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On pseudoprime numbers

By ANDRZEJ ROTKIEWICZ (Cambridge)

A composite number 7 is called a pseudoprime if 72" —2. The first proof of
the existence of infinitely many pseudoprimes was given by M. CipoLLA in 1904
([2]). He proved the following theorem:

The number F,-F, ... F,, where F;=2%+1,m=...<s isa pseudoprime if and
only if 2m>s. If follows at once from this theorem that every number F,F, .,
m=2,3, ... is a pseudoprime. Cipolla’s results remained long unnoticed by later
writers on the subject. In the thirties D. H. LEHMER ([6]) and P. PouLET ([8]) tabulated
all odd pseudoprimes <108, and in 1949 D. H. Lehmer ([7]) gave a list of all odd
pseudoprimes n with 10® <n<2-10%, and all of whose factors exceed 313.

The distribution of pseudoprimes is very irregular. The only pair of consecutive
pseudoprimes below 10® with difference 2 is the pair 17-257, 17-257+2. I do not
know, whether there exist two or three consecutive natural numbers each of which
is a pseudoprime. It is a surprising fact that more than one half of all odd pseudop-
rimes< 10® end in the digit 1 (when represented on the decimal scale) and approxi-
mately 10% end in the digit 3, 5, 7 or 9.

In 1936 D. H. Lehmer ([6]) showed that there are infinitely many pseudo-
primes which are products of two primes and in 1949 he proved that this is true
also for product of three primes (see [7]).

In 1949 P. ErDOs ([3]) generalizing a method due to Lehmer proved that for
any k=2 there are infinitely many pseudoprimes which are products of exactly &
different primes.

1947 W. SiErPINSKI ([22]) gave a very simple proof that there are infinitely
many pseudoprimes by proving that if » is a pseudoprime then 2" — 1 is also pseudo-
prime. The same result was found later by R. STEURWALD ([23]).
~ Until 1950 only odd pseudoprimes were known. D. H. Lehmer was the first
to find an even pseudoprime, namely = 161038.

In 1951 N. G. W. H. BEeGER ([1]) proved that there exist infinitely many even
pseudoprimes. We give now the proof, that there exist infinitely many squarefree
pseudoprimes divisible by an arbitrary given prime p (cf. [9]).

We begin with a definition. A prime p which divides 2" — 1 and does not divide
2—1 for k=1,2,...,n—1 is called a primitive prime factor of 2" — 1. That such
a prime p exists for n > 6 follows from a theorem of K. ZsiIGMONDY ([25]). It is enough
to prove that for a given prime p there exists at least one pseudoprime with the
required property. For suppose that 2" =2 (mod pn) and let ¢ be a primitive prime
factor of 2”~!'—1. Then pn—1 divides g—1, thus pgn|2(2P"~' —1)|22"' —1)=
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=21—2, and since 27" =27 (mod pgn) it follows that pgn|2?%" —2. It remains to

find one pseudoprime with required property. For p=2, 3, 5, 7, 11, 13 such numbers

are given by 2-73-1103, 3-11-17, 5-13-17, 7-13-19, 11-31, 13:7-19 respectively.
It is easy to prove that

1. for p=8k+1=13 a suitable pseudoprime is pg where g is a primitive
prime factor of 27~' —1.

2. for p=8k+3=13 a suitable pseudoprime is pg where ¢ is a primitive
prime factor of 27-1/2 1,

Finally for p=8k+5=13 a suitable pseudoprime is pg where g=p is a
primitive prime factor of 2?~' — 1. Such a factor exists by virtue of a theorem of
A. SCHINZEL ([20]) to the effect that the number 24" — 1 for n odd =5 has at least
two primitive prime factors.

Let P(x) denote the number of pseudoprimes =x. P. ERDOs ([4]) proved in
1955 that

P(x)=<x exp { —c (log x log log x)*},

where ¢ is a positive constant.

On the other hand it follows from the construction of Lehmer that P(x)=>
=1 log x for x =222 — 1. No estimation for P(x) better than P(x)=c log x is known.
It [19] I proved, that for every integer n =19, there is a pseudoprime between n

-
exp [—+— :
and »* and that for every =0 and all x=x,(e) =4 [‘ 2] there is a pseudo-
prime between x and x'*e.

The tables suggest that for x =170 there is a pseudoprime between x and 2x,
but this cannot be proved from the constructions of pseudoprimes given so far.
Since the number of primes = x is asymptotic to x/log x, it follows from the results
of Erdds that there are considerably fewer pseudoprimes than primes. It would
therefore, seem that a problem of the distribution of pseudoprimes in arithmetical
progression would present much greater difficulties than the analogous problem,
settled by the theorem of Lejeune—Dirichlet. The condition (a, b) =1 necessary
in the theorem of Lejeune—Dirichlet is no longer necessary here. There exist
arithmetical progressions ax + b, where (a, b) =1 containing infinitely many pseudo-
primes, e.g. 4x +2, or px, where p is a prime. It would not be reasonable, however
to replace the condition (a, b)=1, for example by the condition (a, b)|p where
p is a prime, since there are progressions ax + b satisfying the latter and not containing
any pseudoprime. Indeed, let a=p (p—1), b=3p, where p is a prime =5 (mod 6),
so that (a, b) =p. If we had for some n =ax + b, n|2"—2, then p would divide 2"—2
and since 2°*P=2r(P=Dx+3(r=143 =23 (mod p) we should get p[2®* —2 which is
impossible. Similarly, it is easy to prove that a progression pgx (x=0, 1,2, ...),
where ¢|2” —1 does not contain any pseudoprime.

It seems noteworthy that there are arithmetical progressions for which it is
easier to prove that they contain infinitely many pseudoprimes than that they
contain infinitely many primes. For instance, as observed by. A. Schinzel the
existence of infinitely many pseudoprimes in the progression 7x+3 follows from
an analogous property of the progression 3x +2. Indeed, suppose that there are infi-
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nitel many pseudoprimes of the from 3x + 2 and let n be any one of them. Then 2" — |
is also a pseudoprime and since 23*+*?—1=22—1=3 (mod 7) it belongs to the
progression 7x+ 3.

There is no similar deduction for the distribution of primes. Since pseudo-
primes of the form 3x + 2 can be found from the formula F,F,,, F,,, (n=3,4, ...)
it follows that the progression 7x + 3 contains an infinity of pseudoprimes.

The proof that every arithmetical progression ax+b (x=0,1,2) where «a
and b are relatively prime positive integers contains an infinity of pseudoprimes
is much more difficult ([10]). It is achieved by showing that the progression ax + b
where (a, b)=1 contains a pseudoprime

pJfr-1(2) if 2 is a primitive root of p
P—{ 2=t

P fp-1(2) if 2 is not a primitive root of p

where f,(x) is the n-th cyclotomic polynomial and p is a prime =& (mod a) satisfy-
ing certain conditions. The Brun—Titchmarch estimate for the number of primes
= 1 (mod k) and not exceeding x is used in the proof of the following lemma:

In every arithmetical progression ax + b, where (a, b)) =1 there exists a prime
p such that

-1
D=2, 2<pi<e<nm
2-1pf . o p— 1.

In a note ([19]) joint with Schinzel we proved also, that every quadratic form
(positive or indefinite) with fundamental discriminant and belonging to the principal
genus represents infinitely many pseudoprimes. The theorem about pseudoprimes
in an arithmetic progression has the following consequences ([12]):

1. For an arbitrary finite sequence ¢,, ¢,, ..., ¢, of digits where ¢,,=1, 3, 7, 9
there exists an infinity of pseudoprimes whose last m digits are ¢, ¢;, ..., €.

2. There exist pseudoprimes arbitrarily distant from others on both sides, i.e.
for every k there exists a pseudoprime p =k such that none of the numbers
p+i(i=1,2, ..., k) is a pseudoprime.

3. For every even integer 2k and every modulus m there exist pseudoprimes
p and g arbitrarily large such that 2k =p +¢ (mod m).

In particular every integer divides a sum of two pseudoprimes. Professor
Sierpinski raised the questions, whether there exist arithmetic progressions formed
from three different pseudoprimes and whether there exist pseudoprimes which
are at the same time triangular. In [15], [16] I proved that the answer to these ques-
tions is in the affirmative. Here I give another proof begining by the following.

Lemma. There exist infinitely many positive integers n such that the numbers
6n+1, 12n+1, 18n+ 1 are composite and

(1) 6n+1, 12n+1, 18n+1[25" —1.
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PROOF. It can be verified that for n= gy =t the numbers 6n+ 1 =237 +—1——,
12n+1= 2%—_1 and 18n+1=2%"—1 are compS:Jsite and (1) holds. Now, we n30tice
that if 6n+1, 12n+1, and 18n+ 1 are composite and satisfy (1), then the numbers
6N+1, 12N+1 and I8N +1, for N= 212"9“1 have the same property. Indeed,
we have 6N = —2-(-2-12;*1), whence by (1) it follows that 2(6n+1)(12n+1)|6N.
Thus

6N+1 = 212”;1_""1 22120+ 1) ]| 26N — ],
I2N+1 = 22_(6:;”_"_1 |22(6m+1) _ 1| 26N — ],

ISN+1 = 212n+1 _]]26N._ ]
Since the numbers 6N+1, 12N+ 1, 18N+ 1 are composite, as is easily proved

12n __
and N= raine for n=1, the lemma follows.
As consequence we obtain:
I. There exist infinitely many triplets of pseudoprimes, which are in A. P. [15].
II. There exist infinitely many triangular pseudoprimes ([16]).
III. There exist infinitely many pentagonal pseudoprimes ([11]).

(A pentagonal number is one of the form k (3k —1)).

Proor of I. If the composite number 6n+1, 12n+1 and 18z + 1 satisfy (1)

then:
6n+1|260 — 1|26a+1 2 12p+4 1|26n — [|2120+1 2

187+ 1]267-- 1[218n — ][218n+1 2,

Hence 6n+1, 12n+1 and 18n+ 1 are pseudoprimes. They form an arithmetic prog-
ression with the difference 6n. Another arithmetic progression formed of three pseudo-
207 391 2%}

§. - 3R 8
Proor of II. It follows from (1) that
tignsr = (O6n+1)(12n+1)[267 — ]| 202n+1=1 — ] |2t2n+1 -2,
Proor oF III.
Dy20+1 = (12n+1)(18n+ 1)|267 — ]| 2@12n+1=1 — ]| 2@12n+1 — 2,

There exist only 6 triangular pseudoprimes =20000 and only one pentagonal
pseudoprime =60000. The least triangular pseudoprime is the number 7;;=561.
I do not know any arithmetic progression formed by six pseudoprimes. I cannot
prove the existence of infinitely many pseudoprimes which are at the same time tetra-
hedral. Also I do not know whether for every n, there exist a pseudoprime which

primes is given by
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is at the same time n-gonal number (i.e. number of the form !26— [(n—=2)(k—1)+2],

k=1,2,...). As far as geometric progressions formed by pseudoprimes are con-
cerned, one can give examples of such progressions with three terms ([15]).

However, the existence of infinitely many such progressions as well as the
existence of pseudoprime squaress would imply the existence of infinitely many primes
such that p?|29=' — 1 ([17]), [18]). The last problem seems very far from solution, since
it is known that there are only two primes p < 10° satisfying p?(2?=' — 1 ([5]) and we
cannot prove that there exists infinitely many primes p such that p?]2?~'—1. We
also do not know whether there exists an integer k£ such that for every prime p
the number 27 —2 is not divisible by p*.

One can show that there exist only two square pseudoprimes -<10'2 ([17]).

The existence of geometric progressions formed by k different pseudoprimes
implies the existence of a prime p such that p*~1|2?~! —1 ([18]); conversely the
existence of a prime p such that p*|2°~' —1 implies the existence of a geometric
progression formed by k different pseudoprimes ([18]). If p*[2P~ —1, then p?, p3,...,p*
are pseudoprimes ([18]). It follows from the formual (1) that there exist infinitely
many integers x such that x, 2x —1, 3x—2|2*~! — 1, whence one can easily con-
clude that there exist infinitely many integers x such that all the numners x, 2x—1,
3Ix—2, x(2x—1), x(3x—2), 2x—1)(3x—2), x(2x—1)(3x —2) are pseudoprimes.

We do not know any polynomial of degree =1 in a variable x about which
we could prove that it takes primes values for infinitely many values of x. On the
other hand for every integer n>1 there exists a polynomial of degree n which
represents infinitely many pseudoprimes ([13]). One such polynomial is given
for instance, by f(x)=2"x"—1, where (m,n)=1.

Indeed, if nk +m is a pseudoprime, then 2"*™ —1 =2"(2%)" —1 is also pseudo-
prime, and we see that the value of the polynomial f(x) for x =2* is a pseudoprime.

I do not know any example of an irreducible polynomial of the degree =1
representing infinitely many pseudoprimes and not representing + 1.

If n and kn are pseudoprimes then n|2*—2 ([14]). The least positive integer
k for which there exist a pseudoprime n such that nk is also a pseudoeprime is
k=23 ([14]).

If n and n(n+k) are pseudoprimes then n|2¥*' —2 ([14]), and hence it follows
inter alia that there is no number x for which x and x(x +4) are both pscudoprimes.

I conjecture that the following hypothesis H; ([13]), holds for pseudoprimes
analogous to the hypothesis H ([21]) of A. Schinzel concerning primes.

H,: If s is a natural number and f,(x), ... fi(x) are polynomial with integral
coefficients, with the leading coefficients positive, relatively prime in pairs and satisfy-
ing the property S given below, then there exist infinitely many natural numbers
x for which each of the number fi(x), f5(x), ..., fi(x) is a pseudoprime.

S: There is no natural number =1 which is a divisor of the product f;(x)f5(x) ...
...fyx) for every integral value of x.
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