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On four extensions of the functional
equation |f(x +iy)| = [f(x)+f(iy)|

By HIROSHI HARUKI (Waterlov, Canada)

§ 1. Introduction

R. M. RoBINSON solved the following functional equation:
(1) | f(x+iy)| = [ f(x) +f(iy)],

where f(z) is regular for |z| <r and x, y are real. (See [1].)

In this paper we shall solve four extensions of (1). ;

Firstly we shall solve the following three functional equations which were
presented by J. ACZEL:

(2) | fCx+ip)| = f(x) +af(iy)],

3) | [(x +iy)| =laf(x) + f(iy)|,

“4) | f(x+iy)| = |af(x) + bf (iy)|,

where f(z) is an entire function of z, and x, y are real, and a, b are complex constants,
Here, putting a=1, b=1, we have (1), and putting a=1, b = —1, we have

| f(x+iy) =| f(x)—f(iv)| which was solved in [2]. We shall reduce (4) to (2), (3).
Secondly we shall solve the following functional equation which has a geometric
meaning:

) | f(x+iy) +/0)| = | f(x) +£(ip)],

where f(z) is an entire function of z, and x, y are real. Here, putting f(0) =0, we
have (1).

§ 2. On the functional equations (2), (3), (4)

Theorem 1. If f(2) is an entire function of z and satisfies the functional equation
(2) for real values of x and y, then the solutions of (2) are the following and only these:
Case (i) a=0. f(z)=C exp (22),
where C is an arbitrary complex constant and o is an arbitrary real constant.
Case (i) a=1. f(z)=Cz, or f(z)=C sin az, or f(z) = C sin haz, where C is an
arbitrary complex constant and « is an arbitrary real constant.
Case (iii) a = —1. f(z)=Az+ Bz?, or f(z)=Asinaz+ Bcosaz—B, or f(z)=
= A sin hxz + B cos haz — B,
where A, B are arbitrary complex constants and o is an arbitrary real constant.
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Case (iv) other than the cases (i), (ii), (iii). f(z) =0 when |1 +a|#1, f(z)=
=arbitrary const. when |l+a|=1.

Proor. Case (4): f(0)#0. Putting x=0, y=0 in (2), by f(0) #0 we have
(6) [14+a|=1.

We may assume that f(z) # const. Putting g(z)=f ()

<  we have
f(0)’

+ oo
g(2) =1+ Zo Gy aZPt®

(a,#0, where p is a natural number).
By (2) we have
) gx+i)gx+0) = (¢(x)+ag())(g(x) +ag(®)).
Equating the coefficients of x? of both sides in (7), we have
(®) aa,+aa,=0.

Now, we shall prove that a=0. Suppose that p > 1. Then, equating the coefficients
of x?~'y of both sides in (7), we have

©) a,=a

p*

Since a,#0, by (8), (9) a is purely imaginary. Hence, by (6) we have a=0. Next,
suppose that p=1. Equating the coefficients of x, iy of both sides in (7), we have

(10) aa, +aa, =0,
By (6) we have
(12) a=e"—1,

where 0 is a real constant. Substituting (12) in (10), we have
e®=1 or a,=e"a,.
When € =1, by (12) we have a=0. When a, =e"a,, by (11), (12) we have
ea,—a, = (e®—1)e~"ea, —(e"—1)e”a;.

Since a, #0, we have ¢ =1. Hence, by (12) we have a=0.
Thus, by (2) we have

(13) | fx+iy) = f(x) %
Putting f(x+ iy)=u+iv where u, v are real, by (13) we have %(u’ +v?)=0

in |z| < + <. Hence we have uu,+vv,=0 in |z|< + . Hence, by the Cauchy—
Riemann equations we have in |z| < + o

(14) uv, —vu, =0.
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By our assumption f(z)#0. Choosing a vicinity ¥ properly, we have f(z) #0
in V. Hence we have in V
@ = Uy +ivy _ MUy tov, ; Ux — Vlly
f(2) u+iv u? 40?2 w4’
(@)

where z=x+1iy (x, y real). Hence, by (14) we have Im 7 =0 in V. Hence
we have 5.((22)) =a where « is a real constant. Solving this differential equation,

we have f(z) = C exp (2z) where C is a complex constant.
Case (B): f(0)=0. By (2) we have

(15) fx+infix+iy) = (f(x)+af () (/) +af(iy)). o
We may assume that f(z)#const. Using the power series f(z)= Z; R

(a,#0 where p is a natural number) and equating the terms of degree 2p with
respect to x and y of both sides in (15), we have p=1.
Putting g(z) = '%—z—, we have in |z] < +
1
g@) = z4+b,22+b323+ ... +b,2"+ ....
By (2) we have

(16) gx+iy)g(x+1) = (g(x)+ag(»))(e(x) +ag(®)).
Equating the coefficients of xy and y?, we have

(17) a=a,

(18) la| =1.

By (17), (18) we have a=1 or a = —1. By [1] and the previous paper [2] the
theorem is proved.

Theorem 2. If f(z) is an entire function of z and satisfies the functional equation

(3) for real values of x and y, then the solutions of (3) are the following and only these:
Case (i) a=0. f(z)=C exp (iaz),

where C is an arbitrary complex constant and o is an arbitrary real constant.
Case (ii)) a=1. f(z)=Cz, or f(z)=Csinaz, or f(z)=C sin haz,

where C is an arbitrary complex constant and o is an arbitrary real constant.
Case (iii) a =—1. f(z2)=Az+Bz* or f(z)=Asinoz+ B cos xz—B, or
f(z) = A sin haz + B cos haz — B,

where A, B are arbitrary complex constants and o is an arbitrary real constant.
Case (iv) a=0,1,—1. f(z)=0 when |1+a|#1, f(z)=arbitrary const. when
[14+a|=1.

PRrOOF. Putting g(z) =f(iZ), g(z) is an entire function of z and by (3) we have
lg(x+iy)| = lg(x)+ ag(iy)|,

where x, y are real. Hence, by Theorem 1 the theorem is proved.

D8
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Theorem 3. If f(z) is an entire function of z and satisfies the functional equation
(4) for real values of x and y, then the solutions of (4) are the following and only these:
Case (i) la|=1, b=0. f(z)=C exp (az),
where C is an arbitrary complex constant and « is an arbitrary real constant.
Case (i) a=0, |b|=1. f(z)=C exp (ixz),
where C is an arbitrary complex constant and « is an arbitrary real constant.
Case (iii) |a|=1, a=b. f(z)=Cz, or f(z)=Csinaz, or f(z)=C sin haz,
where C is an arbitrary complex constant and o is an arbitrary real constant.
Case (iv) la|=1, a=—b. f(z)=Az+ Bz?, or f(z)=Asinaz+ Bcosaz—B,
or f(z)= A sin haz + B cos haz — B,
where A, B are arbitrary complex constants and o is an arbitrary real constant.
Case (v) other than the cases (i), (ii), (iii), (iv). f(z)=0 when la+bl#=1,
f(z) =arbitrary const. when |a+b|=1.

Proor. Case (4) |a|<1, |b|<1. By (4) we have in |x| < + =

(19) | f(x)] = la| | f(x)|+ [b] | £(0)].
Since |a| <1, by (19) we have in |x| < + <
(20) 101 = SILN
By (4) we have in |y| < + e
(21) |f(y)| = |a| | fQO)] + [b] | fGiy)l.
Since |b]<1, by (21) we have in |y|< +
) = /O
(22) ) =

By (4), (20), (22) we have in |x+iy|< 4o

al|6l1/O)] __ lal 11L/O)]

(23) [f(x+iy)| = - -

By (23) and Liouville’s theorem we have f(z) =const.
Case (B) l|a|<1, |b|=1.
Since !a| <1, by (20) we have in |x| < +

(24) 7o) = L.

By (4) we have in [x+iy|<+< [f(x+iy)| = |b| [/(iy)|—la| [ f(x)].
Hence we have in [y|< 4
|a| |/(0)]

25) L =
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By (4), (24), (25) we have in |x+iy| = +

1al 1611/ , 16 |a] | /(0)
1—|a] (=T
By (26) and Liouville’s theorem we have f(z) =const.
Case (C) la|=1, |b|<1. Putting g(z)=f(iZ), g(z) is an entire function of
z and by (4) we have |g(x+iy)| = |bg(x)+ ag(iy)|, where x, y are real.
Hence, by the result of Case (B) we have f(z) =const.
Case (D) la|=1, |b|=1.
By (4) we have in |x+iy| < + o

| fGe+iy)| = |al| [f(x)| = [b] | fGiy)l.

Hence we have in |x| < + <o

@7) ()] =

(26) |f(x+iy)| =

1611/ O)
la|—1 °

Since |b| =1, by (25) we have in [y| < 4o

(28) o = 157

By (4), (27), (28) we have in |x+iy|< + e

lal |61 lall5]1/O)]

By (29) and Liouville’s theorem we have f(z) = const.
Case (E) other than the cases (4), (B), (C), (D).
When |a| =1, by (4) we have

; Do
e+ = |f0)+ ) |.

Thus the solution of (4) reduces to that of (2). Next, when |b| =1, by (4) we have

Sl = | S +1@)]

Thus the solution of (4) reduces to that of (3). Thus the theorem is proved.

§ 3. On the functional equation (5)

Theorem 4. If f(z) is an entire function of z and satisfies the functional equation
(5) for real values of x and y, then the solutions of (5) are the following and only these:
J(z2)=Az+B, or f(z)=Asinaz+ Bcosaz, or f(z)=A sin haz+ B cos haz,

where A, B are arbitrary complex constants and « is an arbitrary real constant.
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4 oo
Proor. We may assume that f(0)=0. Using the power series f(z)= > a,z'
n=0
/()
0

and putting g(z):a— in |z] < + o, we have in |z|< + =

(30) g(z) - I+blz+bzzz+b323+.._+bﬂzﬂ+_“ '
By (5) we have in |z| < 4o :

G (e@+1)(e@+1) = [8[%‘2]“[2__2-_1] [g[z; E]H[z; E]]

Substituting (30) in (31) and equating the coefficients of z? of both sides, we have
2b,=b,+b,. Hence we have b,=5b,. Hence b, is real. Substituting (30) in (31)
and equating the coefficients of z" of both sides for n=>2, we have

"1 1
=1 b= a1

E” = P(bl, bz, bs, "‘!b.l—l' 51, E:, 53, “en En—l):

where n(=>2) is even and P is a polynomial in the earlier coefficients b, , b,, b,, ...,
cens Bty Wi D3y Byy visg Dy s RIG

20-1—1
_2_;-_1 ”_bu - P(bh bz’ bJ' aany bl'l"l" 61! 52’ 63! okt Eu—l)!

where n(=>2) is odd, and P is a polynomial in the earlier coefficients b,, b,, b,, ...,

°-'9bn—l$51952’ E3s sony Ugen] e .
Since 2"~ ! —2#0 (=>0) for n>2, the remaining coefficients b, (n>2) are uni-
quely determined in terms of b,, b, where b, is real. On the other hand

g(2) = Vi)_lzi;_ sin Y=2b, z+cos V=2b, z = 1 +b,z+ byz* + ...,
= &¥2

or g(z) = ';; sinh V2by z4+cosh V2byz = 1 +byz+byz2 + ...,

2

or g(z) = 1+b,z,

respectively, are solutions of the functional equation |g(x +iy)+ 1| = |g(x) + g(iy)|,
if b, is negative or positive or 0.
Since the remaining coefficients b, (n>2) are uniquely determined in terms
of by, b,, there can be no other normalized solutions. Thus the theorem is proved.
Example. (See [3].) By the above theorem we can solve the following functional
equation under the hypothesis that f(x) is an entire function of x (x complex):

(32) | fCe+y)+f(x=»)| = | flx+ )+ (x—7)l,

where x, y are complex.

Solution. Putting x = y*-:-'?—_;"—' in (32) where s, ¢ are real, we have

(33) | fs+i)+£(0)] = |f(s)+S(in)..
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By the above theorem the solutions of (32) are the following and only these:
f(z)=A+ Bz, or f(z)=A sin az+ B cos az, or f(z)=A sin haz+ B cos haz,

wrnere A, B are arbitrary complex constants and « is an arbitrary real constant.

Remark. The sufficiency of this example gives the following theorem:

For a family of confocal ellipses and hyperbolas, let M, N be the middle points
of the two diagonals of a curvilinear rectangle formed by any two ellipses and two
hyperbolas and let O be the center of this family. Then we have OM =ON (and the
above statement on (32) gives all curves which have this property).
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