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A three-term relation for the Dedekind-Rademacher sums

By L. CARLITZ (Durham, N. C.)

1. For real x put
x—[x]—4% (x # integer)
(@) = {0 (x = integer)
and define the Dedekind sum

o= 2 (D))

RADEMACHER ([3]) has proved the following three-term relation satisfied by s(b, a):

2 s 1. T8 .0 c
(1.) s(bc’,a)+s(ca', b)+s(ab’, c) = 4+ 2 [bc+ca+ab]’
where
(@, b)=(b, c)=(c,a)=1
and a’, b’, ¢’ are defined by

aa’ =1 (mod bc), bb" =1 (mod ca), cc’=1 (mod ab).

In particular, when c¢=¢"=1, (l1. 1) reduces to the familiar reciprocity formula
VI N e K
(1.2) s(b,a)+s(a,b)=-Z-+—1§[-E+E+—a—].
In a more recent paper [4], Rademacher has introduced the sum
(1.3) sthk;x,y) = 2 [[h”—yﬂc]] “H'—y]]
r(sod k) k k
and proved the reciprocity formula
(1.4 sthyk;x,y)+s(k,h;y,x) =

= @O+ 5 { £ 0200+ ¥aliy + 0+ 5 a0,

where (h, k)=1, x and y are not both integers and ¥,(x)=B,(x—[x]), where

B,(x) = xz—x+%,
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the Bernoulli polynomial of degree 2. The writer [1], [2] has proved a generalization
of (1. 4).

In the present paper we obtain a three-term realtion satisfied by s(4, k; x, »).
It will however be convenient to change the notation defined above. To begin with,
we put

(1.5) P(x) = x—[x]—%

for all real x. In the next place we define

(1.6) s@b,c;x,3,2) = 2, ¢[at+z—x]d’[y—bt+z].
t(mod ¢) ¢ ¢

Despite the presence of the additional parameters, s(a, b, c; x, y, ) is really no
more general than s(h, k; x, y) as defined by (1. 3).
We shall prove the following

Theorem. Let (a, b)=(b,c)=(c,a)=1. Then we have
(1.7) s(a, b,c;x,y,2)+s(b,¢c,a;,2,x)+5(c,a,b;2,x,y) =

a b c
= 5—'-2'b—c' Tz(cy—bZ)——z*c—a 'Pz(az_cx)—'z—a-b- Wz(bx—ay),

where =1 if integers r, s, t exist such that

P8 8ty . e
(1.8) VST T et

0 =0 otherwise.

2. We shall need a few preliminary results. Clearly @(x+1)= ®(x); also it is
familiar that

(2.1) P(—x) = — D(x),

provided x is not an integer. We recall also that

2.2) > @ [x+ i] = & (kx).
r(mod k) k
Applying (2. 2) to (1. 6) we get
2.3) s@,b,c;x,3,2) = > @ iﬂ_ii?‘_]¢ E_*ZZ..‘“],
r,st c a b [

where r, s, t run through complete residue systems, modulo a, b, ¢ respectively.
If we put
r+x o t+z

2.4 (=25, =, (=2E

we may rewrite (2.3) compactly as
(2 5) S(a: b’ C;x,y’2)=r?{ﬁ(c_£)¢("—c}'
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The following lemmas will be used later.
Lemma 1. We have

(2.6) 2 P
r(mod a)

1 1
] = ; 'Pz(x)'f' E’a

r+x
a

ProoOF. We may assume, without loss of generality, that 0 =x < 1. Then

Rdes Pl EE P e

r(mod a)
We recall that

a=1
PACTE 1,7 (B,0+ @)~ By ),

where 3 1

PR B {Ba[x+é - B=[x-%~a]}»

which reduces to (2. 6).
Lemma 2. Let (a, b)=1. Then

Thus

A l
@.7) > dﬂ[":x 31"’] s Pa(bx—ay) + 5 ab.
=
Since
® ﬂ-j_s;y] _ tp[bra—bas_I_bxa—ba_Jil,
we have
q,z[f_ﬂ_ﬁy] s |t ?x_ay]
ns t(mod ab) ab ab

and (2. 7) follows at once from (2. 5).

3. We shall now prove the theorem stated in § 1. Let S denote the left hand
side of (1. 7). Then by (2.5) we have

B.1H S=J{e¢-mM2-D+2-DP(-O)+2(-OP(E—m}

r,st

where &, n, { are defined by (2. 4). Now consider the sum

3.2) T = r;'t{¢(€*ﬂ)+¢(n~§)+¢’(C—¢)}’-
In view of (1. 5) we have v
3.3) T= 3 {{=n+h-0+K-+3

Clearly there is no loss in generality in assuming that
(3.4 O0=sx<l1, 0=y<l], 0=z<l
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and that
3.5 O0=r<a, 0=s<b, O0=tr<c.

It follows from (3. 4) and (3. 5) that
0=¢(<1, 0=9n<l, 0=({<l1

E—nl<1, [n=¢|<1, [(-¢|<l.

Consequently each of [ —yn], [n—{], [{—¢&] is equal to 0 or —1.
Two possibilities must be considered:
Case 1. Integers r, s, ¢ exist such that

and therefore

A, P 0 LG

o) a b c

If such integers exist they are uniquely determined. For assume a second triple
r’, s’, t’ such that

r+x s'+y t+z

a b c
Then clearly

which implies
r=r'(mod a), s=s"(modb), t=t"(modc).

Case II. (3. 6) is never satisfied.
If r, s, t satisfy (3. 6) it is evident that

[€—nl+[n—C{1+[C—£]=0.
For all other triples, however, we have
-nl+ly—-{+{~8)=~1 o -2
It therefore follows from (3. 3) that

tabc+2 (case I)
a L abe (case II).

Now, on the other hand, it is clear from (3. 1) and (3. 2) that
T =25+ 3 {®*¢E—m+*(n—0)+ 2*({—¢)}

r,s,t

=28+a 3 P *(n=0)+b 3 P2 —&)+c 3 P*(¢—n).

(3.7

(3.8)

Applying Lemma 2, we get

1 abc a b c
(3.9) S = ‘i T—"—S‘“"'—z—bc" 'Pz(cy—'bZ)—ﬁ wz(az-'cx)— Eb‘ Wz(bx'—ay).
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If we put
; {1 (case I)
“ 10 (casell),
then by (3. 7)
N EERE

and (3. 9) reduces to (1. 7). This completes the proof of the theorem.

4. We assume in what follows that 0=x-<1, 0=y<]1, 0=z<1. When
x=y=2z=0, we have

s@b,¢;0,0,0= > @ [fci] 5 [_%]
-2
“ = (CN)

s(a, b, c; 0,0,0) = §—s(ab’, ).

so that

Thus (1. 7) becomes
be’ o ¥ o} s Nta 13 [a b c]
s(be’, a)+s(cd', b) +s(ab',¢) = — 5+ 5 | g+ -+ 7|
in agreement with (1. 1).
In the next place, if we take ¢=1, z=0 and replace y by —y, (1. 6) implies

s(a, b! l’ Ay =W 0)=¢(_x)¢(_y)’

sh,1,a; —y,0,x) = O @ [b r_+“;5+y] qs[.. "_‘_"_"‘.],
r(mod a) a a
$0,0,b;0,56-) = O q»[_tf.z ¢[x+as_t3_’]_
s(mod b) b J b
Thus (1. 7) becomes
> o[p2 o (-122)s > o240 (rsa’t?
a a s(mod b) b b

r(mod a) \

@.1)

= 6= DX D))~ A ¥20) — 5= Ya() = 5 ¥a(bx+a).

To show that (4. 1) is equivalent to (1. 4), we remark first that in the present case
(c=1, z=0), §=1 if and only if x=y=0. If x=y=0, then since

P —x) = — P(x) (x # integer),
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(4. 1) reduces to

Ze(5)elieZoli)el5)--srnliaa)

which is correct.
Ifx=0, y#0, (4. 1) becomes

A

b

4.2)

If for some integer r,,

(4.3) "’;“ +y = s,

where s, is an integer, it follows that

a(yfs(_,): . Y=5o
b » g T

Thus (4. 2) is in agreement with (1. 4). If (4. 3) is not satisfied there is of course
no difficulty. The case x 0, y =0 is handled in exactly the same way.
Finally let xy #0. Then if for some integer r,, we have

(4. 4) bf.‘?_:_“' 2 o gk

where 5, is an integer, it follows that

Y=g ro+Xx Y—35o
xta——=—ry, - = —
b * a b

Thus (4. 1) agrees with (1. 4). If (4. 4) is not satisfied there is no difficulty.
Therefore, in all cases, (4. 1) agrees with (1. 4).
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