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The Brown-McCoy radicals of a hemiring

By D. R. LATORRE (Knoxville, Tenn.)

1. Introduction. The concept of the F-radical of a ring, and a certain speciali-
zation thereof now known as the Brown—McCoy radical, was introduced by
BrowN and McCoy ([3]). This paper investigates these concepts for hemirings
(i.e., additively commutative semirings with zero), and our methods are based
largely on those in [3].

The notation and terminology used herein follow [7] and [8), and we shall
often use results from these papers. However, we shall incorporate the more basic
definitions and theorem statements from {7] and [8] whenever possible.

We begin in section 2 with the F-, FK-, and FH-radicals. These are defined
in a general way and our results here are obtained under fairly weak hypothese.

We restrict our hypotheses somewhat in Section 3 and consider the FH-
radical only. The main result in this section is Theorem 3. 2, which characterizes the
FH-radical of a hemiring of type (H) as the intersection of a class of A-ideals. We also
prove that for such a hemiring the Bourne factor hemiring modulo the radical
has zero FH-radical. Section 4 contains our most interesting results, and deals
with a special case of the FH-radical, namely, the H-radical of a hemiring of type (H).
In case the hemiring is a ring, the H-radical is just the well-known Brown—McCoy
radical. We first show that the H-radical of any hemiring of type (H) is the inter-
section of all A-ideals M such that the Bourne factor hemiring modulo M is a
simple ring with identity, and then show that the Jacobson radical of any hemiring
of type (H) is contained in the H-radical. If a hemiring is additively regular or
additively periodic, and satisfies the minimal condition for right h-ideals, these
two radicals coincide. Theorem 4. 5 is an analogue for hemirings of a generalization
of the Wedderburn—Artin Theorem for rings. Theorem 4. 7 is more closely analog-
ous to the Wedderburn—Artin Theorem in that it states for any hemiring of type
(H), satisfying the minimal condition for A-ideals, that the H-radical is zero if
and only if the hemiring is semi-isomorphic to a direct sum of finitely many simple
rings with identity elements.

Turning to Section 5 we consider the H-radical of the hemiring S, of all
n X n matrices over a hemiring § of type (H). Our main result asserts that if S
is a hemiring of type (H) with H-radical N, and if S, is of type (H), then the
H-radical of S, is just N,. We then give a condition sufficient to insure that S, is of
type (H); in particular, the condition holds in all hemirings with identity element.

In Section 6 we discuss other radicals. Specifically, we indicate how theories
of a K-radical and another H-radical can be developed by methods analogous
to those in Sections 2 through 5.
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2. The Generalized F-Radicals. A left semi-ideal I of a semiring S is a non-
empty subset of S closed under premultiplication by elements of S and under
addition. If § is additively commutative then a left semi-ideal / is called a left
k-ideal if for each @€l and x€ S, a+ x €1 implies that x€7; and 7 is called a /left
h-ideal of S if i;,i,€land x, z, € S with x+ i, +z=i, +z imply x€ 1. Right semi-,
k-, and h-ideals are defined dually, and a twoe-sided ideal (or simply ideal) of any
type is both a left and a right ideal of that type. The concepts of k-ideal and A-
ideal are due to Henriksen ([4]) and Iizuka ([5]), respectively.

The two congruence relations in semirings that we shall use were first given
by Bourne ([1]) and lizuka ([5]). By the Bourne congruence on an additively com-
mutative semiring S, relative to a semi-ideal 7, we mean the relation a=b (/) if
and only if a+i,=b+1i, for some i,, i, €1. The lizuka congruence on S, relative
to I, is the relation a[ =)b (/) if and only if a+i, +z=b+i, +z for some i,, i, €[
and z€ S. Under the usual definitions of addition and multiplication of congruence
classes, the Bourne classes form a semiring denoted by S/7, and the lizuka classes
form a semiring denoted by S[/]/. The semiring S[/}/ is additively cancellative.
If S is a hemiring then both S/I and S[/]I are hemirings. Also, I is the zero of
S/I'if and only if it is a k-ideal, and 7 is the zero if S[/]/ if and only if it is an A-ideal.

If M is any non-empty subset of an additively commutative semiring S, the
intersection of all semi-ideals [k-ideals, A-ideals] of S containing M is called the
semi-ideal [k-ideal, h-ideal] generated by M, and is denoted by (M)[(M),, (M),].
If M consists of a single element then these ideals are called principal.

Let C denote the class of all additively commutative semirings, and with
each § in C associate a fixed mapping Fs of S into the collection of all non-empty
subsets of § subject to the following condition:

(i) If S and X are in C, if ¢: a—a is a homomorphism of § onto Z, and

if Fs(a) is the image, under ¢, of the subset Fg(a) of S, then Fg(a) S Fx(a).

Now for each S in C such a mapping Fg always exists, for we can define Fg(a)= S

for all a€ S, or Fg(a)=a for all a€ S. Later on, we shall restrict the mappings Fg

somewhat and impose an additional condition in order to get nicer theorems.
Unless otherwise stated, all semirings considered will be members of C.

Definition 2. 1. An element @ in a semiring S is called Fs-regular provided
a€ Fg(a), and a complex M of S is said to be an Fg-regular subset of S if every element
of M is an Fg-regular element of S. The F-radical [FK-radical, FH-radical] of a
semiring S is the set of all elements b in S for which the principal semi-ideal (b)
[k-ideal (b),, h-ideal (b),]is an Fg-regular subset of S; itis denoted by Np[Ngx, Negl.

Since (b) S(b), & (b)y, we have Npy S Npx & Np. However, without additional
information about the mapping Fg, we do not know whether any of these radi-
cals is non-empty; for the remainder of this section we assume Ny, non-empty.
The proof of the following lemma is straightforward and is omitted.

Lemma 2.2. Let ¢ be a homomorphism of a semiring S onto a semiring T,
and let M be any complex in S. Then (M)p=(M¢o), (M),0 S (Mo),, and (M),0 =
g%ﬁ(l’;n]- If (M)@[(M),9] is a k-ideal [h-ideal] of T then (M)p=(Me)[(M),p=
=M Q)p).
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We have remarked in [7] that it is not necessarily true that a homomorphic
image of a k-ideal [h-ideal] be a k-ideal [A-ideal]. The proof of the next theorem
parallels that of the corresponding theorem for rings.

Theorem 2.3. If ¢ is a homomorphism of a semiring S onto a semiring T
then ¢ maps the F-radical of S into the F-radical of T. If ¢ preserves k-ideals [h-
ideals)] then @ maps the FK-radical [FH-radical] of S into that of T.

Theorem 2.4. If S is a hemiring then Ny is contained in the intersection
MM of all k-ideals M of S such that S|M has zero F-radical; and N is contained
in the intersection (| M* of all h-ideals M* of S such that S[[|M* has zero F-radical.

PrOOF. Let b€ Ny and M be any k-ideal of S such that S/M has zero F-
radical. Let v: a - a be the natural homomorphism of § onto S/M. By Theorem 2. 3,
b is the F-radical of S/M, whence b=0. Since M is a k-ideal, 0= M, whence b= M
implies b € M. Our assertion now follows immediately, and a similar proof establishes
the other assertion.

Frequently, as in the next theorem, we shall say F-regular and F(a) instead
of Fg-regular and Fg(a) if it is clear what semiring S is under consideration.

Theorem 2.5. If S is a semiring then Ngg[Ngpyl is an F-regular subset of S
and contains every F-regular k-ideal [h-ideal) of S.

PROOF. If x € Ngg then (x), is F-regular. Thus x € F(x), whence Ngg is F-regular.
Now let 7 be an F-regular k-ideal of S and x€/; then (x), E 1. If a€(x), then a€l,
whence a<€ F(a): Thus (x), is F-regular, so x € Ngx. Therefore 1S Ngy.

A subdirect sum of semirings is defined analogously to a subdirect sum of rings,
and a brief discussion can be found in [8]. In view of Theorem 2. 3 the following
result is trivial.

Theorem 2. 6. If a hemiring T is a subdirect sum of hemirings S,, each of
which has zero F-radical, then T has zero F-radical.

A semiring S with zero element O is said to be semi-isomorphic to a semiring
T with zero if there is a homomorphism from S onto T with 0 as its kernel.

Corollary 2.7. If a hemiring S is semi-isomorphic to a subdirect sum T of
hemirings S,, each of which has zero F-radical, then S has zero F-radical.

Proor. Immediate from Theorems 2. 6 and 2. 3.

Definition 2. 8. A hemiring S is said to be of 7ype (H) provided that if
I is an h-ideal of S, and v is the natural homomorphism of § onto S//, then the
image, under v, of any A-ideal of § is an A-ideal of S/L

As indicated in [7], not every hemiring is of type (H) but every additively
regular hemiring and every additively periodic hemiring (in particular, any finite
hemiring) is of this type; also, if S is of type (H) and [/ is any A-ideal of S, then S//
is of type (H). From Theorem 2. 3 we see that if 7 is any h-ideal of a hemiring S
of type (H), then the natural homomorphism of S onto S// maps the FH-radical
of S into that of S/I. This last remark is essential to the proof of the next theorem,
which parallels that of Theorem 2. 4.

D2
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Theorem 2.9. If S is a hemiring of type (H), then Ngy is contained in the
intersection (M of all h-ideals M such that S|M has zero FH-radical.

3. The F-radicals. We now restrict the mappings Fg and impose an additional
condition. Let C be defined as in Section 2, and with each S in C associate a fixed
mapping Fg of § into the collection of all h-ideals of S subject to the following
two conditions:

(i) Same as in Section 2;

(if) If 7is an h-ideal of §, if £= S/, if v: a—~a is the natural homomorphism
of S onto X, and if F(a) is the image, under v, of the h-ideal F(a) of S,
then Fg(a) = Fs(a).

As before, for each S€C such a mapping Fs always exists, and unless we
specify otherwise all semirings considered are to be members of C.

Since C and condition (i) are unchanged, our earlier results are still valid.
From this point on, however, our work will be affected by the fact that Fs maps
S into its set of Ah-ideals and by condition (ii). If we require only that Fg map S
into its set of k-ideals, and change the word h-ideal in condition (ii) to k-ideal,
then results can be obtained that are different from, but similar to, those we are
about to give. We shall say more about alternatives for Fs and condition (ii) in
the final section.

Bourne and Zassenhaus ([2]) define the zeroid Z of § as {z€S:z+x=x
for some x€ S}. Clearly Z is non-empty if S has an additive 1dempotent lizuka ([S])
gave an equivalent definition of Z for hemirings, and proved that in any hemlrmg
Z is the intersection of all A-ideals. However, using the original definition it is
easy to prove lizuka’s result in additively commutative semiring for which Z is
non-empty. Thus for any S€C for which Z is non-empty, Z< Fg(a) for each
a€ S, whence Z is an Fg-regular h-ideal. If z€ Z then (2),£Z, so that (z), is an
Fs-i cgular subset of S and z€ Ngy. Hence Ngy is non-empty if Z is non-empty.

The main result in this section is Theorem 3. 2, from which it follows that for
a hemiring of type (H), Ngy is an h-ideal. First a trivial lemma.

Lemma 3.1. Let ¢ be a homomorphism of a semiring S onto a semiring T,
and let A and M be complexes in S such that every h-ideal I that includes M properly
most include A also. Then, if J is an h-ideal of T such that Mo C J, we have Ap< J.

We point out that this lemma still holds if we replace the world h-ideal by
k-ideal, semi-ideal, or subset.

The reader is referred to [8] for a discussion of subdirect A-irreducibility in
hemirings. For our present purposes it is sufficient to recall that a hemiring is sub-
directly h-irreducible if and only if the intersection of all its non-zero two-sided
h-ideals is non-zero. Also, we shall use the fact, established in [7], that if I is
h-ideal of a hemiring S then S// has zeroid equal to zero. Although the proof of
Theorem 3. 2 closely parallels the proof for rings, we include it for completenes.

Theorem 3.2. If S is a hemiring then Ny contains the intersection [\ M of all
h-ideals M of S such that S|M is subdirectly h-irreducible and has zero FH-radical.

PROOF. Suppose b¢ Ngy; then for some a€(b),, a¢ Fg(a). If H denotes the
class of all h-ideals of S that contain Fg(a) but not 4, then Zorn’s lemma shows
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that H contains a maximal member, say M*. Thus every A-ideal of § that properly
contains M* must contain a. Let v;c— be the natural mapping of S onto S/M*,

and consider the congruence class @. Since a§ M*, a0 (=M*). Furthermore,
every h-ideal of S/M*, in particular every non-zero h-ideal, contains M*=0.
Applying Lemma 3. 1, where the ¢, 7, A, and M of that lemma are our v, S/M*,
a, and M*, respectively, we see that every non-zero A-ideal of §/M* contains a(# 0);
S/M* is subdirectly h-irreducible. Now let T= S/M*. From Fg(a) & M* and condition
(i), we have Fp(a@)= Fs(a)S M*=0, whence F(@)=0. Thus a¢ F,(a) and every
non-zero h-ideal of T contains the element @ which is not Fy-regular. Since T has
zeroid equal to zero, the zero of T is an h-ideal and is Fy-regular. It follows that
T has zero FH-radical. Finally, if b€ M* then (b),& M*, whence ac(b),& M*,
contrary to a¢ M*. Therefore if b¢ Ngy then b4 M* for some h-ideal M* such that
S/M* is subdirectly h-irreducible and has zero FH-radical. Our assertion follows.
From Theorems 2. 9 and 3. 2 we immediately obtain

Corollary 3.3. If S is a hemiring of type (H) then Ngy is the intersection
(VM of all h-ideals M of S such that S|M is subdirectly h-irreducible and has zero
FH-radical, and hence is an h-ideal.

If Ney=S then S is called an FH-radical hemiring. From Theorem 3.2 we
see that if the hemiring S itself is the only A-ideal M such that S/M is subdirectly
h-irreducible with zero FH-radical, then § is an FH-radical hemiring. Moreover,
Corollary 3. 3 yields

Corollary 3.4. Let S be a hemiring of type (H). Then S is an FH-radical
hemiring if and only if S itself is the only h-ideal M such that S|M is subdirectly
h-irreducible with zero FH-radical.

Corollary 3.5. If S is a hemiring of type (H) then Ngy is the union of all
F-regular h-ideals, the maximal F-regular h-ideal, and the h-ideal generated by the
set of all F-regular h-ideals.

Proor. Since, by Corollary 3. 3, Ngy is an h-ideal the assertions follow im-
mediately from Theorem 2. 5.

Theorem 3. 6. If a hemiring. S has zero FH-radical then S is semi-isomorphic to
a subdirect sum of subdirectly h-irreducible hemirings S|M, each of which has zero
FH-radical.

PrROOF. If Npg=0, and (1M is the intersection of all h-ideals M such that
S/M is subdirectly h-irreducible with zero FH-radical, then by Theorem 3. 2,
(MME Ngy=0. Thus (1 M=0, whence it follows from Theorem 2.2 of [8] that
S is semi-isomorphic to a subdirect sum of the hemirings S/ M.

The proof of the next theorem parallels that of the corresponding theorem
for rings. Note that the hypothesis that S be of type (H) is not needed to establish
the necessity of the condition.

Theorem 3.7. Let S(£0) be a subdirectly h-irreducible hemiring of type (H).
Then Ngy is zero if and only if the minimal h-radical A (the intersection of all non-zero
h-ideals of S) contains an element b #0 such that F(b)=0.
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The proof of our final theorem in this section is facilitated by the theorem,
proved in [7], stating that if / and M are A-ideals in a hemiring S of type (H), and
IS M, then S/M is isomorphic to (S/1)/(M]/I). Again, we omit the proof since it is
analogous to a familar one in ring theory.

Theorem 3.8. If S is a hemiring of type (H) then S/Ngy has zero FH-radical.

4. The H-radical. In this section we consider hemirings of type (H) and restrict
the mappings Fg still more, thereby obtaining a radical analogous to the Brown—
McCoy radical of a ring.

Let C be the class of all hemirings of type (H), and with each hemiring S in C
associate a fixed mapping of S into the collection of all A-ideals of S in the following
way: if a€ S, let I,={ax+ x} where x€ S, and then let Fg(a)=(l,),, i.e., the A-
ideal of S generated by I,. We now show that the mapping Fg so defined meets
the conditions laid down at the beginning of Section 3.

For condition (i), suppose that Sand X arein Cand ¢: @ - ais a homomorphism

of S onto X. Let Fg(a) be the image, under ¢, of the h-ideal Fg(a) of S, and let
F.(a@) be the ideal of X associated with a. We must show that Fg(a) S Fx(a). Now
Fs(a)=(1), and Fy(@)=(l),- By Lemma 2.2 ()¢ S (L) that is, (1.),<S(L),.
But /,={ax+x)={ax+x}=1;,. Thus (I),=(),, so that

(1 Fs(@) = UMW S W)y = (L), = Fx(a).
For condition (ii), suppose S€C, and M is an h-ideal of S. Let v:a—~a be

the natural homomorphism of § onto Z= S/M. Now Z=S/McC. Let Fg(a) be
the image, under v, of the h-ideal Fg(a) of S, and let Fy(a) be the h-ideal of X
associated with a. We must show that Fg(a) = Fx(a). Since S is of type (H), it
follows from Lemma 2. 2 that (1,),v=(/,v),, that is, (1,), =(/,),, whence I becomes
Fs(a) = (1), = 1)y = (I3)y= Fx(a).

Thus for each S€C the Fg defined above meets conditions (i) and (ii) of
section 3, and for the rest of this section we assume that every S in C has a mapping
Fy associated with it in this way.

Definition 4. 1. Let S be a hemiring of type (H). The LH-radical of § is
the set of all elements » in S for which the principal h-ideal (b), is an Fg-regular
subset of S, it is denoted by N,4.

The L occurring in this definition in place of the (perhaps expected) F is a
reminder of the asymmetry in the definition of Fg at the beginning of this section.
Since the LH-radical of a hemiring of type (H) is but a special case of the FH-
radical, all results obtained for the FH-radical apply here. It is the special character
of the mapping Fg, however, that enables us to obtain additional results.

The Brown—McCoy radical of a ring R can be defined as follows (see [9]).
For cach a€ R, let G(a) be the ideal of R generated by {ax+ x}, where x€ R. The
Brown—McCoy radical of R is the set of all elements b€ R for which a€ G(a) for
every element a in the ideal of R generated by b. Thus if the hemiring S of type
(H) is actually a ring, the LH-radical of S is just the Brown—McCoy radical.

Theorem 4.2. A hemiring S of type (H) that is subdirectly h-irreducible has
zero LH-radical if and only if S is a simple ring with identity element.
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Proo¥. The theorem is trivial if S={0}. Thus suppose S {0}. If S is a
simple ring with identity element e, then Fg(—e)=({—ex+x}),=(0),=0, whence,
by Theorem 3. 7, S has zero LH-radical. Conversely, suppose that S has zero LH-
radical. By Theorem 3.7 the minimal h-ideal 4 of S contains an element /=0
such that Fg¢(b)=0. Then 0= Fg(b)= (1), 2 I, = {bx+x}, so bx+x=0 for all x€S.
Thus bx is-an additive inverse for x, so S is a ring. Since x=(—b)x, we see that
—b is a left identity element of S. Now if x€ S then x=(—b)x€AxE A4, so S=4
and S is a simple ring. That —b is actually a two-sided identity element for S has
been shown by Brown and McCoy [3]. The next theorem follows immediately
from Corollary 3.3 and Theorem 4. 2.

Theorem 4.3. If S is a hemiring of type (H) then the LH-radical of S is the
intersection (\ M of all h-ideals M of S such that S|M is a simple ring with identity
element.

By Theorem 2. 3 in [7] it follows that if S is a hemiring then the set of all -
ideals M of S such that S/M is a simple ring is precisely the set of all k-ideals M
of S such that S/M is a simple ring. Thus we may change the word h-ideals to
k-ideals in Theorem 4. 3.

We point out that if, when defining Fg, we take I,={xa+ x}, where x¢ S,
and then define the RH-radical in the expected manner, dual arguments lead to
Theorem 4. 3 for the RH-radical. Thus the asymmetry introduced when defining
I, affects nothing, and we henceforth drop the prefixes R and L and speak only
of the H-radical Ny.

Theorem 4. 3 may be applied to show that the H-radicals of the hemiring /*
of non-negative integers and the hemiring E* of non-negative even integers are zero.

We refer the reader to [5] for several definitions and results used in the proof
of the next theorem.

Theorem 4. 4. The Jacobson radical J of any hemiring S of type (H) is contained
in the H-radical Ny of S.

PrROOF. By Theorem 4. 3, Ny is the intersection (M of all h-ideals M of §

such that S/M is a simple ring with identity; let M be any such ideal and S/M = 0.
The Brown—McCoy radical of the ring S/M is zero by Theorem 4. 2. Since, as
shown in [3], this radical contains the Jacobson ring radical of S/M, which,
from [8], coincides with the Jacobson hemiring radical of S/M, the Jacobson hemiring
radical J of S/M is 0. By Theorem 6 of [5], J is the intersection of all primitive
(in the semiring sense) /-ideals of S/M. Thus there is a primitive h-ideal N of S/M
that is a proper subset of S/M. By Lemma 5 of [5], N=(0: 4) for some irreducible
S/M-semimodule 4. But, since N is an h-ideal (a ring ideal) of S/M, and since
S/M is simple, N=0. Therefore A is a faithful irreducible S/M-semimodule (see [5]).
Thus S/M is primitive in the semiring sense and hence so is M (see Definition 7
of [5]). Since M is a primitive h-ideal of S, it follows from Theorem 6 of [5] that
JEM, whence JE NM=N,.

The following theorem is an analogue for hemirings of Theorem 8 of [3],
which is a generalization of the Wedderburn—Artin theorem for rings.
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Theorem 4.5. A hemiring S of type (H) has zero H-radical if and only if S
is semi-isomorphic to a subdirect sum (in the semiring sense) of simple rings with
identity elements.

PrOOF. If Ny=0 then the intersection of all h-ideals M of S such that S/M
is a simple ring with identity is zero. By Theorem 2. 2 in [8], S is semi-isomorphic
to a subdirect sum T of the rings S/M. Conversely, suppose S is semi-isomorphic
to a subdirect sum T (in the semiring sense) of simple rings R,, each of which has
an identity element. Let @: s—t=(r,, r;, ...) be a semi-isomorphism of S onto 7.
Since (ry, r;, ...)—~r, maps T homomorphically onto R, for each a, the mappings
@,: § =+t —r, are homomorphisms of S onto the R,. If K, is the kernel of ¢, then,
by Theorem 2.5 in [7], K, is an h-ideal and S/K, is semi-isomorphic to R, under
a mapping ¥,. Since any hemiring semi-isomorphic to a ring is itself a ring, each
S/K, is a simple ring with identity, and thus has zero H-radical. Now [] K,=0.

» x
Let b € Ny and let v, be the natural homomorphism of S upon §/K,. By the remarks

preceding Theorem 2.9, by, is in the H-radical of S/K,, that is, bv,=0,(=K,).
Thus b€ K, for each «, whence b=0 and our result follows.

We have previously remarked that every additively regular hemiring is of type
(H). If, in Theorem 4. 5, we require that S be additively regular, the following
result is obtained.

Theorem 4. 6. Let S be an additively regular hemiring. If S has zero H-radical
then S is a ring isomorphic to a subdirect sum (in the ring sense) of simple rings
with identity elements. Conversely, if S is semi-isomorphic to a subdirect sum (in the
semiring sense) of simple rings with identity elements, then S is a ring with zero H-
radical.

Proor. If N,=0 then, by Theorem 4.4, S has zero Jacobson radical. The
last result in [8] states that any additively regular hemiring with zero Jacobson
radical is a ring. Since N, =0, the intersection of all h-ideals M such that S/M
is a simple ring with identity is zero, whence it follows that S is semi-isomorphic
to a subdirgct sum T of the rings S/M. Since S is a ring, any semi-isomorphism
from S to T is an isomorphism. Conversely, if § is semi-isomorphic to a subdirect
sum (in the semiring sense) of simple rings with identity elements, then N, =0
by Theorem 4. 5. Thus JE Ny implies J=0, whence as above S is a ring.

If S is any semiring with zero satisfying the minimal condition for semi-ideals
[k-ideals, h-ideals], and C is any class of semi-ideals [k-ideals, h-ideals] of § with
intersection zero, then some finite subclass of C has intersection zero. By using
this result and by paralleling the proof of Theorem 9 in [3], we obtain the following
analogue of the Wedderburn—Artin theorem.

Theorem 4.7. Let S be a hemiring of type (H) satisfying the minimal condition
Jor h-ideals. The H-radical Ny of S is zero if and only if S is semi-isomorphic to the
direct sum of a finite number of simple rings with identity elements.

It is shown in [3] that the Brown—McCoy and Jacobson radicals coincide
in any ring satisfying the minimal condition for right ideals. Although we have
been unable to obtain such a result for arbitrary hemirings of type (H), we do have
the following theorem.
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Theorem 4. 8. If S is an additively regular or additively periodic hemiring that
satisfies the minimal condition for right h-ideals, then the Jacobson radical J of S
coincides with the H-radical Ny of S.

Proor. Now S/J has zero Jacobson radical by [1], and since J is an h-ideal [8],
S/J 1s of type (H). Also, S/J is a ring. For if § is additively regular, the last result
in [8] shows S§/J is a ring, while if § is additively periodic then, S/J having zeroid
equal to zero by Theorem 2. 9 of [7], the proof of Lemma 9 in [2] shows that S/J
is a ring. Since S/J is a ring, it follows from Theorem 3. 2 of [8] that S/J has zero
Jacobson ring radical, and, since S/J also satisfies the minimal condition for right
ideals, the Wedderburn—Artin theorem for rings shows that S/J is isomorphic
to the direct sum of finitely many simple rings with identity elements. By Theorem
4.5, S/J has zero H-radical. Now if b€ Ny then, since S is of type (H) and J is an
h-ideal, Theorem 2. 3 shows that if v is the natural mapping of S onto S/J then
bvis in the H-radical of S/J. Thus bv=0 (=J), so b€J and Ny S J. Since JE Ny
by Theorem 4.4, we have J= Ny.

5. The H-radical of a Matrix Hemiring. Most of the proofs in this section
follow those given in [3] for rings.

If §is any semiring, the semiring of all matrices of order n with entries from
S will be denoted by S§,. If S is a hemiring, or if § is an additively regular semiring,
then S, is clearly such a semiring. We shall later see that a hemiring S with an
identity element is of type (H) if and only if S, is of type (H). Given a semiring S,
the following three statements are easily verified.

(a) If M is a semi-ideal [k-ideal, i-ideal] of S then M, is a semi-ideal [k-ideal,

h-ideal] of S,.
(b) The mapping M -~ M, is one-to-one from the semi-ideals [k-ideals, h-
ideals] of S into those of S,.
(¢) If M and N are semi-ideals of S, then M S N if and only if M,SN,,.

The following two lemmas are proved in [3].

Lemma 5. 1. Let S be a semiring with a zero element, i, j, p, q, and n positive
integers with i, j, p, g =n, ¥ a semi-ideal of S, and a an element in the (i, j) position
of a matrix A in 2. If x and y are elements in S then & contains the matrix with
xay in the (p, q) position and zero elsewhere.

Lemma 5.2. A ring R is a simple ring with an identity element if and only if
R, is a simple ring with an identity element.

Lemma 5. 3. If S is a hemiring, and S, is a ring, then S is a ring.

Proor. If a€ S, the matrix (a)'' with a in the (1, 1) position and zero else-
where is in S,, sa there is a matrix B in S, such that (@)'' + B=0. Thus a+b,; =0,
and it follows that S is a ring.

The proof of the next lemma is detailed but quite straightforward, and we
omit it.

Lemma 5. 4. If S'is a hemiring, and M is a semi-ideal of S, then (S|M), = S,/M,.

Theorem 5. 5. Let S be a hemiring and n a positive integer. If £ is a k-ideal
of S, such that S,|¥ has an identity element, and M is the set of all elements of S
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that appear as entries in at least one matrix in ¥, then M is a k-ideal of S and ¥ = M,,.
If & is an h-ideal of S, then M is an h-ideal of S.

PrOOF. Since it is clear that ¥ S M,, we need only show M,S.Z to have
F=M,. Since S,/ has an identity element, S, contains at least one matrix
U=(u,,) such that, for every element X of §,, UXU=X(¥). Let A=(a;;) be an
element of M,,; if, in general, (x,,)° denotes the matrix with x,, in the (p, ¢) position
and zero elsewhere, then U(a;;)°U=(b,) where by =uya;u;k, =1, ...,n). For
arbitrary k and / it follows from Lemma 5.1 that (b,)°€ ¥, so that U(a;;)°U is
the sum of »? matrices in % and hence is itself in .#. Since % is a k-ideal of S,,

U(a;))°U =(a;;)° modulo & implies that (a;;)°€%. Then, since A= 2 (a;;)°, we
have A€ ¥, whence M, S Z. hi=1

Now let M* denote the set of all elements of S that appear in the (1, 1) position
in some matrix in .%. Clearly M* & M. Moreover, if . is an A-ideal of S, then M*
is an h-ideal of S. For suppose there are elements a, by; € M* and x, z€ S such
that x+a+z=b,,+z. Let (b;) be a matrix in & with b, in the (1, 1) position,
X the matrix with x in the (1, 1) position and b;; in the (i, j) position for i and j
not both 1, and, for arbitrary y€ S, (¥)'' the matrix with y in the (1, 1) position
and zero elsewhere. Then X +(a)'' +(2)'' =(b;;) +(2)''. Since M*S M, we have
(@)''eM;EM,=%. Thus, since & is an h-ideal, since (b;;) and (a)'} are in 2,
and X +(a)'' +(2)'' =(b;;) +(2)'", we have X€ .2, and so x€ M*. Thus M* is an
h-ideal of S. Similarly, if # is assumed to be only a k-ideal of S, then M* is a k-
ideal of S. Since M* S M, we need only show that M S M* to complete the proof.

We recall that for every matrix X in S,, UXU =X(%). If, in particular, X is
chosen as X =(x)"'! for arbitrary x€ S, it follows from UXU = X(%) that u,,xu,, =
=x(M*). Now if b€ M there is a matrix in % with b in some position, whence
Lemma 5. 1 shows that (u,,bu,,)'' € %, and so u,,bu,, € M*. Thus u,, bu,, =b(M*)
implies that b€ M*. Therefore M S M*.

Corollary 5.6. If M is a semi-ideal in a hemiring S, and S/M is a simple
ring with an identity element, then S,/M, is a simple ring with an identity element.
If S is a hemiring and X is an h-ideal [k-ideal] of S, such that S,/ ¥ is a simple ring
with an identity element, then the set M of all elements of S that appear as entries
in at least one matrix in % is an h-ideal [k-ideal) of S, ¥ =M,, and S|M is a simple
ring with an identity element.

PrOOF. The first assertion follows from Lemma 5.2 and Lemma 5. 4, and
the next two assertions follow from Theorem 5. 5. Finally,since (S/M),= S,/M,=
=S,/ by Lemma 5. 4, and since S,/ is a simple ring with an identity element,
Lemma 5. 2 and Lemma 5. 3 show that S/M is a simple ring with an identity element.

Theorem 5.7. Let S be a hemiring of type (H) with H-radical N. If S, is of
type (H) then the H-radical of S, is N,.

Proor. Under the one-to-one mapping M — M, of the h-ideals M of § into
the h-ideals of S,, the class of all A-ideals M of S such that S/M is a simple ring
with identity is mapped one-to-one onto the class of all A-ideals & of S, such that
S,/ is a simple ring with identity. This follows from Lemmas 5. 2, 5. 4, and Corol-
lary 5. 6. Our result now follows readily from Theorem 4. 3.
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Theorem 5.8. Let S be a hemiring, n a positive integer, and suppose that if
% is an h-ideal of S, then & = M, for some h-ideal M of S. Then S is of type (H)
if and only if S, is of type (H).

Proor. For any x€ S, and any pair of integers i, j (1=i, j=n), we denote
by (x)"/ the matrix in S, with x in the (i, j) position and 0 elsewhere.

Suppose that S is of type (H), & and 3 are h-ideals of §,, and I is the natural
homomorphism of S, onto S,/#. We must show that 3I" is an A-ideal of S,/%.
By hypothesis, there exist h-ideals I, M of S such that J,=9 and M,=2%. To show
I,I' an h-ideal of S,/M,, we suppose that XI"+ UI' + ZI' = VT + ZI" where U, V€I,
and then show that XT'€I,I'. From (X+ U+ Z)I'=(V+ Z)I', there exist matrices
A, BeM, such that (X4+U+2Z)+A4 = (V+2)+B. If, for each pair 5
(1=i, j=n), we denote by x;;, u;, v;;, Z;, a;;, and b;; the (i, j) entriesin X, U, V, Z,
A, and B, respectively, then x;; +u;; + z;; + a;;=v;; + z;; + b;;. Thus if v is the natural
homomorphism of S onto S/M we have x;;v+u;v+z,;v+a;v = v;v+2z;v+byv.
Since a;;, b;;€ M, a;;v=>b,;,v=M, and, since M is the zero of S/M, we have x;;v+
+ujv+z;;v = vyv+2z,;v. Since u;,v;€1, and since, by our assumption that
S is of type (H), Iv is an h-ideal of S/M, we have x;;v€Iv. Therefore x;;v=y,;v
for some y;;€I, whence there exist m,, m,€M such that x;;+m;=y,;+m,.
Hence (x;;)° + (my)"Y =(p;;)° + (mz)", (xy % being the matrix with x;; in the (i, j)
position and O elsewhere. Since (m,)", (m,) € M, we have (x;;)°=();;))°(M,),

whence (x,)T=()°T€Ll. Now X= 3 (x)° and Y= 3 ()¢l
Thus i,j=1 i, j=1

XF=[ j‘(xu)o]f”= Z"'(xu)or= j‘(.l’tj)or= [ Zn‘(.Vu)o]r = ¥YIel,rI.
ij=1 ij=1 ii=1 ij=1

So I,I' is an h-ideal of S,/M, and S, is of type (H).

Conversely, suppose that S, is of type (H). Let I and M be A-ideals of S and
v the natural homomorphism of S onto S/M. Now I, and M, are h-ideals of S,
and if I'" is the natural homomorphism of S, onto S,/M, then, by our supposition
that S, is of type (H), Il is an h-ideal of S,/M,. To show that Iv is an h-ideal of
S/M we suppose that xv+i;v+zv=i,v+zv, where i;,i,€I, and then show
xv€lv. From (x+iy+z)v(2)''(i, +z)v there exist elements m,, m, € M such that
(x+i,+2z)+my=(i+z)+m,. Therefore (x)''+(@i )" +@)'"+(m ) =(>)"" +
+(2)11 4 (m,)*?, whence (x)''I'+ (i)' ' T+ (2)'' T+ (m)'"' T = (i)' ' T+ (2)' ' T+ (m,)"!
I'. Since (m,)'' and (m,)'" are in M, , and M, ist he zero of S,/M,, wehave (x)''I" +
+(@)HUT 4+ @M = (i)' +(2)'T. But (ip)!* and (i,)!'' are in I,, and, since
I,I' is an h-ideal of S,/M,, we have (x)''I'€I,I'. Thus (x)!'I'= YT for some Y€1,
say Y= (i;). Now there exist matrices P=(p,), N=(ny) in M, such that (x)'' + P=
=Y+ N, whence x+p,;=iy;+ny,. Thus xv+p,,v=i,,v+n,,v, and, since
p11v=nyv=M and M is the zero of S/M, we have xv=i,,v€Iv. So Iv is an h-
ideal of S/M and S is of type (H).

The following theorem and its corollary give conditions that insure that the
hypotheses of Theorem 5.8 hold. The corresponding theorem for rings may be
found in [6]. Before giving the theorem, however, we need the following definition.

Definition 5.9. If S is a semiring and x€ S then &x& denotes the set of
n

all finite sums of the form 3 a,xb, where a;, b€ S.
k=1
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Theorem 5. 10. Let S be any hemiring such that x is in &x8& for each x€ S,
and let n be a positive integer. If ¥ is a semi-ideal |k-ideal, h-ideal] of S,, and M is
the set of all elements in S that appear as entries in at least one matrix in %, then
F =M, and M is a semi-ideal [k-ideal, h-ideal] of S.

PROOF. Let (m;;)€ M, and let i, j be any pair of positive integers with 1=,
i

Jj=n. Since m; € &m;; & we have, say, m;;= > aym;;b,. By lemma 5. 1, (a,m;;b,)" € &
k=1

1
for each k(1=k=/). Thus from (m;;)°= > (a,my;b,)"/ it follows that (m;)°€ 2.
k=1

Since (m;;)= 2 (m;;)°, we have (m;)€¥, whence M,S%. Since LM, we
i, jm1

have M,= 3 Now M is a semi-ideal; for suppose m,, m, € M. Now m,€ &m, &

say m; = Za,‘mlbk As above we have (m,)''€.%. Similarly (m,)'' €%, whence

(m, +m2)“ —(m )'' +(my)'" € £, which implies that m, +m,€ M. Since my €M,
m, =u,, for some matrix U= (u;;) € #. Let ac S. Now (a)'?U€ & since £ is a semi-
ideal, and the (1, g) entry in (a) PUis au,,=am,.Thus am, € M so that M is a left
semi-ideal of S. Similarly, M is a right semi-ideal of S. Now suppose % is a k-ideal
of S,, and x+m;=m, with m;, m,€ M. As in the foregoing argument, (m,)'!,
(m,)'' € Z. Since (x)'' + (m;)'! =(m,)"", it follows from the fact that .Z is a k-ideal
that (x)'' €%, whence x€ M. In a similar manner 'we see that M is an h-ideal of
S if & is an h-ideal of S,.

Corollary 5.11. Let S be an arbitrary hemiring with identity element, and
let n be any positive integer. Then if &£ is a semi-ideal |k-ideal, h-ideal] of S,, =M,
for some semi-ideal [k-ideal, h-ideall] M of S.

Combining Corollary 5. 11, Theorem 5. 7, and Theorem 5. 8 we have

Theorem 5. 12. If N is the H-radical of a hemiring S of type (H) with identity
element, and n is a positive integer, then the H-radical of S, is N,.

6. Other Radicals. We recall that the results of Section 2 were based upon
mapping each additively commutative semiring § into its collection of non-empty
subsets under a mapping F subject to a single condition. It was not until section 3
that we restricted Fg to map into the A-ideals of § and required that it meet a second
condition. In view of the three concepts of ideal in a semiring and the two congruence
relaiions (Bourne and lizuka), it is natural to inquire whether a radical with some
useful theory can be obtained by mapping S into its semi-ideals or k-ideals only,
and changing condition (ii) of Section 3 in some way. In this section we indicate
briefly our results along these lines.

First of all, it does not appear that much information can be obtained in addition
to that of Section 2 by requiring only that F; map S into its collection of semi-ideals
subject to condition (i), even with some condition similar to condition (ii). For
with such a mapping we have been unable to obtain anything like Theorem 3. 2,
a theorem which proved essential to our later work. The crux of the proof of Theorem
3.2 is that M* is the zero element of S/M*, a fact which depends upon M* being
a k-ideal and not just a semi-ideal. In the proof, however, M* is actually an A-ideal,
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and perhaps something more than we really need. Thus we might try mapping S
into its collection of k-ideals, and, since this proves useful, we fix the ideas more
precisely.

Let C be the class of all additively commutative semirings, and with each §
in C associate a fixed mapping Fg of S into the collection of its k-ideals subject
to the following two conditions:

(i) Same as in Section 2;
(ii)” Same as in Section 3 except to change Ah-ideal to k-ideal.

The F-, FK-, and FH-radicals are defined as before. With this mapping an
analogue to each result in Section 3 can be obtained in which the FH-radical is
replaced by the FK-radical and h-ideals by k-ideals. Also the concept of subdirect
h-irreducibility is replaced by that of subdirect irreducibility, the latter being in
some way preferable (as indicated in [8]). However, type (H) is no longer a useful
condition and must be replaced whenever it occurs by a condition we call 1ype (K).
Semirings of type (K) are defined by Definition 2. 8 modified by replacing the word
h-ideal by k-ideal and the letter H by K. Although additively periodic hemirings
are of type (H), even finite hemirings need not be of type (K). Nor need additively
regular hemirings be of type (K). However, we remark that requiring that a hemiring
S be of type (K) is actually weaker than requiring that under an arbitrary homomor-
phism of S its k-ideals be preserved; the corresponding question concerning type
(H) is unanswered.

The results of section 4 may also be modified to give a theory of a K-radical
of a hemiring of type (K). We begin by letting C be the class of all hemirings of
type (K), and defining Fg(a)=(/,);, that is, the k-ideal generated by /,. Definition
4. 1 is modified in the obvious way and we speak of the LK-radical.

Again, if § is a hemiring of type (K) that is actually a ring, the LK-radical
is just the Brown—McCoy radical of S. By replacing the h-concepts by the correspond-
ing k-concepts, that_ is, by replacing type (H), h-ideals, subdirect h-irreducibility,
and LH-radical by type (K), k-ideals, subdirect irreducibility, and LK-radical,
respectively, the proofs of Theorems 4.2 and 4.3 carry over without difficulty.
The remarks following Theorem 4. 3 also cary over so that we may speak of the
K-radical. 1t is perhaps more interesting to note that the K-radical of a hemiring
of type (K) is the intersection of all i-ideals M such that S/M is a simple ring with
an identity element, and hence is an A-ideal of S.

Theorems 4.4, 4.5, 4.6, and 4.8 remain valid with k-concepts replacing h-
concepts, except that we must add to the hypotheses of Theorems 4. 6 and 4. 8 that
S is of type (K). Similarly, Theorem 4. 7 carries over, but here we can require the
minimum condition either for k-ideals or A-ideals in view of our earlier statement
that the K-radical is the intersection of a class of A-ideals.

Finally, all results in Section 5 carry over readily with k-concepts.

Now with both the K-radical and the H-radical we have used the Bourne con-
gruence relation and factor system exclusively. Can anything of interest be obtained
by using the lizuka congruence relation and factor system? The answer appears
to be no if we merely map a hemiring S into its collection of semi-ideals or k-ideals,
because unless the ideal M of S is an A-ideal it is not the zero element of S[/]M.
It is for precisely this reason that we have again been unable to obtain anything
like Theorem 3. 2 using the lizuka relation. However, by mapping into the h-ideals,
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the lizuka relation can be used fo obtain a theory parallel to that given in sections 2-5.
We begin by returning to Section 2 and introducing the concept that is to replace

that of type (H).

Definition 6. 1. An additively commutative semiring S is said to be of rype
(Q) provided that if 7 is an h-ideal of S, and v is the natural homomorphism of §
onto S[/}/, then the image, under v, of any h-ideal of S is an A-ideal of S[/]/.

Every additively regular or additively periodic hemiring is of type (Q), and,
since type (Q) coincides with type (H) in the presence of additive cancellation, both
I* and E+ are of type (Q) and an example shows that not all hemirings are of type (Q).

To obtain analogues of the results in Section 3 of [7], we replace type (H) by
type (Q), the Bourne factor system by the lizuka factor system, and k-ideals by
h-ideals.

In Section 3 of the present paper, we restrict the mapping Fg to map S into
its collection of h-ideals subject to the now familiar condition (i) and condition (ii)”,
condition (ii)” being condition (ii) with S// replaced by S[/]J{. All results in this
section now carry over by merely replacing the Bourne factor system by the lizuka
system wherever the former occurs, and likewise replacing type (H) by type (Q).

To modify Section 4, we let C be the class of all hemirings of type (Q), and
define Fg for S€C exactly as in Section 4. It is routine to verify that Fg meets
conditions (i) and (ii)”. We leave Definition 4. 1 unchanged except for replacing
type (H) by type (Q), and, as before, if a hemiring of type (Q) is actually a ring then
the LH-radical is just the Brown—McCoy radical. Continuing to replace type (H)
by type (Q) and the Bourne factor system by the Iizuka system, all results in this
section carry over, with one exception to be discussed below. In all cases, the proofs
are modified very little. The one exception occurs in the assertion immediately
following Theorem 4. 3, i.e., it is not ture that if § is any hemiring then the set of
all h-ideals M of S such that S[/]M is a simple ring coincides with the set of all
k-ideals M of S such that S[/]M is a simple ring.

Finally, replacing type (H) by type (Q), the Bourne factor system by the lizuka
system, and k-ideals by A-ideals, all results in Section 5 carry over.
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