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On a class of vector antilattices considered by Fuchs

By D. TOPPING (New Orleans, La)

Recently L. FucHs ([2]) has examined a class of partially ordered real linear
spaces with the antilattice property, viz., two elements having a g.1. b. must be
comparable (this term appears to have been coined by KApison [3]). Our purpose
is to show how Fuchs’ antilattices may be easily explained within the already exten-
sive framework and literature on ordered linear spaces.

These antilattices exist in great abundance; in fact, they all arise naturally
in the following way. Let X be a compact Hausdorff space and let C(X) denote
the space of all real continuous functions on X. Let 4 be any linear subspace of
C(X) which contains the constant functions, and call f€ A positive if f(x)=0 at
every point x€X. The positive functions in A4, together with the identically zero
function, form a cone A* which partially orders A.

Lemma 1. The space A with the ordering induced by A* is an antillattice.

Proor. Let 1 denote the function constantly equal to one, and suppose
g=inf (£, 0) exists in 4, where f€ A. It will be enough to show that g =0 or f=g,
so that f=0 or f=0. Suppose that g=0 and f>g, and let a=inf(f(x)—g(x))
and —pf=sup g(x), over all x€X. The compactness of X, continuity of f and g
and the assumptions imply « >0and f >0. Pute=4 min (o, f). Theng<é-1+g <0, f
which contradicts g =inf (£, 0). The lemma is proved.

Antilattices arising in this way are, of course, non-Archimedean, but they are
not too badly so. It is easy to see that the cone A% chosen above is just the interior
of the ,,usual” cone (i.e., the cone of functions which are non-negative at each
point) in the sup norm topology with zero adjoined. Thus, replacing the non-zero
boundary points of the cone will restore the usual Archimedean ordering of functions.

We shall give a number of characterizations of such antilattices below, but
to make our account self-contained, we first recall a few basic notions from the
general theory. From now on, 4 will be a partially ordered real linear space, i.e.,
A is a real linear space together with a subset A* such that (i) A*+4*CA™,
(i) axA*cA*, for a=0, and (iii) A*N(—A*)={0}. Unlike Fuchs, we shall
not assume that A possesses the Riesz interpolation property, since this rules out
some interesting cases (see examples 1 and 2 below). An element 0#ucA* is an
order unit if for any x€ A, there is a real =0 for which —au=x=au. Following
BoNnsALL ([1]), we say that A is almost Archimedean if x =0 whenever there is an
acA* with —oaa=Xx=uaa, for all «>0. This last condition is essentially a restriction
on the two-dimensional ,,slices” of the cone, and the reader can easily verify
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Lemma 2. A is almost Archimedean if and only if each plane through the origin
cuts A* in an acute planar wedge (possibly a ray) or else in the origin only.

For any 0=a€A*, let |x|,=inf {>0: —aa=x=aa).

Lemma 3. The function x—|x||, is a norm if and only if a is an order unit and
A is almost Archimedean.

Proor. The function in question is the Minkowski functional of the set
{x€A: —a=x=a}, which is clearly convex and circled; it is absorbing if and
only if @ is an order unit. Finally, 4 is almost Archimedean if the function is a norm,
and the converse is true if @ is an order unit, for then the aforementioned set can
contain no line, or equivalently, |x|[,=0 implies x=0.

If A has an order unit u, then a state of A is a real linear functional f such that
f(A*)=0 and f(u)=1. If A is also almost Archimedean, the set of all states is a
w*-compact convex subset of the unit ball of 4*, the dual being taken in the norm
| +|l;; its extreme points will be called pure states. A state f is strictly positive if f(a) >0,
whenever 0=a€ A*. An order ideal in A is a linear subspace I such that a€ 4, berl
and —b=a=b imply acl,

We can now formulate the main result.

Theorem. Let A be a partially ordered real linear space with positive cone A*.
Then the following conditions are equivalent:

1) A is linearly order-isomorphic to a subspace of C(X), X compact Hausdorff,
which contains constants and separates points, such that each 0 =ac A* corresponds
to a function on X which is strictly positive at every point.

2) Each 0=ac A* is an order unit and A is almost Archimedean.

3) For each 0#ac A*, the function x—|x|, is a norm.

4) A has an order unit, is almost Archimedean, and each (pure) state of A is
strictly positive.

5) The only order ideals which are spanned by their positive elements are {0}
and A, and the intersection of all maximal order ideals is {0}.

6) The ,blunted cone™ A* — {0} is open in the finest locally convex topology
of A, and its closure C in this topology satisfies: CN(— C)={0}.

7) For any two linearly independent elements a, b€ A*, the ,blunted planar
wedge” (PN A*)—{0} is open in P, and acute, where P is the plane through the origin
spanned by a and b.

8) For each 0=acA*, the order interval (—a,a)={x€A: —a<x<a}
is open in the finest locully convex topology of A, and contains no line.

Finally, a space A satisfying one, and hence all of the above conditions is an
antilattice.

Proor. Clearly 1) implies 2). The implication 2) implies 3) is half of Lemma 3.

To see that 3) implies 4), note first that any 0 #a€ A+ is an order unit by Lemma
3, and A4 is almost Archimedean. It is clear, however, that no state can vanish on
an order unit.

Now 4) implies 5), for by a general result of KapisoN ([1], Theorem 3, p. 405),
any order ideal /3 A is contained in the null space of some state. Since the set of
states vanishing on 7 is w*-compact and convex, the Krein—Milman Theorem
yields a pure state f vanishing on /. By 4), f cannot vanish on any non-zero element
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of 111 A*, so the latter is {0}; and if 7 is spanned by its positive elements, then /
must be {0} too. By Corollary 2 of [1] (p. 406), and the comments preceding Theorem 4
of [1] (p. 405), the maximal order ideals correspond one-to-one to the null spaces
of states, and the states (or pure states, by a simple Krein—Milman argument)
separate elements of A4, proving 5).

To show that 5) implies 6), first note that any 0 a€ A* is an order unit, since
I={x€A: —aa=x=oa, for some a=0} is a non-zero order ideal spanned by
its positive elements. In fact, if x€/J, xa+x€INA* for a suitable « >0, so that
x=1%((@a+x)—(xa—x)). Thus I=A, and a is an order unit. In the topology de-
scribed, the open neighborhoods of a point must contain an open segment about
the point in every direction. Thus an order unit cannot be on the boundary of 4*
in this topology and if zero (a boundary point) is deleted from A4 *,each remaining
point is interior. We have already remarked on the correspondence between maximal
order ideals and states. Our assumption amounts to assuming that states separate
the elements of 4. But C is the intersection of all closed positive half-spaces of
states, so if a€ CN(—C), we have f(a) =0, for each state, so that a=0, and 6) holds.

Now 7) is clearly the two-dimensional localization of 6) and hence is implied by it.

Assuming 7), we now prove that 8) holds. First observe that if (—a, a@) contained
a line, then so would some planar section through the origin, which is clearly im-
possible by 7). Finally, a boundary point of (—a, @) in the topology described
would also be a boundary point in some planar section through the origin, again
an impossibility by 7).

To complete the chain of implications, assume that 8) obtains. The assumptions
imply that the Minkowski functional of {x€A: —a=x=a} for 0=acA*, is a
norm, that 4 is almost Archimedean and, further, that any 0#a€ 4™ is an order
unit (see the proof of Lemma 3). We remarked above that this last piece of information
shows every state to be strictly positive. Let X be the w*-closure of the set of pure
states, and let a be the affine w*-continuous function on X defined by a(f)=/f(a).
for f€ X. The fact that 4 is almost Archimedean makes the linear imbedding @ ~ a
of A into C(X) one-to-one ([1], p. 406, Corollary 2). This is enough to make a=0
imply @=0, but the converse is generally false for almost Archimedean spaces.
In our case, however, 4* — {0} has no boundary points (these cause all the trouble)
and if @a=0, then either =0 or else @ is not annihilated by any state and hence
is interior to A* in the finest locally convex topology of 4. This proves 1).

The last statement is a consequence of 1) and Lemma 1, and the theorem follows.

Examples. 1) Let A be any subspace of the.real linear space S of all bounded
self-adjoint operators on a complex Hilbert space and suppose that 4 contains
the identity operator 1. Let 4* be the cone consisting of all positive definite (in-
vertible) operators together with the zero operator. It is not hard to see that A+ — {0}
is open in the norm topology for operators. In fact, if @ is positive definite, the
norm open ball {a*x at : |a—at*x at||<|ja~'| -1, x€ A} consists entirely of positive
definite operators, because x must satisfy || | — x| < 1. Hence this set is open in the finest
locally convex topology of A. The closure C of A* in the latter topology is contained
in the norm closure P of A* and it is clear that P\ (—P)= {0} (the only operator
which is both positive and negative semi-definite is the zero operator). Thus A4
satisfies 6). If 4 =S, then A, ordered in the usual way by P, is also an antilattice
([3], p. 507, Theorem 6). The interior of P in the norm-topology, of course, is just
A* —{0}.
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2) Let H be any real pre-Hilbert space (of dimension =2) and let A=R& H
(R= the reals) be ordered by taking A* ={(«, x): || x|| <a}. Then A satisfies 7).
If P={(a, x): || x|| =«}, then it can easily be shown that P is the norm closure of
A* in the norm | +|,, where u=(1,0). Moreover, when ordered by the cone P,
A is also an antilattice ([4], p. 43, Proposition 21; if H were one-dimensional, P
would give a lattice ordering of the plane A). In fact, this example is really a special
case of example 1) above [5], Theorem 2. It would be of some interest to charact-
erize those antilattices A4 (described in the theorem) for which the norm closure
(in any of the equivalent norm topologies given by condition 2) of A* also provides
an antilattice ordering. It is known ([4], p. 44, bottom) that JW-factors 4 have
this property when A+ is chosen as in example 1) above.

3) Let A be the space of all polynomials without constant term (zero included)
on [1,2], and let A* be the set of all polynomials p€ A4 such that p(¢t)=>0, for
1 =1=2, together with zero. Although A is a space of continuous functions, it does
not contain non-zero constants, so Lemma 1 does not immediately apply. But
if 0s2a€ A", then the linear order isomorphism p—pa~' gives a representation
of the type considered in 1) of the theorem. This shows that to satisfy the conditions
of the theorem, a subspace 4 of C(X) need not contain constants if it contains a
function which is strictly positive at every point.

It should perhaps be mentioned that the space S of all selfadjoint operators
on a complex Hilbert space (of dimension at least two) in example 1) fails to have
the Riesz interpolation property in either of the two orderings described. The same
is true for the space 4 = R® H (assuming H is a real Hilbert space) in example 2),
again, with either ordering. For suppose to the contrary, that A(=S or R® H)
had the Riesz property. Then as Fuchs shows ([2], Theorem 9), the conjugate space
A* is an abstract (L)-space, and in particular, a vector lattice. This would imply,
in the first instance, that $** is a vector lattice. But S** is linearly order isomorphic
to the set of all self-adjoint operators in some von Neumann algebra, and a result
of S. SHERMAN (see e.g., [3], Corollary 5) would imply that this aigebra is abelian,
and alsothat all operators in Scommute. Since this happens only when the underlying
Hilbert space of S is one dimensional, we have a contradiction, so our assumption
that § hadi the Riesz property was erroneous. In the second example, it is not
difficult to see that A*, ordered by the cone of positive linear functionals, is lineaily
order isomorphic to A4 (here we need completeness of H) ordered by the cone P,
so A* cannot be a lattice and consequently A cannot satisfy the Riesz condition.
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