Kolmogorov automorphisms in σ-finite measure spaces

By J. K. DUGDALE (London)

Introduction

It is well known (see [3]) that for finite measure spaces Kolmogorov automorphisms are ergodic. The aim of this paper is to extend the concept of Kolmogorov automorphisms and the above theorem to σ -finite measure spaces.

Notation

Let X be an arbitrary space, ε be a σ -algebra of subsets of X, μ a σ -finite measure on (X, ε) and T a measure preserving automorphism on (X, ε, μ) . By a σ -algebra α we mean a sub- σ -algebra of ε and by a set Λ we mean a subset of X such that $A \in \varepsilon$. For any set A we put

$$\varepsilon_{\Lambda} = \{B \colon B \in \varepsilon, B \subseteq \Lambda\}$$

and define a mesure μ_A on (A, ε_A) by putting

$$\mu_A(B) = \mu(B)$$
 for $B \in \varepsilon_A$.

We define the induced automorphism S_A by putting

$$S_A(x) = \{T^j x : T^i x \in \Lambda, T^j x \notin A, 1 \le j \le i-1 \text{ for } x \in \Lambda\}$$

and lastly for any σ -algebra α and any set A we put

$$\alpha_A = \{B: \text{ there exists a } C \in \alpha \text{ such that } B = A \cap C\}.$$

Preliminaries

We say that a set Λ is a wandering set if $\Lambda \cap T^{-i}\Lambda = \emptyset$ for i = 1, 2, ... It is well known (see [1]) that if (X, ε, μ, T) has no wandering sets of positive measure then for all $\Lambda \in \varepsilon$ we have

$$\bigcup_{i=1}^{\infty} T^{-i} \Lambda = \bigcup_{i=0}^{\infty} T^{-i} \Lambda$$

up to a set of measure zero and that

$$\Lambda = \bigcup_{i=1}^{\infty} \Lambda_i$$

up to a set of measure zero where

$$\Lambda_i = \{x : x \in \Lambda, T^i x \in \Lambda, T^j x \notin \Lambda, 1 \le j \le i - 1\}.$$

Lemma 1. If there are no wandering sets of positive measure in (X, ε, μ, T) and α is any σ -algebra such that $\alpha \leq T\alpha$ then for all sets Λ with $0 < \mu(A)$ we have $\alpha_{\Lambda} \leq S_{\Lambda} \alpha_{\Lambda}$.

PROOF. For any $B \in \alpha_A$ (and hence to α) we put $B_k = T^k A \cap B - \bigcup_{j=1}^{k-1} B_j$, k = 1, 2, ...

Then $B_k \subseteq B$ and $S_A^{-1}B_k = T^{-k}B_k$ for all k. If $C = B - \bigcup_{k=1}^{\infty} B_k$ then $C \cap T^iC = \emptyset$

for i=1, 2, ... and hence we must have $\mu(C)=0$ i.e. $B=\bigcup_{k=1}^{\infty}B_k$ up to a set of measure zero. Further $B_k \in T^k \alpha$ for k=1, 2, ... and so up to a set of measure zero we have

$$B = \bigcup_{k=1}^{\infty} B_k = S_A S_A^{-1} \bigcup_{k=1}^{\infty} B_k = S_A \bigcup_{k=1}^{\infty} T^{-k} B_k.$$

Now $T^{-k}B_k \in \alpha$, $T^{-k}B_k \subseteq \Lambda$ and so we get that $\bigcup_{k=1}^{\infty} T^{-k}B_k \in \alpha_{\Lambda}$ i.e. $B \in S_{\Lambda}\alpha_{\Lambda}$. But B was any set in α_{Λ} and so we conclude that $\alpha_{\Lambda} \leq S_{\Lambda}\alpha_{\Lambda}$.

Corollary 1. With the hypothesis of the lemma $\alpha_A \leq (T\alpha)_A \leq S_A \alpha_A$.

PROOF. Since $\alpha \leq T\alpha$ we have $\alpha_A \leq (T\alpha)_A$. The second inequality is proved by taking $B \in (T\alpha)_A$ in the proof of the lemma.

Corollary 2. With the hypothesis of the lemma if $\bigvee_{i=-\infty}^{\infty} T^i \alpha = \varepsilon$ then $\bigvee_{i=-\infty}^{\infty} S^i_{A} \alpha_{A} = \varepsilon_{A}$.

PROOF.
$$\varepsilon_A = \begin{pmatrix} \bigvee_{i=-\infty}^{\infty} T^i \alpha \end{pmatrix}_A \leqq \begin{pmatrix} \bigvee_{i=-\infty}^{\infty} S_A^i \alpha_A \end{pmatrix} \leqq \varepsilon_A$$
.

Lemma 2. If there are no wandering sets of positive measure in (X, ε, μ, T) α is a σ -algebra such that $\alpha \leq T\alpha$, $\bigvee_{i=-\infty}^{\infty} T^i\alpha = \varepsilon$, $\Lambda \in \alpha$ satisfies $0 < \mu(\Lambda) < \infty$ and $B \in \varepsilon_{\Lambda}$ then $S_{\Lambda}B = B$ implies $B \in \alpha_{\Lambda}$.

PROOF. For each k=1, 2, ... there exists B_k , n_k such that $B_k \in S_A^{n_k} \alpha_A$, $\mu(B \triangle B_k) < 2^{-k}$. But $B = S_A B$ and so

$$\mu(B \triangle S_A^{-n_k} B_k) = \mu\{S^{-n_k}(B \triangle B_k)\} = \mu(B \triangle B_k) < 2^{-k}$$

If $C_k = S^{-n_k}B_k$ for k = 1, 2, ... then $C_k \in \alpha_A$ for each k and

$$B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} C_k$$

up to a set of measure zero. Hence $B \in \alpha_A$ as required.

Lemma 3. If there are no wandering sets of positive measure in (X, ε, μ, T) , $\Lambda \in \varepsilon$, $\mu(A) > 0$ and S_A is ergodic, then T is ergodic in $(B, \varepsilon_B, \mu_B)$ where $B = \bigcup_{i=1}^{\infty} T^{-i} \Lambda$. PROOF. See S. KAKUTANI ([2]).

The main resolt

We say that T is a Kolmogorov automorphism if there exists a σ -algebra α such that

- (i) $\alpha \leq T\alpha$
- (ii) $\bigvee_{i=-1}^{\infty} T^i \alpha = \varepsilon$
- (iii) $\bigwedge_{i=-1}^{\infty} T^i \alpha = \nu$, where ν is the σ -algebra consisting of the two sets: \emptyset and X.
- (iv) for at least one $A \in \alpha$ we have $0 < \mu(A) < \infty$.

Theorem. If there are no wandering sets of positive measure in (X, ε, μ, T) and if T is a Kolmogorov automorphism then T is ergodic.

PROOF. If α is a σ -algebra satisfying (i)—(iv) then if $A \in \alpha$, $0 < \mu(A) < \infty$ we have $\bigcup_{i=1}^{\infty} T^i A$ to be invariant and hence by (iii) we get $\bigcup_{i=1}^{\infty} T^i A = X$. Thus we can find A_n , $n=1,2,\ldots$ such that $A_n \in \alpha$, $0 < \mu(A_n) < \infty$ each n, $A_n \cap A_m = \emptyset$ if $n \neq m$ and $\bigcup_{n=1}^{\infty} A_n = X$. We write ε_n , μ_n , S_n , α_n for ε_{A_n} , μ_{A_n} , S_{A_n} , α_{A_n} . By Lemma 1 and its corollaries we see that $\alpha_n \leq S_n \alpha_n$, $\bigvee_{i=-\infty}^{\infty} S_n^i \alpha_n = \varepsilon_n$. If S_n is not ergodic for some n then there exists a $B \in \varepsilon_n$ with $0 < \mu(B) < \mu(A_n)$ and $S_n B = B$. By lemma 2 we have $B \in \alpha_n$ and hence $B \in \alpha$. Now $B = A_n \cap \bigcup_{k=1}^{\infty} T^{-k} B$ and if $C = \bigcup_{k=1}^{\infty} T^{-k} B$ then TC = C, $C \in \alpha$ and so $C \in \bigwedge_{i=-\infty}^{\infty} T^i \alpha = v$ i.e. $\mu(C) = 0$ or $\mu(X - C) = 0$. But $0 < \mu(B) \leq \mu(C)$ and so we get $\mu(X - C) = 0$, which in turn gives $A_n \cap C = A_n$ i.e. $\mu(B) = \mu(A_n)$. This is a contradiction and so we deduce that S_n is, ergodic. The result then follows from lemma 3.

Bibliography

[1] P. R. Halmos, Measure Theory, New-York, Toronto, London 1950

[2] S. KAKUTANI, Induced measure preserving transformations, *Proc. Japan Acad.* 19 (1943) [3] V. A. ROKHLIN, New progresses in the theory of transformations with invariant measure, *Usp.*

[3] V. A. ROKHLIN, New progresses in the theory of transformations with invariant measure, Uspehi Mat. Nauk. 15 (1960), 4., 3—26.

(Received April 9, 1966.)