99

On minimal ideals in the circle composition semigroup of a ring

By. W. EDWIN CLARK (Gainesville, Fia.) and Jacques Lewin (Syracuse, NY.)

Let R be a ring, and let o denote the circle composition on R defined by acb=
=a+b—ab. In this note we discuss the existence of minimal ideals in (R, o) and
their significance in R. In § 1 we show that (R, o) has a completely simple minimal
ideal KX if and only if R contains an idempotent e which is an identity for R modulo
its Jacobson radical. If this is the case then the ideal /(R) of the ring R generated
by K — K is seen to be a radical-like ideal which is zero if and only if R has an identity.
A necessary and sufficient condition is given for R to be a splitting extension of
I(R) by a subring eRe for an idempotent e of R.

An interesting question is the determination of those simple rings R for which
(R, ©) is simple. Sasiada’s example ([5]) shows that R may be a radical ring. Our
results imply that if (R, o) is completely simple then R must be a radical ring.
Example B below shows, however, that there are semi-simple non-simple rings
for which (R, o) is simple. By taking quotients one may easily construct from the
ring in example B a ring R for which both (R, o) and the multiplicative semigroup
(R, +) are simple.

1. We denote by J(R) the (Jacobson) radical of the ring R (see [4], ch. 1).

An idempotent ¢ in R will be called principal if

(1—e)R+R(1—e) = J(R).

(Note that we use 1 only as a notational device. R may or may not have an identity).
A principal idempotent is always principal in the classical sense (see [1], p. 25);
however the converse does not hold. If e=0 is principal, then J(R)=R. If R has
an identity 1, then 1 is the only principal idempotent of R. Our results become
trivial in both these cases.

It is easy to see that a semi-primary SBI ring ([4], ch. III), and hence a ring
with d.c.c., has a principal idempotent.

Let ¢ be an idempotent. We define

P,=(1—e)Re+eR(1—e)+ (1 —€)R(1 —e).

P, is the sum of the last three terms of the two-sided Peirce decomposition of R
with respect to e. We note that R=eRe + P, is a direct sum decomposition qua
abelian groups and that

- P,=(1—¢€e)R+R(1 —e).
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Thus an idempotent e is principal if and only if P, < J(R).
We further define
G,=eoJ(R)oe = (1—e)J(R)(1 —e)+e

L,=J(R)ce = J@R)(1—e)+e
R,=ecJ(R) = (1—e)J(R)+e
K,=L,oR, = J(R)oeoJ(R).

Lemma. 1. (G,, o) is a group for any idempotent e in R.

PrOOF. Since e=eoce=eo0oe, it follows that e€ G, and that e is an identity
for G,. Let now g€G,. Then g=y+e where y€(1—e)J(R)(1 —e) S J(R). Since
y€J(R), y has a quasi-inverse z. Since 0=yoz=y+z —yz, it follows that z=yz—y =
=(1—-e)yz—(1—e)y =(1—-e)(yz—y) = (1 —e)z. Similarly z=z(1—e). Hence
z€(l1 —e) J(R)(1 —e) and h=z+e is in G,. Now, ez=ze=ey=ye=0 and zoy=
=yoz=0, Thus hog=goh=e, every element of G, has an inverse, and the lemma
is proved.

A semigroup is called simple if it contains no proper ideals, and completely
simple if it is simple and every element lies in a subgroup, i.e. a subsemigroup which
is a group (see [3]). We shall need the following result:

Theorem. (A. H. CLiFFORD [2]). If L and R are minimal left and minimal
right ideals respectively of a semigroup S, then K=LR is a minimal (two-sided)
ideal of S and is a completely simple semigroup.

This enables us to prove

Lemma 2. If e is a principal idempotent of R, then K, is a completely simple
minimal ideal of (R, ©).

Proor. Since K,=L,oR,, it suffices, by Clifford’s Theorem, to show that
L, and R, are minimal left and right ideals. By symmetry it suffices to show that
L=L, is a minimal left ideal.

Using the fact that e is principal, and thus that R(1 —e) =J(R)(1 —e) we have that

RoL = RoJ(R)oecRoe = R(1—e)+e = J(R)(1 —e)+e = L.

Thus L is a left ideal. Let now T be any left ideal of (R, o) with Tc L. Theneo TC
cLNTNG, since eo L=G,. Therefore G, meets T and, since G, is a group, G, 7.
In particular, e€ T and L=J(R)oecT. Thus T=L and L is indeed minimal.

Corollary 3. If e and f are any two principal idempotents, then K,=K,.
Corollary 4. If e is a principal idempotent, then

G,=eoRoe

L,=Roe

R.,=eoR

K,=RoeoR.
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PrOOF. Since e€L,, RoecL,. But L, is minimal. Thus Roe=L,. The other
parts follow similarly.

Theorem 1. If R is a ring, (R, o) has a completely simple minimal ideal K if
and only if R contains a principal idempotent. Further, an idempotent is in K if and
only if it is principal.

Proor. The sufficiency was proved in Lemma 2 and Corollary 3. To show the
necessity of the conditions, assume that K is a completely simple minimal ideal
of (R, o) and let e be any idempotent of K. We show that e is principal. First we
note that (1 —e) R=eo R—e. Let then x=eor —e for some r€ R. Since K is comple-
tely simple eoroe lies in the subgroup ec Koe=eo Roe of K containing e (see [3],
Lemma 2. 46, p. 77). There then exists s € R with

(1) e=(eosoe)o(ecroe)=eo(sceor)oe.

Letz=eosceand y=2zx—x. Thisyields zx =(1 —e)s(1 —e)r. Thus y€(1 —e)R.
If we can show that yox=0, then it will follow that (I —e)R is a quasi regular
right ideal and therefore is contained in J(R), ([4], ch. 1). We now calculate:

yox=2zx—zx*+x?
= —e)(s—sr+ser+r)(1—e)r
=(1—e)(s+e—se+r—sr—er+ser)(1 —e)r

=(1—e)(sceor)(l —e)r.
Now, by (1) we have

e = eo(sceor)oe = (1 —e)(sceor)(l—e)+e

which implies that (1 —e)(sceor)(1 —e)=0 and yox=0. Similarly, R(I —e) < J(R).
Thus e is principal. Since e was any idempotent of K, the theorem is proved.

2. In this section, R is a ring with a principal idempotent e and K is the minimal
ideal of (R, o). :

We denote by I(R) the ideal of R generated by K—e. I(R) does not depend
on the choice of e since K —a and K—b generate the same ideal whenever @ and b
are both elements of K. Since K< J(R) +e, it follows immediately that /(R) = J(R).

Theorem 2. If R contains a principal idempotent, then
(i) I(R)=0 if and only if R has an identity
and

(i) I(R/I(R))=0.

Proor. (i) If I(R)=0, then K —e=0. Since Roec K we must also have that
Roe—e=0. This implies that e is a right identity for R. Likewise, e is a left identity.
Conversely, if e is an identity for R, then K= {e} and I/(R)=0. The verification
of (ii) is routine and will be omitted.

Since I(R)¢ < I(Ro) for any homomorphism ¢ of R, we easily obtain

Corollary 5. I(R) is the intersection of all ideals 4 of R for which R/A has
an identity.
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We can now connect I(R) and the Peirce decomposition of R:
Lemma. 6. I(R) is the subring generated by P,.

ProOOF. Since R=eRe+ P,, the factor by the ideal generated by P, has an
identity and thus this ideal contains I(R). However, (1 —e)RUR(l —e)c(L,—e)
U(R,—e)cK—e. Since P,=(1—e)R+R(1—e) this implies that P,cCI(R).
To complete the proof of the lemma, we need only observe that the subring and
the ideal generated by P, coincide.

Corollary 7. 1f either I(R)>=0 or R contains a principal central idempotent,
then R=eRe+I(R) and eReI(R)=0.

PrOOF. One need only notice that in both these cases P, is already a subring,
and thus that I(R)=P,.

By a linear variety in a ring R we mean a translate a+ M of a subgroup M
of the additive group of R. It is easily verified that V is a linear variety of R if and
only if all finite sums > m; lie in ¥ whenever the v;€ V' and the n; are integers
whose sum is 1.

It is easy to verify that if T is an ideal of (R, o) the linear variety generated
by T is also an ideal of (R, o) and that if 7"is both an ideal of (R,c) and a linear
variety then, for any t€7, T'—t is an ideal of R. However all the ideals of R may
not be obtainable in this fashion.

Theorem 3. Let ¢ be a principal idempotent of R. Then, K is a linear variety
of R if and only if R =eRe + I(R) (a direct sum qua abelian groups). When this occurs,
then K=P,+e and I(R)=P,.

ProOF. We first assume that K is a linear variety. We need only show that
I(R)=P,. To this effect, we first show that eKe =e: Let x€ K. Since X is a linear
variety, as well as an ideal of (R, o) containing e, we have that

exe=x—xoe—eox+eoxoe+e

lies in K Silnce K is a union of groups by Theorem 1, there exists an idempotent
g€ K for which goexe=exe=exeog. Thus g=gexe and g=exeg and further
ge=eg=g. Whence eog=e=goe. Therefore e=goeogé€goRog which is a
group by lemma | and corollary 4. Since a group contains a single idempotent,
e must equal g. This shows that exe=e for all x€ K.

Now, by a previous remark, since K is a I'near variety, K—e is an ideal of R
and therefore K—e=I(R). Thus el(R)e=e(K—e)e=eKe—e=e—e=0 and it
follows easily that I(R) = P,. Lemma 6 then forces P, to coincide with I(R).

Assume now, to prove the converse, that R=eRe + I(R) is a direct sum qua
abelian groups. Since R = eRe+ P, is such a direct sum and P, S I(R), it follows
that P,=I(R). Recalling that K—e generates I(R)=P,, we see that K—-eEP,.
To prove the opposite inclusion we show first that any idempotent y +e€P,+e
must lie in K:

(¢ +y)> =e+y and hence ey +ye+y*=y. Multiplying by e on the left yields
eye+ey* =0 and hence (e +ey)o(e+y) = (e+y). To show that e+ y€K, it there-
fore suffices to show that e+eyc K. However this is clear since e+eP,=e+
+eR(l—e)cL.cK
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Let now e+a be an arbitrary element of e+ P,. Since a€ P, =I(R) we have
that g —2eac P,. Let g be the quasi-universe of @ —2ea in P,. (Such a ¢ exists since
P, is an ideal contained in J(R)). Let y=eq+ ge+geq. Since eP,e=0, it follows
that y +e¢ is an idempotent in P,+ e and thus that y+e€ K. If we can show that
(y+e)o(a+e) = a+e we will have shown that a+e€ K and thus that K=P, +e,
which will prove that K is a linear variety. Now,

(y+e)o(a+e) = a+e+y—ya—ye—ea.
Substituting eq + ge + geq for y and using the fact that ege =0, we find that
(y+e)o(a+e) = a+e+(1+q)(eq—ea—eqa).
1t therefore suffices to show that eq —ea—ega = 0. However,
0=e0=e(go(a—2ea))=e(q+a—2ea—qa+2qgea) =eq — ea — eqa.

This then completes the proof of Theorem 3.

3. Examples.

A. The ring of all real 3 X3 matrices of the form
x 0 0
y 00
.

provides an example of a ring R where X is not a linear variety. This is easily verified
since K consists of all matrices of the form

0O 0 0
x 0 0
-xy y 0

B. We now give an example of a ring R for which K= R is simple but not
completely simple:

Let L be the ring of all linear trnsformations on a vector space V of uncount-
able dimension, and let R be the subring of L consisting of all linear transformations
o such that dim Vo <dim V.

We first note that any ideal I of (R, o) must contain an idempotent, for if
o €1 and e is any projection on Vo, then e=gce€l. To prove that (R, o) is simple
we need only show that any ideal of (R, o) contains 0, and we achieve this by ex-
hibiting, for any idempotent e€ R, ¢ and 7 in R for whichooeo1=0. Let then e€ R
be the projection on the subspace M, along the subspace W. Since dim W=dim M,
we can find a sequence of subspaces M,, M;, M, ..., all isomorphic to M, such that

W=(M2$M3® ---)@ U
We choose bases {mi:i=1,2, ...; a€ A} for the M; and we define ¢ and t by
mlo =m2; mio = mi+mi*! i1, Us=0

mit=ml; mit=mi+ml! i=1, =9
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Then it is clear that both ¢ and t are in R, and one verifies that coeor=0.
(R, ©) is then simple.

If (R, o) were completely simple, then, by Theorem 1, all idempotents of R
would be principal. But it is clear that R has no principal idempotents.
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