(o' @ p x") (@, a’)= (' @B )(x Pa")(d, a”) ie. (B2 D a)=(f&p")(xDa").
Therefore if a is an arithmetical formula then (3) valid. Finally let A’ ~B"—~C’ and
A”— B" —+C" be exact sequences of R- and S-modules. They remain exact if we regard
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them as sequences of R S-modules. The sequence A @G A” ~B'®@B"-C'®C”
will be exact by the exactness of the direct sum functor. This completes the proof
of the lemma.

Let N be a two-sided ideal of the ring R. Every module A€ %(R/N) can be
regarded as an R-module by the definition ra=(r+ N)a (a€ A). The class

€n(R)={A€€(R)|NA=0}

is a category, and every module in ¥y(R) can be regarded as an R/N-module.
We can now define a functor H from €x(R) to €(R/N). The R-module 4 in €\(R)
corresponds to 4 in ¥(R/N). If «: A-B is an R-homomorphisms (A4, B in ¥y(R))
then « is also an R/N-homomorphism. Under H, a« corresponds to itself. The
following lemma does not need proof.

3. Lemma. The functor H: €y(R) ~€(R/N) is completely faithful.

4. The Ring Class R,

Now we are in the position to apply Theorem 1. in the case of special functors
discussed in 3.

The functor M and M fulfill the conditions of Corollary 2. except in respect
of the atomic formula of type (v). Using the corollaries to Theorem 1., we deduce
the following result

2. Theorem. /f the formula a does not contain the atomic formula (v) then
a(X)eagy(X)

If the formula a satisfies the condition that the atomic formula (v) is not contained
in the premise of any implication in a, then

a(X)=ag(X), and R"€R, whenever RER,

The following examples indicate the effectiveness of the above theorem,
although most of them are well-known. (see e.g. [1])

a) A€¥(R) is projective (injective) if and only if e,; A €€(R) is projective
(injeetive),l.dh.ga(A) = L.dh.gx(e,, 4).

b) ReNR, if and only if R"€NR,, ie. Lgd.R=Lgd.R"

c) If every R-module is a direct sum of cyclic modules, then so is every
R"-module.

d) If the ring R satisfies the condition that every finitely generate R-module
is a direct sum of cyclic modules, then the ring R" also satisfies this
condition.

Let R and S be rings. Is the statemant ay Aap.<>a valid for any formula?

We may try to prove this the same way as in Theorem 1., but the proof breaks
down when a has the form a=a'-~a?. Thus to establish a=a, Aap., consider
just a=a,. We would assume in addition that a) were true. But we can only
deduce a' when we know that both a}. and aj. are true. This situation is similar
to that of Theorem 1., Corollary 1., so we obtain
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3. Theorem. If the formula o does not contain implication, then
a<ap Nap-

If the formula a satisfies the condition that implication is not contained in the
premise of any implication of a, then®)

apNap-=>a and RS SER, whenever R, SER,.

The examples in § 1 show that the most important properties satisfy these
conditions. In particular it follows that, if R, S€R, then R@® S€R, and similar
examples can be given as to Theorem 2.

We recall thet the functor H: €5(R)—~%(R) is not onto, since H(%y(R))#
#%(R/N). Thus R€R, does not in general imply that R/NE€R,.

4. Theorem. Assume that the formula a satisfies the conditions
(i) «a does not contain variables quantified by the quantifier 3, or if it does
then this quantifier is restricted to €y(R), and the constans in a belong
to €xN(R).
(1) The universal quantifier does not occur in the premise of any implication
of a, then
REeR, implies RINER,.

The PROOF can be made in these same way as in Theorem 1. In particular the
formula a(X) in example 3 § 2 fulfills these conditions.
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?) Since (@a--b)~a=aV b, the condition is necesary. In fact, if a=a'va? it may happen
that a,- and a,- are true but this obviously does not imply that a is true.



