Publ. Math. Debrecen 48 / 3-4 (1996), 371–379

Equivariant embeddings of smooth G-pseudomanifolds

By RAIMUND POPPER (Caracas)

Abstract. Given a compact Lie group G acting smoothly (C^{∞}) on a compact manifold M, then by a well known result of Mostow, there is an equivariant smooth embedding of M into some Euclidean space with an orthogonal G-action.

In this work we extend Mostow's result to smooth G-pseudomanifolds (in the sense of GORESKY and MAC PHERSON).

$\S 0.$ Introduction

Given a compact Lie group G acting smoothly on a compact manifold M, then a well known result of MOSTOW [4] states the following.

Theorem. There is a Euclidean space \Re^n with an orthogonal *G*-action, together with an equivariant smooth embedding $\theta: M \to \Re^n$.

The objective of this work is to extend Mostow's equivariant embedding theorem to smooth G-pseudomanifolds.

A smooth G-pseudomanifold is a certain G-space which is a topological pseudomanifold with the orbit type filtration [2,3], and whose strata are smooth manifolds.

In $\S1$ we define smooth *G*-pseudomanifolds and give some examples.

In $\S2$ we prove a theorem on equivariant embeddings into Euclidean space, for smooth *G*-pseudomanifolds.

I wish to express my gratitude to Prof. JÁNOS SZENTHE, EÖtvös University Budapest, for his invaluable comments during the elaboration of this paper.

Mathematics Subject Classification: Primary 54H15; Secondary 57N80.

Raimund Popper

$\S1.$ Smooth *G*-pseudomanifolds

First we recall some definitions given in [5], which will be used in this paper.

Let G be a compact Lie group. By a G-space we mean a completely regular space X, together with a continuous action $G \times X \to X$.

Let $G_x = \{g \in G : g \cdot x = x\}$ be the isotropy subgroup of G at $x \in X$. Denote by X/G the corresponding orbit space with the quotient topology induced by the canonical projection $\pi : X \to X/G$.

Also let $cX = X \times [0,1)/(x,0) \sim (x',0)$ be the open cone of X. Then there is a canonical action on cX, given as follows $g \cdot [x,r] = [g \cdot x,r]$ where $g \in G$, $x \in X$, $r \in [0,1)$. Here [x,r] denotes the equivalence class of (x,r) in cX. Notice that the distinguished point * = [x,0] of cX is G-fixed.

Now let X be a G-space.

Definition 1.1. Given an orbit P in X, then a slice S_x in X at $x \in P$ is called a *conical slice* of P, if it satisfies the following condition.

There is a compact *H*-space *L* (possibly empty), without fixed points, called a *link* of *P*, where $H = G_x$, together with an *H*-equivariant homeomorphism $\phi : S_x \to \Re^{i_0} \times cL$, for an integer $i_0 \ge 0$, where *H* acts trivially on \Re^{i_0} .

For the definition of slices, and their existence in any G-space, see [1] pp. 82–86.

We now define G-pseudomanifolds.

Definition 1.2. A (-1)-dimensional G-pseudomanifold is the empty set.

A *n*-dimensional *G*-pseudomanifold $(n \ge 0)$ is a *G*-space *X* which satisfies the following conditions.

(C1) Each orbit P in X has a conical slice $S_x \simeq^{\phi} \Re^{i_0} \times cL$, such that L is an n-i-1-dimensional H-pseudomanifold, where $i = i_0 + dimG/H \neq n-1$.

(C2) There is a family of orbits with an empty link in X, containing an orbit over each connected component of X/G, such that all the orbits in this family have the same type.

For the definition of orbit type, see [1] p. 42.

If X is a G-pseudomanifold, define on X the following equivalence relation $x \sim y \iff G_x \sim G_y$ i.e. the corresponding isotropy subgroups are conjugate. The equivalence classes of this relation are denoted by $X_{(H)}$, which is the union of all orbits of type G/H in X.

Given an orbit P of type G/H in X and S_x a conical slice at $x \in P$, let $\Phi^{-1} : G \times_H S_x \to X$ be the G-equivariant embedding onto an open set in X, given by $[g, s] \mapsto g \cdot s$ for $g \in G, s \in S_x$. The image Γ of Φ^{-1} is called [1, p. 82] a *tubular neighborhood* of P in X. Clearly we have

$$\Gamma \cap X_{(H)} \simeq^{\Phi} \{G \times_H S_x\}_{(H)} \simeq^{[1,\phi]} \{G \times_H (\Re^{i_0} \times cL)\}_{(H)} \simeq G/H \times \Re^{i_0},$$

since H acts on L without fixed points. Therefore the connected components of the sets $X_{(H)}$, called *strata* of X, are topological manifolds embedded in X, with dimension $i = i_0 + \dim G/H \le n$, $(i \ne n-1)$.

Consider the following canonical filtration of the G-pseudomanifold X, called the orbit type filtration,

$$X = X_n \supset X_{n-1} = X_{n-2} \supset \cdots \supset X_0 \supset X_{-1} = \emptyset,$$

where each X_i is the union of the strata of X with dimension less than, or equal to *i*. Note that $x \in X - X_{n-2}$ if and only if G(x) has an empty link. It is shown in [5] that the connected components of each $X_i - X_{i-1}$ coincide with the *i*-dimensional strata of X, for $i = 0, \dots, n$.

Now let P be an orbit in a stratum $X_i - X_{i-1}$, with a given conical slice $S_x \simeq^{\phi} \Re^{i_0} \times cL$, where $G_x = H$.

Let $\sigma: W \to G$ be a local section of $\pi_0: G \to G/H$, with W a chart of G/H, $eH \in W$ and $\sigma(eH) = e$.

Then $N = \pi_0^{-1}(W) \cdot S_x$ is called a distinguished neighborhood of x.

It is shown in [5] that there is a stratum-preseving homeomorphism $\varphi: N \to \Re^i \times cL$, where N has the relative filtration, and $\Re^i \times cL$ the canonical filtration induced by the *H*-orbit type filtration of *L*, given explicitly as follows $\varphi(g \cdot z) = (gH, p_1\phi(z), \sigma(gH)^{-1}g \cdot p_2\phi(z))$, for $g \in \pi_0^{-1}(W)$ and $z \in S_x$. Clearly $\varphi|S_x = \phi$.

Also $g \cdot N$ is a distinguished neighborhood of $g \cdot x$ for $g \in G$, with a similar homeomorphism.

It is proved in [5] that a G-pseudomanifold X, with the orbit type filtration, is a topological pseudomanifold as defined by Goresky and Mac Pherson [2,3].

Now let X, Y be two non-empty filtered spaces, whose strata are smooth (C^{∞}) manifolds.

Definition 1.3. Let len $X = \sup\{p-q: X_p - X_{p-1} \neq \emptyset \neq X_q - X_{q-1}\}$ be the length of X. Put len $\emptyset = -1$. Definition 1.4. A stratum-preserving map $f: X \to Y$ is said to be smooth, or a smooth embedding, if f is smooth, or a smooth embedding, on the strata of X.

Definition 1.5. A stratum-preserving homeomorphism $h: X \to Y$ is said to be a *diffeomorphism*, if h and h^{-1} are smooth.

We now define the concept of a smooth G-pseudomanifold.

Definition 1.6. Let X be a G-pseudomanifold.

For len X = -1, $X = \emptyset$ is a smooth *G*-pseudomanifold.

For len $X \ge 0$, X is a smooth G-pseudomanifold, if it satisfies the following conditions.

(C1) Each $X_i - X_{i-1}$ is a smooth manifold, with a smooth restricted *G*-action.

(C2) Each orbit P in any $X_i - X_{i-1}$ has a conical slice $S_x \simeq^{\phi} \Re^{i_0} \times cL$, with L a smooth H-pseudomanifold, such that $\varphi : N \to \Re^i \times cL$ is a diffeomorphism for some distinguished neighborhood $N = \pi_0^{-1}(W) \cdot S_x$.

Since $\phi: S_x \to \Re^{i_0} \times cL$ is an *H*-equivariant homeomorphism, then S_x is a smooth *H*-pseudomanifold (see 2.7 in [5]), which is smoothly embedded into the tubular neighborhood $\Gamma \simeq G \times_H S_x$ of the orbit *P*.

We now give some examples.

(1) Let X be a torus in \Re^3 which is pinched at the points $q_{\pm 1} = (0, \pm 1, 0)$ and intersects the xz plane in $L = S_1^1 \cup S_2^1$, the union of two circles centered at the points $(0, \pm 2)$.

There is a canonical Z_2 -action on X given by reflection through the xy plane. Clearly T is a smooth Z_2 -pseudomanifold embedded in \Re^3 .

Notice in particular the embedding in \Re^2 of the smooth Z_2 -pseudomanifold L, which is a link of the orbits $q_{\pm 1}$, and the corresponding embeddings of the smooth Z_2 -pseudomanifolds $c_{q\pm 1}L$ in \Re^3 .

(2) Let G be a compact Lie group acting smoothly on a paracompact manifold M. Asume that the orbit type filtration of M has no strata of codimension one, and M/G is connected. Claim that M is a smooth G-pseudomanifold.

The proof is by induction on len M. For len M = 0 it is trivial. Assume that the claim is true for smooth G-manifolds of length strictly smaller than len M.

Given an orbit P in M, choose a point $x \in P$ with $G_x = H$. Consider a linear slice [1, p. 171], $S_x \simeq E$ at x in M, where H acts orthogonally on an Euclidean space E. Let $V = (E^H)^{\perp}$ denote the orthogonal complement

374

of E^H with respect to an *H*-invariant inner product on *E*. Put *L* to be the unit sphere of *V* with respect to the associated *H*-invariant metric.

Since $L \simeq S^l$ canonically, where $l + 1 = \dim V$, we can put a smooth structure on L. Clearly $H \times L \to L$ is smooth, because H acts orthogonally on V. Since len $L < \operatorname{len} M$, we have by the inductive hypothesis that L, with the H-orbit type filtration, is a smooth H-pseudomanifold.

Now by [1, p. 308] we have a diffeomorphism $\Gamma \simeq G \times_H E$ between smooth *G*-manifolds, where Γ is the tubular neighborhood of *P* corresponding to S_x .

Hence for a chart W of G/H at eH, we have a diffeomorphism of filtered spaces

$$\pi_0^{-1}(W) \cdot S_x \simeq W \times \{ E^H \oplus (E^H)^{\perp} \} \simeq \Re^i \times cL,$$

for $i = \dim G/H + \dim E^H$, since $V - \{0\} \simeq L \times (0, 1)$ is a diffeomorphism between smooth *H*-manifolds, and the strata of *M* are smooth submanifolds [1, p. 309]. Therefore *M* is a smooth *G*-pseudomanifold.

\S **2.** The embedding theorem

In this section we extend to smooth G-pseudomanifolds the equivariant embedding theorem of Mostow.

First we prove the following.

Lemma 2.1. Let X be a smooth G-pseudomanifold and $\Gamma \simeq G \times_H S_x$ a tubular neighborhood of the orbit G(x), corresponding to a conical slice S_x given in Definition 1.6 (C2). Then Γ with the restricted G-action is also a smooth G-pseudomanifold.

PROOF. Let $S_x \simeq^{\phi} \Re^{i_0} \times cL$ be a conical slice at x in X, for a smooth H-pseudomanifold L. Then given $y = \phi^{-1}(p_1\phi(y), [l, r]) \in S_x$, r > 0 and S_l a conical K-slice at l in L, where $K = G_y = H_y = H_l$, we have that

$$S_y \simeq^{\phi} \Re^{i_0} \times S_l \times (0,1) \simeq^{1 \times \phi'} \Re^{i_0 + k_0 + 1} \times cQ$$

is a conical K-slice at y in the H-space S_x , for some $k_0 \ge 0$. Here Q is a link of H(l), which is a n-i-k-2-dimensional smooth K-pseudomanifold, where $k = k_0 + \dim H/K$. Therefore [1, p. 84], S_y is a conical K-slice at y in X.

Let
$$\pi_0: G \to G/H$$
, $\pi_1: H \to H/K$, and $\pi_2: G \to G/K$.

Raimund Popper

Consider local sections $\sigma_0: W_0 \to G$ of π_0 , and $\sigma_1: W_1 \to H$ of π_1 , where $W_0 = \{gH : g \in G^0\}$ and $W_1 = \{\sigma_0(gH)^{-1}gK : g \in G^0\}$, for some open neighborhood $G^0 \subset G$ of e, with $\sigma_0(eH) = \sigma_1(eK) = e$.

Then we have a local section $\sigma_2: W_2 \to G$ of π_2 , given by

$$\sigma_2(gK) = \sigma_0(gH) \cdot \sigma_1(\sigma_0(gH)^{-1}gK), \text{ where } W_2 = \{gK : g \in G^0\}$$

Since $G^0 = \sigma_0(W_0) \cdot \sigma_1(W_1) \cdot K$, we obtain the following diffeomorphism

$$W_2 \simeq \sigma_2(W_2) = \sigma_0(W_0) \cdot \sigma_1(W_1) \simeq \sigma_0(W_0) \times \sigma_1(W_1) \simeq W_0 \times W_1.$$

Now by the explicit formulation of φ (see p. 3), the following composition is a diffeomorphism

$$\sigma_2(W_2) \cdot S_y \simeq^{\varphi} \sigma_0(W_0) \cdot \Re^{i_0} \times (0,1) \times \sigma_1(W_1) \cdot S_l \simeq^{1 \times \varphi'} W_0 \times W_1 \times \Re^{i_0 + k_0 + 1} \times cQ \simeq \sigma_2(W_2) \cdot \Re^{i_0 + k_0 + 1} \times cQ \simeq \Re^{i + k + 1} \times cQ.$$

We now obtain the following result.

Theorem 2.2. Let X be a compact, smooth G-pseudomanifold. Then there is a Euclidean space \Re^n with an orthogonal G-action, together with an equivariant smooth embedding $\theta: X \to \Re^n$.

PROOF. By induction on the length of X. For len X = 0 the statement follows from the smooth embedding theorem of Mostow. Assume that the statement is valid for G-pseudomanifolds of length strictly smaller than len X.

Let P be an orbit in X, with a conical slice S_x in X at $x \in P$ given by Definition 1.6 (C2). Hence, there is an H-equivariant homeomorphism $\phi: S_x \to D(\Re^{i_0}, 1) \times cL$, with $G_x = H$, where L is a compact smooth H-pseudomanifold, and H acts trivially on $D(\Re^{i_0}, 1)$ the open unit disk of \Re^{i_0} . Assume that $L \neq \emptyset$.

Now if Γ is the tubular neighborhood of P corresponding to the slice S_x , then Γ is a smooth G-pseudomanifold by Lemma 2.1. Hence, since the map $\Phi : \Gamma \to G \times_H S_x$ is a G-equivariant homeomorphism, we can put on $G \times_H S_x$ a smooth G-pseudomanifold structure, such that Φ is a diffeomorphism.

Since len L < len X, by the inductive hypothesis there is a Euclidean space \Re^m with an orthogonal *H*-action, together with an equivariant smooth embedding $\theta_1 : L \to \Re^m$.

Therefore there is an *H*-equivariant smooth embedding $\theta_2 : S_x \to V$, where $\theta_2 = (1 \times c\theta_1)\phi$ and $V = \Re^{i_0} \oplus \Re \oplus \Re^m$, which has an orthogonal

376

H-action given by the sum of these representations, with *H* acting trivially on \Re^{i_0} and \Re . Here $c\theta_1 : cL \to c\Re^m \subset \Re \oplus \Re^m$.

Let $D(V,r) = \{v \in V : ||v|| < r\}$, and $c(L,r) = L \times [0,r)/(l,0) \sim (l',0)$ for $0 < r \leq 1$. Using a suitable homothety, we may assume that there is an *H*-equivariant smooth embedding of S_x into $D(V,\sqrt{3})$.

By symmetry there is an *H*-equivariant smooth embedding of $S_x(r) = \phi^{-1}\{D(\Re^{i_0}, r) \times c(L, r)\}$ into $D(V, r\sqrt{3})$. It can easily be shown using an equivariant retraction, that $S_x(r)$ is a conical slice in X at $x \in P$.

Hence the following composition is a G-equivariant smooth embedding

$$\Gamma \xrightarrow{\Phi} G \times_H S_x \xrightarrow{[1 \times \theta_2]} G \times_H D(V, \sqrt{3}) \xrightarrow{[1 \times i]} G \times_H V.$$

For $L = \emptyset$ the above is trivially satisfied.

To conclude the proof, we shall give an equivariant smooth embedding of $G \times_H V$ into Euclidean space, as in [1] p. 315.

By [1] p. 24, there exists an orthogonal representation of G on some Euclidean space V_0 and a point $v_0 \in V_0$ with $G_{v_0} = H$. Now by [1] p. 18, the orthogonal representation of H on the Euclidean space V given above, may be extended to an orthogonal representation of G on some Euclidean space $V' \supset V$, which extends the H-action on V. Then, G acts orthogonally on $W = V_0 \oplus V'$ via the sum of these two representations (i.e. diagonally).

Consider the map $\alpha : G \times_H V \to V_0 \oplus V' = W$, defined by $\alpha[g, v] = g(v_0 + v)$. If $\alpha[g, v] = \alpha[g', v']$ then $g(v_0 + v) = g'(v_0 + v')$, so that $g^{-1}g'(v_0) = v_0$ and $g^{-1}g'(v') = v$. Thus $h = g^{-1}g' \in H$ and h(v') = v. Therefore $[g, v] = [gh, h^{-1}v] = [g', v']$ and hence α is injective. Since $G \times_H V$ has the differentiable structure induced from that of $G \times V$ and since the action map $G \times V \to W$ is smooth, it follows that α is smooth.

Now the isotropy group at [e, v] is H_v , and this is also the isotropy group at $v_0 + v \in W$. Thus α takes the orbit of [e, v] diffeomorphically onto $G(v_0 + v)$. The differential of α is thus injective on the tangent space to the orbit at [e, v]. However, the normal space to the orbit of [e, v] is V and α maps this one-one affinely into W. Hence α_* is injective on the whole tangent space to $G \times_H V$ at [e, v]. By equivariance, α_* is everywhere injective, so that α is an injective immersion. Since α is obviously proper, it is a smooth embedding.

(It is only important that α be an embedding near the 0-section G/H.) Hence the following map β is a G-equivariant smooth embedding

$$\Gamma \xrightarrow{\Phi} G \times_H S_x \xrightarrow{[1 \times \theta_2]} G \times_H D(V, \sqrt{3}) \xrightarrow{[1 \times i]} G \times_H V \xrightarrow{\alpha} W.$$

Raimund Popper

Now given 1 > s > t > 0, let $f : \Re \to \Re$ be a smooth function such that

$$\begin{cases} f(r) = 1 & \text{for } r \leq t \\ f(r) \neq 0 & \text{for } r < s \\ f(r) = 0 & \text{for } r \geq s. \end{cases}$$

If $\rho : \Gamma \to [0, 1)$ is the smooth invariant function obtained from the ratio of cL, we can define a smooth equivariant map $\psi : \Gamma \to W$ by $y \mapsto f(\rho(y)) \cdot \beta(y)$ for $y \in \Gamma$. Since $\rho^{-1}([0, s])$ is closed [1, p. 34], ψ extends to a smooth equivariant map on X.

Also the smooth invariant function $\gamma : \Gamma \to \Re$, given by $y \mapsto f(\rho(y) \cdot s/t)$ for $y \in \Gamma$, extends to a smooth invariant function on X.

Thus for each orbit P in X we have an orthogonal representation of G on an Euclidean space W_x , and a smooth equivariant map $\psi_x : X \to W_x$, which is a smooth embedding on the tubular neighborhood Γ_x of P corresponding to the conical slice $S_x(t)$ at $x \in P$.

Additionally, we have a smooth invariant function $\gamma_x : X \to \Re$, which is nonzero exactly on Γ_x .

Since X is compact, it can be covered by finitely many tubular neighborhoods $\Gamma_{x_1}, \ldots, \Gamma_{x_k}$. Let $\theta: X \to W_{x_1} \oplus \cdots \oplus W_{x_k} \oplus \Re^k \simeq \Re^n$ be given as follows

$$\theta(x) = (\psi_{x_1}(x), \dots, \psi_{x_k}(x), \gamma_{x_1}(x), \dots, \gamma_{x_k}(x)) \quad \text{for } x \in X,$$

this map is clearly smooth and equivariant.

If $x, y \in \bigcup \Gamma_{x_p}$ and $\theta(x) = \theta(y)$, then we have that for some $p = 1, \ldots, k$, $\gamma_{x_p}(x) = \gamma_{x_p}(y) \neq 0$, which implies that $x, y \in \Gamma_{x_p}$ and hence that x = y, since ψ_{x_p} is injective on Γ_{x_p} . Because ψ_{x_p} is a smooth embedding on Γ_{x_p} for all p, it follows that θ is a smooth embedding. \Box

References

- G. BREDON, Introduction to compact transformation groups, Academic Press, New York, 1972.
- [2] M. GORESKY and R. MAC PHERSON, Intersection homology theory, *Topology* 19 (1980), 135–162.
- [3] M. GORESKY and R. MAC PHERSON, Intersection homology II, Invent. Math. 71 (1983), 77–129.

378

- [4] G. MOSTOW, Equivariant embeddings in Euclidean space, Ann. Math. 65 no. 3 (1957), 432–446.
- [5] R. POPPER, G-pseudomanifolds, Acta Mathematica Hungarica (to appear).

RAIMUND POPPER UNIVERSIDAD CENTRAL DE VENEZUELA DEPARTEMENTO DE MATEMATICAS FACULTAD DE CIENCIAS CARACAS 1040-A VENEZUELA

(Received August 7, 1995; revised October 24, 1995)