A note on the Jacobson radical of a hemiring

By D. R. LATORRE (Knoxville, Tenn.)

1. Introduction. The Jacobson radical of a hemiring (i.e., an additively com-
mutative semiring with zero) was first introduced by BOURNE ([1]) in an internal
way, and has subsequently been studied by Iizuka ([5]) from the point of view of
representation theory.

The present paper establishes several new results for the Jacobson radical
of a hemiring by considering h-ideals and k-ideals. These ideals are of a more
restricted type than the familiar concept of ideal in semirings.

Section 2 contains a brief discussion of subdirect sums of hemirings, and
gives analogues of several results well-known in rings.

Our main results are in section 3. We first characterize the Jacobson radical
J of a hemiring S in terms of A- and k-ideals, and then prove that if S is a ring,
the Jacobson ring and hemiring radicals coincide. An analogue for hemirings
of a theorem familiar in ring theory is also proved, from which it follows that
any additively regular hemiring § (i.e., for a€ S there exists x € § such that a+ x +
+a=a) for which J is zero is a ring.

2. Subdirect Sums. The complete direct sum 2 S, of a collection of semirings

{S,}, x€ Q, is defined analogously to the complete direct sum of a collection of
rings. For convenience, we shall denote an arbitrary element of 'S, by (sy, 5,, ...)

x
where s, € S, and addition and multiplication are defined term by term. However,
in adopting this notaion we do not intend to imply that the collection {S,} is
necessarily countable. It is immediate that if each S, is a hemiring, or if each S,
is additively regular, then so is >'S,.

Now let T be a subsemiring of S=2'S,,2€Q, and t=(t,,1,,...)€T. For

each o€ Q the mapping Q,: t—~1, is a homomorphism of T into S,. If, for each
o, TQ,= S,, we call T a subdirect sum of the semirings S,.

A left semi-ideal of a semiring S is a non-empty subset 7 closed under pre-
multiplication by elements of S and under addition. A left semi-ideal 7 of an additively
commutative semiring S is called a left k-ideal if for each a€l and x€ S, a+x€/
implies that x€[7; and I is called a left h-ideal of S if iy, i,€I and x, z€ S with
x+iy+z=i,+z implies x€/. Right semi-, k-, and h-ideals are defined dually
and a two-sided ideal (or simply ideal) of any type is both a left and a right ideal
of that type. The concepts of k-ideal and h-ideal are due to HENRIKSEN ([4]) and
lizuka ([3]), respectively.
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By the Bourne congruence on an additively commutative semiring S, relative
to a given semi-ideal /, we mean the relation a =5(/) if and only if a+i;=b+1i,
for some iy, i, € I. The lizuka congruence on S, relative to 1, is defined by a[ =]b (1)
if and only if a+i,+z=b+i,+z for some i,,i, €1 and z€ S. Under the usual
definitions of addition and multiplication of congruence classes, the Bourne classes
and the lizuka classes form semirings denoted by S// and S[/]I, respectively.
The semiring S[/]/ is additively cancellative, and both S// and S[/]/ are hemirings
in case S is a hemiring. A final definition, again due to Bourne [2], is the following.
A semiring S with zero element 0 is said to be semi-isomorphic to a semiring T
with zero if there is a homomorphism of S onto T with kernel 0. A detailed treat-
ment of k-and A-ideals, semi-isomorphisms, and the semirings S// and S[/]/ can be
found in [8].

The proofs of the next two theorems are omitted since they parallel those
given in [9] for the corresponding results in rings.

Theorem 2. 1. A semiring S with zero is semi-isomorphic to a subdirect sum
T of semirings S, with zero elements 0, if and only if there exists homomorphisms
@, of S onto S, (for all &) such that, if 0 s € S, then s, #0, for some .

THEOREM 2. 2. A hemiring S is semi-isomorphic to a subdirect sum of [additively
cancellative] semirings S,, a € Q, with zero elements 0, if and only if for each x¢€ Q
there exists a k-ideal [h-ideal) I, of S such that S/I,[S[/lI,) is semi-isomorphic to
S, and (1,=0.

x

Let T be a semiring with zero that is a subdirect sum of semirings S, with
zero, and let S be a semiring with zero that is semi-isomorphic to 7 under a mapping
. As for rings, we call T"a reperesentation of S as a subdirect sum of the semirings S,.
The mapping ¢, defined by sp,=(s0)Q, is a homomorphism of § onto S,, which
may be a semi-isomorphism.

Definition 2.3. A semiring § with zero is called subdirectly irreducible
if in every representation of § as a subdirect sum of semirings S, some ¢, is a
semi-isomorphism.

By following the proof given for rings in [9] it is readily proved that a hemiring
is subdirectly irreducible if and only if the intersection of all its non-zero two-sided
k-ideals is non-zero. Unfortunately, there exist examples to show that the term
k-ideal cannot here be replaced by h-ideal or semi-ideal. However, if we define
a semiring § with zero to be subdirectly h-irreducible if in every representation
of & as a subdirect sum of additively cancellative semirings S,, some ¢, is a semi-
isomorphism, then a hemiring is subdirectly h-irreducible if and only if the inter-
section of all its non-zero two-sided h-ideals is non-zero.

Finally, we remark that by again paralleling the proof for rings [9] it can
be shown that every hemiring S =0 is semi-isomorphic to a subdirect sum of sub-
directly irreducible hemirings. Moreover, if the zero of S is an h-ideal then S is
semi-isomorphic to a subdirect sum of subdirectly h-irreducible additivelv cancellative
hemirings.

3. The Jacobson Radical. The first to appear [6] among the many equivalent
definitions of the Jacobson radical of a ring is the following. The Jacobson radical
of a ring R is the right ideal generated by the set of all right quasi-regular right
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ideals of R. We recall that a right ideal 7 is called right quasi-regular if for z€1
there exists z"€ R such that z+z"+2z"=0.

For convenience, we state Bourne's definition ([1]) of the Jacobson radical
of a hemiring. A left [right, two-sided] semi-ideal / of a hemiring S is called right-
semiregular if for each pair of elements i, i, €/ there exist elements j,,j,€/
such that

iy +j i iz = b+t i)
The Jacobson radical J of a hemiring S is the right semi-ideal generated by the
set of all right-semiregular right semi-ideals of S.

Bourne showed the Jacobson radical, so defined, to be a right-semiregular
right semi-ideal of S. Defining left-semiregularity dually, he proved that J is the
left semi-ideal generated by the set of all left-semiregular left semi-ideals, and is
left-semiregular. In [3] Bourne and Zassenhaus proved that J is a k-ideal, and
lizuka ([5]) proved that J is an A-ideal of S.

Theorem 3. 1. The Jacobson radical J of a hemiring S is the right k-ideal
[h-ideal] generated by the set of all right-semiregular right k-ideals (h-ideals] of S.

PrOOF. Let A4 be the set of all right-semiregular right semi-ideals of § and
B the set of all right-semiregular right k-ideals of S. Let (4), and (A4), be
respectively the right semi-ideal and right k-ideal generated by A, and let (B),
be the right k-ideal generated by B. Now (B),S(A), since BE A. Since J=(A4),
is a k-ideal it follows that (A4),=(4),=J, whence (B),SJ. But J is a right-semi-
regular right k-ideal and so JS(B),. Thus J=(B),. Replacing the word k-ideal
by h-ideal, and the letter k£ by h, the above argument gives J=(B),.

Theorem 3. 2. If R is a ring then the Jacobson hemiring radical J of R coincides
with the Jacobson ring radical N of R.

Proor. If I is a right-semiregular right k-ideal of R and i, €7 then, taking
i,=0, there exist elements j,, j, €/ such that i, +j, +i,j, = j, +1i,j,, that is,
iy +(y—J2)+i,(ji—Jj2) = 0, so that i; is right quasi-regular. Since k-ideals
in R coincide with ring ideals, it follows that the class 4 of all right-semiregular
right k-ideals is contained in the class C of all right quasi-regular right ideals of R.
Thus by Theorem 3.1, J=(A4),S(C),. But N=(C),, so that JE N. Conversely,
if we can show that every right quasi-regular right ideal of R is right-semiregular,
then CE A4 and so NS J. Thus let 7 be a right quasi-regular right ideal of R and
leti,, i, € 1. Then z=i, —i, €, so there is an element z’ € R such that z+z" 4 zz" =0,
i.e., (i, —iy)+2z + (i, —iy)z"=0. Therefore i, +z'+i,z" =i, +1i,z", whence i, + 2’ +
+iy2"+i,0=i,+0+i,0+i,z". Now 2" = —(z+2z")€ 1. Hence there are elements
Ji=2" and j,=0 such that i, +j, +i,j, +i =iy +j2+ija+iyJ,, so that I is
right-semiregular.

Since, for any homomorphism ¢ of a hemiring S onto a hemiring 7, the image
of a right-semiregular right semi-ideal under ¢ is again such an ideal, it follows
that ¢ maps the Jacobson radical of § into that of 7. Hence, it is fairly immediate
that a subdirect sum of semirings S,, each of which has zero Jacobson radical,
has zero Jacobson radical. These remarks will be used in our next theorem.

The term primitive, well-known in rings, has been defined for hemirings by
lizuka ([5]). Theorem 6 of his paper states that the Jacobson radical of any hemiring
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S that is not a radical hemiring (i.e., J# S) is the intersection of all primitive h-
ideals of S. Using another of Iizuka’s results, one can prove that any ring primitive
in the hemiring sense is also primitive in the ring sense. We omit the proof since
to include it here would necessitate a brief exposition of parts of lizuka’s paper.
These remarks bring us to the next theorem.

Theorem 3.3. If a hemiring S #0 has zero Jacobson radical then S is semi-
isomorphic to a subdirect sum of primitive hemirings. Conversely, if a hemiring S
is Semi-isomorphic to a subdirect sum of additively cancellative primitive hemirings
then S has zero Jacobson radical.

Proor. If §0 has zero Jacobson radical then the intersection of all primitive
h-ideals 7, of S is zero. Since each such A-ideal is also a k-ideal, it follows from
Theorem 2. 2 that S is semi-isomorphic to a subdirect sum of the hemirings S/7,,
each of which is primitive since each 7, is primitive. Conversely, suppose the
hemiring S is semi-isomorphic to a subdirect sum 7 of additively cancellative
primitive hemirings S,. Since each S, is additively cancellative, the zero 0, of
each is an h-ideal. Therefore, since each S, is primitive and S,= §,/0,, 0, is a
primitive A-ideal. It follows that each S, has zero Jacobson radical, whence, by
our earlier remarks, T has zero Jacobson radical and so does S.

Theorem 3. 3 is an analogue for hemirings of the familiar theorem for rings
due to Jacobson ([7]) stating that a ring R0 has zero Jacobson radical if and
only if R is isomorphic to a subdirect sum of primitive (in the ring sense) rings.
We have been unable to delete the hypothesis of additive cancellation since, in
general, the zero of a hemiring need not be an h-ideal. However, for additively
regular hemirings we have the following result. the immediate corollary of which
will be useful to us elsewhere.

Theorem 3.4. An additively regular hemiring S0 has zero Jacobson radical
if and only if S is semi-isomorphic to a subdirect sum (in the ring sense) of rings
primitive in the ring sense.

PROOF. Suppose the hemiring S#0 is semi-isomorphic to a subdirect sum
T (in the ring sense) of rings primitive in the ring sense. Since T is a ring, Theorem
2. 4 of [8] shows that S is a ring isomorphic to 7. By the result mentioned above,
S has Jacobson radical 0.

Conversely, suppose the additively regular hemiring S0 has zero Jacobson
radical. Then by the result of lizuka, the intersection of all i-ideals I, of S is zero,
whence it follows from Theorem 2.2 that § is semi-isomorphic to a subdirect
sum T of the hemirings S//,. By Corollary 2. 8 of [8], each S/I, is a ring, and,
since /, is a primitive Ai-ideal of S, S/I, is a ring primitive in the hemiring sense.
Thus, using, a result stated earlier, each S//, is a ring primitive in the ring sense.
The proof will be complete when we show that T is actually a subring of the complete
direct sum of the rings S//,. To this end, we denote by v,, for each «, the natural
homomorphism of S onto S/J,. Since [),=0, the proofs of Theorems 2. 1 and

2. 2 show that T= {(sv,, sv,, ...): S€ S}. Since each I, is a k-ideal, I, is the zero
element 0, of S/I,, whence the zero of T is (/y,I,, 15, ...). Now if s€§ and s’
is an additive inverse of s in S, then s”v, is an additive inverse of sv, in S/I,. Thus,
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for any element (sv,, sv,, §v;, ...) in T, an additive inverse in T'is (s"v,, 5"v,, §'v3,...).
Since s+s” is an additive idempotent in S, its image is an additive idempotent
in S/I,, whence (s+s')v,=0,=1, since S/I, is a ring. Therefore, if
(svy,8v3,9v3, .. )ET we  have (svy,3v;, 8v;5,...)+(5'vy, 8y, vy, ...) =
= (I, 1,, 15, ...), so that (sv,, sv,, §v3, ...) has a group inverse in T with respect
to addition. Thus T is a ring.

Corollary 3. 5. An additively regular hemiring with zero Jacobson radical
is a ring.

ProoF. The proof of Theorem 3. 4 shows § is semi-isomorphic to a ring T,
whence it follows that § itself is a ring.
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