Varieties of groups satisfying one two-variable law

By HERMANN HEINEKEN (Frankfurt am Main) and FRANK LEVIN (Marburg and New
Brunswick N. J.)

1. Introduction

If each pair x, y of elements of a group G satisfies the law xyx?y? =1, then, in
particular, for y=1 the law reduces to x*=1 so that G has exponent 3. Thus, the
law is equivalent to the law xyx~'y~!'=1 and G is abelian. More generally, we
will say that G belongs to the variety 7, , if each pair of elements x,y of G satisfies
the law

([.1) xayaxa+lyn+lxa+2 "_xa+by¢+b= l,

for integers a and b. The class of such varietes is rather wide including, for example,
all groups with finite exponent (Theorem 5. 1).

In this paper*) we will investigate properties of groups belonging to T, , for
various values of aand b. The special cases T, , and 7, , are considered in Section 2.
In Section 3, upper bounds for the engel lengths of the soluble p-groups in 7, ,_,,
p prime, are found. In Section 4 we investigate splitting properties of the finite
groups of T, , for various k. Finally, in Section 6 laws of the form (1. 1) but with
arbitrary constants are considered. These groups, however, do not form a variety
in general, since subgroups need not satisfy such laws.

2. Short laws

In this section we investigate varietes of groups associated with laws of the
type (1. 1) with six and eight terms. The notation [x, y, z, ...] will be used for the
left-normed commutator [[x, y], z, ...}, where [x, y]=x""y " 'xy.

Lemma 2. 1. Let G be a group. The following statements on G are equivalent:
() x’xVxty'=1 forall x,y€G, where a+c+e=b+d+f=0;

an [x4 »=[x"% y"¢] forall x, y€G;

I P x1=~1, x¢ forall x, yeG;

V) [x5 Y] =[x"9 y~!] forall x,y€QG.

*) The authors acknowledge gratefully, that the first was supported by Deutsche Forschungs-
gemeinschaft and the second by the National Science Foundation.
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Proor. We first show the equivalence of (I) and (II). From (I) it follows that
X'y’ =y Tx=yix~c,
y~bxnybx-n iy y-f-bx-ey-dx—c-a =, ydx-e},-dxe’

[)"sz-a] s [y-d, x%],
and substitution of x~! for x yields
[x*, "] = [x~% .

Since the above operations are reversible, (I) and (II) are equivalent. The equi-
valence of (III) and of (IV) with (I) follows immediately from the remark that

x*yPx°yixey/ =1 if and only if yPx°yixp/x* = x*yixey/x?yP = 1.

Lemma 2. 2. Let G be a group and a, b, ¢, d, e, [, six integers such that a+c+e =
=b+d+f=0 and (a,d)=(b,e)=(c,f)=(a,¢c)=(b,d)=1. If for any pair of
elements x, y € G, x*y*xy*x*y’ =1, then the elements whose orders divide some power
of any one of the exponents form an abelian normal subgroup of G.

or,

PROOF. Since the identity is symmetric in each of the exponents, it is sufficient to
show that two elements u, v € G commute whenever their orders divide some power
of a. Thus, let the order of u be a divisor of &" and the order of v be a divisor of
some arbitrary power of a. We proceed by induction on n. The Lemma holds trivially
if n=0. Assume the Lemma true for all ¥ whose orders divide "' and let w be
an element of order dividing ¢". Then w* commutes with all elements of orders
dividing any power of @ and , in particular, with v. Applying (II) and (IV) of Lemma
2. 1 to w and v, we obtain

1= [w=e 0% =[w"0.

By hypothesis, (a, d)=(a, ¢)=1 so that the order of v is relatively prime to d and
the order of w is relatively prime to ¢. Hence, [w, v] =1, as required.
For the following theorem the notation x* =y~ 'xy will be used.

Theorem 2. 3. If all elements x, y of a group G satisfy the law x°y*x“y*x¢yf = 1,
where a+c+e=b+d+f=0 and (a,d)=(b, e)=(c,f)=(a, c)=(b,d)=1, then
G satisfies the second engel condition and G’ is of exponent dividing ab — de.

PrOOF. By (II) of Lemma 2. 1 we have
[xa,yb] - [xa+c’y—d]-

Since [x**¢, y~!]=[y~4, x~*~P"*, it follows that [x°, y*]1=[", x~“F**° so that
[x* yb]=[xﬂ’ y”]"‘c or
2.1) [l =1

Next, the law [x*, )%, x"]=1 for integers a, f, y, implies
[x=* (Y’ %7 = 1 = [(x*)*, 7]
and [x*, (x")* " "]=1 or [(x*)*~#, x]=1, so that
2.2) x~7(P~’, %] = 1 =[x, y~2, x.
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Hence, (2. 1) implies that

(2' 3) [xc’ yb,.t‘] = 1.
‘Exchanging c, b, a by a, f, e we obtain
(2'4) [x",}’f,x'] = L

It follows from (2.1) and (2.4) that [x », x]=[x", y*/, x*]=1, whence, since
(c, &)=(c, a)=1,

[x* »*, x]=1
and by the above remark this implies that
(2.5) be, Y, x]=1.
Replacing b, f, a by f, d, e we obtain
(2.6) [x, y, x]=1,
whence, (2.5) and (a,e)=(a,c)=1 imply that
2.7 %, Y, x]=1.

It follows from Kappe’s equation (6a) in [2], that if « is an element such that
[x, u, x]=1 for all x in G, then [w, u?, v, x]= for all x, v, w€G. As bdf is divisible
by 2, we have that G*#/* C Z,(G).

We next consider G/G**#*/*, This quotient group is the product of its normal
subgroups generated by the elements dividing 5%, d* and /2, respectively. By Lemma
2. 2 these normal subgroups are abelian, and as (b, d) =(d, f) =(f, b) =1, the inter-
section of any two of them is trivial. Hence, G/G****/* is abelian so that

G’ = G*#7* = Z,(G).

This shows that G is nilpotent of class 4 so any commutator of weight 5 is equal
to 1. By (2. 5) we obtain in particular that

1=[x, ¥, *, x]=[x, y, x, xI*/ and
1=[x, J"b'r- x*, y]=[xs Vs X, y]“f.

By the cyclical arrangement of the integers a,b,c,d, e, f, we have further
1=[x, y, x, x]* =[x, y, x, x{* =[x, y, x, x]*, and by the divisibility conditions
on a, b, ¢, d, e, f, we find that baf, afe, fed, edc have no common divisor. Hence,

(2.8) [x, y, x, x]=[x, y, x, y]=1.
Using (2. 5) again and applying the cyclicity of the integers we find
1 =[x, .bes x1=[x, y, x]fab =[x, y, x]ﬂfe =[x, y, x]f“‘ =[x, y, x}cdc ’

which in turn yields
(2.9) x5, xj=1

Finally, applying (1I) of Lemma 2. 1, we derive
=[x )" )x~% p~] = [x, p)* %
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so that elements of the abelian group G” have an order dividing ab —de =ef —be=
=cd—af, where this equality is a consequence of the hypothesis a+c+e =
= b+d+f=0.

It is clear that the converse of this theorem is also true.

Corollary 2. 4. Let G be a group each pair x, y of whose elements satisfies
the law
X)Xtk pt It e 1; 6,0 intogems, (a,d) = 1.

Then G’ has exponent dividing (3, b).

Proor. From the Theorem it follows that if a group G satisfies the
law  x°y x**bys+bx—2a-by-2a-b_1 (g, b)=1, then G’ has exponent dividing
(a+b)* —a( —2a—>). The group G of the Corollary staisfies the latter law since
it has exponent a+(a+b)+(a+2b)=3a+3b, whence x**2¢=x~24-t for any
x€G. Thus, G’ has exponent dividing (a + b)*> —a(a +2b)=b?, and since (a, b)=1
it follows that G’ has exponent dividing (3a+ 3b, b?)=(3, b).

Theorem 2. 5. Let G be a group satisfying the law
(2. 10) XPHLgptl st 2 a2yt ymtInatéypté ], a an intager.

Then G is nilpotent of class at most 2. In particular, if (5, a)=1, a#0, then G is
abelian.

PrOOF. Choosing y=1 in (2. 10), it follows that x***'°=] so that G has
exponent 2(2a+5). Let x2**5=y24+5—=]_ The law (2. 10) applied to x? and y?
then yields that
2.11 Y- ix-ly-tzuxtyi=ml, of [x¥llx2 "=l

If (2.11) is applied to the identity [x~3, y~3]=[y~3, x3}*"°, we obtain [y, x]=
=[x~Y yF =y, x** so that [x, y, x*]=1, and since (4, 2a+ 5)=1 this implies
further that [x, y, x]= 1. Thus, [x™, y"] =[x, y]™ for integers m, n so that (xy)***3 =
=x24+5py2a+5 and xy has order dividing 2a + 5 also. Hence, the elements with orders
dividing 2a + 5 form a normal subgroup H of G satisfying (2. 11). Let 2a+5=3%-5,
where (3, b)=1. By (2. 11), the elements of orders dividing 3* form a normal abelian
subgroup H, of H. From Levi [6], it follows from [x, y, x]=1 that the elements
whose orders divide » form a normal subgroup H, of H which is nilpotent of class
at most 2. Thus H, as the direct product of H, and H,, is nilpotent of class at most 2.
In particular, (2. 11) for elements x, y € H can bhe rewritten in the form [x, y]'° =1,
so that if (b, 5)=1, H,, and hence H, if abelian.

Finally, let x*=y*=1. The law (2. 10) applied to x, y shows that (xy)*=1.
so that the elements of G of order 2 form a normal subgroup K of G, and K is abelian
Clearly, G is the direct product of H and K, so that G is of the same nilpotency
class as H.

3. The variety 7 ,-,
In this section we investigate the soluble p-groups of the variety T, ,_, for

an odd prime p. The special cases p=3 and p=35 have been discussed in the In-
troduction and Section 2, respectively.
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Theorem 3. 1. Let G be a metabelian p-group satisfying the law
3.1) xyxiy? ... xP~1yP-1=1  for every x, y€G.

Then G is nilpotent of class at most (p+ 1)/2 and every two generator subgroup of
G is nilpotent of class at most (p—1)/2.

Conversely, if G is metabelian of exponent p and if every two generator sub-
group is nilpotent of class at most (p—1)/2, then G satisfies the law (3. 1), i.e., G
belongs to T ,_,.

ProOF. The proof of the first part of the theorem is divided into two parts.
Part I: Applying (3. 1) to the pair [x, y], z~! for any x, y€G yields

[x, ¥ 2= [x, )2z~ 2... [x, yJP~ 1z~ P+1=],
or

(3.2) . T 2@, o = 1,

n=]

where g(n)=n(n—1)/2. In terms of the ring E(G, G") of endomorphisms induced
in G’ by the inner automorphisms-of G, (3. 2) can be written in the more concise
form

3.3) F@)="3 nzo® =0,
n=]

By hypothesis, E(G, G') has characteristic p, and for any z€G, z?=1. Set
s=(p—1)/2. Then the term in (3. 3) with coefficient n=(s+ 1) —k is associated
with the exponent

gls+1—-k) = ; (p* —4kp + (2k—1)(2k + 1))

and can be added to the term with coefficient n=(s+ 1)+ k which is associated
with the exponent

gs+1+k) = %(pz+4kp+(2k— 12k + 1)) = g(s+1—k) (mod p).

Part I consists in showing that G satisfies the (p+1)/2=(s+ 1) engel condition.

For this it is sufficient to show that F(z) is not divisible by (1 —z)**! since (1 —z)’=

=1-—2z7=0 in E(G, G’). In fact, it will be shown that F(z) is divisible by (1 —z)".
In general, for H(z)= Ja,z", the first two derivatives of H are

H'() = 2am"*
H"(z)=Jan(n—1)z""2,

so that H’(1)+ H"(1)= Ja,n*. It follows by an easy induction that for any k=1
there exists a linear combination of H’(1), H"(1), ..., H®(1) equal to >a,n*. Thus,
there is a linear combination of the first k derivatives of F(z) which for z=1 is

3.5 =2’1(g(n))'* +(s+ 1) (g + DY
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The objective of Part I will be achieved by showing that (3. 5) is divisible by p for
1=k <s and is not divisible by p for k =s. (One sees easily that F(1)=0.)
Since p is odd there is no loss in generality by considering

(3.6) Fo=2-8 _zl (&) + (= 1)
instead of (3. 5). Further expansion shows that

F, = 2';'; (@n? —dnf + (=1t = 22’; (@n—1)* — 1) + (= 1),
and since [22—112=[2(p—(n—1))— 1] (mod p), we have

Rz '3 [0n=17 =¥ =D - 1F = ‘:_2;' (an* — any.

k +1) for k=0,1, ... p—1, it follows easily

that Z'n"EO(modp) for k=2s=p—1Dbut =—1(modp) for k=2s. Thus, for
n=1

By considering the identity Z [ k) [

-1 [p=1
k<s, F'Z’(4nz-—4n)" = (0, while for k=s, ’Z (4n2—4n)*" —(4)P~1'= —1, which
n=1 n=1

completes the proof of Part I.
Part II: The elements t€ E(G, G’) for which [x, y]'=1, t€G, for a fixed pair
x, y€G, form an ideal E,, in E(G, G’). From Part I it follows that (1—z)'€cE,,
for every z€G. The proof of the first part of the Theorem will be completed by
showing that for any non-negative integers @, b (1 —x)*(1 —y)’€E,, if a+-b=s—1.
We now use the identity (3. 1) for x~! and y~'. In the center of the identity
we find the commutator x~*y~*x%y*. Next, we consider the central eight powers

x-—s-l’?-—s—-lx-sy—sx:ysx:+1ys+l i [x:+l’ys+l]y-s—-1x—s—l[x.r’ys]xs+1ys+1.

Further applications of this method, next considering the central 16, 24, etc., powers,
leads finally to writing the left side of the identity in the form of a product of com-
mutators and their conjugates. More precisely, we obtain

(3.7) Nt .l'ly'l ‘2 ik xzyzxy = H y"(")x"(")[x", y"]x""’y“"‘,
n==]

as can be shown by induction using the fact that G is metabelian so that, for any
integers a, b, ¢, d, k,
y=ix~t(y= x it X y) 0yt = yemex A xt, Pty
Thus, since [x", y] =[x, ¥][x, yJ*[x, y}**...[x, y}*""' in a metabelian group, it follows
from (3. 7) that
(3.8) f, )= @™ +x+...+x"" Y1 +y+...+y"")€EE,,
n=1
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In particular, f(x, 1)= Snx¥®(1+x+...+x"1), so that
n=1

(l —x)f(xs l) = 2’ nxﬁ(“)(l —-f) - Z" {nx'(") _"xl(l)-ll} =
n=1

n=1

(3.9)
= 3 x90 50O+l = F(x).

n=1
It follows from Part I that f(x, 1) has a factor (1 —x)*~! but not (1 —x)*. Thus,
after substituting for x* in f(x, 1) using (1 —x)*=0, the degree of f(x, 1) will not
be less than s — 1. Hence, f(x, y) with (1 —x)*=(1 —y)*=0 reduces to a polynomial

s=1

(3.10) f(x,p) = Zl Su(y)x", where f,_,(1) # 0.

E,, has the further property that if z¢ € E,, for any z€ G, then ¢ € E, . In addition,
for any polynomial h(x, y)€E, ,, we have that h(yx, y) € E,, since [yx, y]=[x, y].
It follows that if

G.11) h(x,y) = ‘_2': h(y)¥€E,,
then
h(yx, y) =z" h(y)yx€E,,,
and
h(x, ) —h(yx,y) = z: b1 ()1 —y) ¥ € Eyy,
so that
(3.12) UG ) —hOx ) = 3,1 ()¥ € By

Moreover, if m=p and h,(y)=(1 —y)Yh.(y), where h,(1)#0, then
b (3) = (=Y (A +y+ o +y" " DR (») = L=y * i 1 (9),

where h,(1)#0.

The above remarks may now be applied to f(x, y) as given by (3. 10). Repeating
the above sequence of steps from (3. 11) to (3.12) s—1 times yields finally a
polynomial f,_, ,_,(»)x° in y only which will be divisible by (1 —y)*~! but not
by (1—y)’. Since (1 —y)€E,,, this implies that (1—y)*"!'€E,,. Hence, G
satisfies an s engel condition.

Now a metabelian group of exponent p which satisfies an m engel condition
for any m<p has the property that any two generator subgroup is nilpotent of
class at most m. To see this, set x=1+X, y=1+Y. Then, X" '=Y""1=0
(mod E,,). The substitution of yx for x corresponds to the substitution of X'+ xY

m—1 )

for X. Thus, (X+xY)""'€E,, so that > [':) Xtym-ixm-*¢cE,,. Continuing
k=1

this process, substituting X 4+ xY for X and using the fact that the polynomial before
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the substitution was in E,,, one arrives finally at the conclusion that XY™~ 2, X m-2Y¥¢
€ E,,, and by comparing with the various polynomials in the steps which led to
this result one obtains the end conclusion that X*Y”=X“Y"=0 (mod E,,) for any
nonnegative integers a, b for which a+b=m—1. It follows from these remarks
that every two generator subgroup of G is nilpotent of class at most s.

To show that G is nilpotent of class at most s+ 1, we consider Z*=(1 —z)*=0
in E(G, G’) for any z€G. The substitution wz for z, wé€ G, corresponds to a sub-
stitution Z + zW for Z where W =1—w. As before, by considering first Z*=W*=1,
then (Z+zW)*=0etc., one sees that Z°W?®=0 for any nonnegative integers a, b
such that a + b =s. The proof now proceeds by induction, next substituting z, z, z, for z,
then observing that (1 —z,)%(1 —z,)"(1 —z3)°=0 for a+b+c=s, then substituting
Z,2,2324 for z, etc., and one finally obtains that (1 —z,)*... (1—2z)"=0if a+...
...+m=s. Thus, G is nilpotent of class at most s+ 1 (see [7]).

For the converse we note that (3. 1) is equivalent to f(x, y) € E,,. With X=x—1,
Y=y—1, f(x, y) can be written in the form

fA+X,1+7) = i(l +XP® (1+ Y™ X-1 (1+X)=1) Y-} (1 + Y)—1)

or
So) = 3 X HA+XPOD — (14 XPO) Y1 {(1+ YPO+D — (14 YPO).

The coefficient of X**'¥/~! in this expression is

D) -COHE)-EP))

By hypothesis, X°Y*=0 if a+b=(p—3)/2. Hence, we may assume that
k=1+j—1=(p—5)/2, that is, k+j=s.

As a polynomial in », [g(" : ”) —[gfc")] is an odd function of 7. To see this,

it suffices to consider the expression
[+ )" [a(-1))|"
s [ 2 ] ‘[ 2 '*]

for arbitrary m=0. In particular,

% 5 < i 1 < ,
@(n) = ;—m {(n+1)"—(n—1)"} = g-; {2 .=le [n:]n""'} o — FZI' [T] s
i, odd i, odd

as desired. Thus, the coefficient of X*~ 'Y/~ ! involves even powers of n only, and
it follows from previous remarks that this coefficient is divisible by p since k +j = .
Hence, f(x, y) is divisible by p so that f(x, y)=0 in E(G, G’) so that G satisfies the
law (3. 1). This completes the proof of the Theorem.

Corollary 3.2. Let G be a metabelian group of exponent p. If every two
generator subgroup of G is nilpotent of class at most (p —1)/2, then G is nilpotent
of class at most (p+1)/2 (cp. [7)).
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Corollary 3.3. Let G be a p-group satisfying (3. 1) and x€ G be an element
whose normal closure (i. ¢., the least normal subgroup containing x) N, is abelian,
Then x is a right engel element (cf., GRUENBERG [1]); in particular, for any z€G,

[-’ﬂz.- .,z] =1, where s—_-f_;_l_

5 tamu

Proor. By hypothesis, [x, y]**¥ =[x, y]*""+»)| where y is an arbitrary element
of G and w(x, y) any element of gp(x, y). Further, for u, v€G, [x, z]* commutes
with [x, y]°. It follows that the automorphisms induced on N .=gp([x* z")=N,.
where @ and b run through all integers, by the inner automorphisms associated
with x and z generate a commutative ring E(x, z: Ny .) of endomorphisms of N, ..
As in (3. 7), the law (3. 1) applied to x~! and z~! yields

5

“1y=27=2 325255 - H =0 [xn Zm)zo(m —
n=1]1

5
e Hz—'(l) [x, z"]ﬂzﬂ(ﬂ},
n=1

1l =x"1z

which, in terms of E(x, z; N .) can be expressed in the form
f(Z, l) = 28' HZ'(")(I +z4+...+2" l) = 0
n=1

As shown in the proof of Theorem 3. 1, f(z, 1) has a factor of (1 —z)*~' but not
(1—z). Since 14+z+...4+2z°"'=(1—2)*~1=0 in E(x, z; Ny ) (that is, [x, z”]=1),
it follows that (1 —z)*~'=0 in E(x, z; Ny .), which proves the Corollary.
Corollary 3.4. Let G be a soluble p-group of soluble length » which satisfies
(3. 1). Then G satisfies an engel condition of length at most (n — 1)s, where s =(p — 1)/2.

Proor. (Induction on n). The case n=2 has been proved correct in Theorem
3. 1. Thus, let G be a soluble group of derived length k =2 and assume the Corollary
true for groups of derived length =k —1. By hypothesis, G/G*~" satisfies an
engel condition of length at most (n —2)s. Hence, any commutator [x, Yoo Y€
(n— 2)sumes
€G*~1_ for arbitrary x, y€G. Further, G*~" is abelian so that by Corollary
- _;,. +¥]=1 for any z€G%*~'). Thus, for any [x, ), .. ,y]-l which
stumes (n— l)stlmes

proves the Corollary.
4. Spitting properties
In this section we investigate splitting properties which are consequences of
the identities studied here. We begin with a transparent situation.

Lemma 4. 1. Let G be a finite group whose elements satisfy the identity xy ... x"y" =1,
and let N be an abelian normal subgroup of G of exponent s such that G/N is cyclic
of order t and (sn, t(n+1))=1 or (tn, s(n+1))=1. Then G is abelian.
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PrOOF. Let gN be a generator of G/N and h an arbitrarily chosen element
of N. The identity applied to g~' and gh yields

@1 g '(gh)g*(gh)*...g~"(ghy" =1.

In terms of the endomorphism ring induced by G in N, (4. 1) can be expressed
in the form

4.2 1+@+D+...+@"1+...+g+1)=0.

Multiplying (4.2) by g—1 gives
O=(@—-D+@E-D+...+E-D=(g+g" ' +...+g+1)—(n+1),

which after a further multiplication by g —1 becomes

(4.3) 0=@E*"-D)—-m+1(E-1).

Taking y=1 in the original identity, we obtain that G has exponent dividing
n(n+1)/2. The two number-theoretic conditions indicated in the statement of the
Lemma lead to two cases.

Case 1: s divides n and ¢ divides n+1.

Case 2: s divides n+1 and ¢ divides n.

For Case 1, (4. 3) simplifies to

0=@g"*"=-D—-mn+1(Eg—-1)=0-(g—-1),
that is, g centralizes N. For Case 2 we obtain correspondingly

0=@E"*""-D—-@m+1)(E-1) =(-1)-0,
and again g centralizes N. Thus, in either case G is abelian.

Corollary 4.2. If each pair x, y of elements of the finite group G satisfy
the equation xyx?y?...x"y"=1, and if G is a pg-group, where p is a prime dividing
n and ¢ is a prime dividing n+ 1, then G is nilpotent.

PROOF. Assume that G is a minimal counterexample to the Corollary. By
a result of IwasAwA, SCHMIDT, REDEI (see Rédei [3), p. 304) such a group is of the
form given in Lemma 4. 1. It follows that G is abelian and therefore nilpotent,
contrary to assumption. This proves the Corollary.

Theorem 4. 3. If G is finite soluble group satisfying the law xy...x"y" =1, then G is
the direct product of G" and G"*'.

PrROOF. We proceed by induction on the order of G. As the exponent of G
is a divisor of n(n+ 1)/2, the Theorem is true if G is abelian. Assume now that H
is a minimal counterexample. If N is a minimal normal subgroup of H the Theorem
is true for H/N. Thus, H/N = A/N® B/N, where A/N =(H|N)", BIN=(H|N)"*'. If the
exponent of N is a divisor of s, then the orders of N and 4/N are relatively prime.
By Schur’s Theorem (see, for example, Zassenhaus [5], Theorem 25, p. 162) there
is a subgroup A, of A such that A/ N=A4 and 4, N=1. By Lemma 4. 1, any
element of 4, centralizes N, and we obtain 4 =4, ® N and G = A4, ® B. The reader
will check without difficulty that 4, =G" and B=G"*'. If the exponent of N is
a divisor of n+ 1, we proceed similarly.
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Theorem 4. 4. Let G be a finite group each pair x, y of whose elements satisfy the
identity xy...x"y"=1, wheren or n+1 is a power of an odd prime p. Then G is the
direct product of its p-Sylow subgroup and its complement.

Proor. We prove first by induction on the order of G that G has a normal
p-complement. Thus, assume that G has no p-complement and G is the smallest
such group. Then all proper subgroups and quotient groups of G possess a normal
p-complement. If G contains a normal p-subgroup, then this normal p-subgroup N
is the p-Sylow group of G, and by the theorem of Schur (Zassenhaus [5]) there is
a complement C of N in G. By Lemma 4. 1, the elements of Co(N)/@(N) permute
with N/@(N), where @(N) is the Frattini subgroup of N. But the elements of C have
orders prime to p so that the elements of C permute with those of N and G is the
direct product N® C. Therefore, our minimal counterexample G does not contain
a normal p-subgroup different from 1. Hence, Thompson’s Theorem (see, for
instance, SCHENKMAN [4], p. 273) is applicable, since the normalizers and centralizers
of certain subgroups have a normal p-complement by the minimality of G. But
then G has a normal p-complement, contrary to our hypothesis. Consequently,
all groups which satisfy the given identy have a normal p-complement. Denote
this normal p-complement by C, and denote a fixed p-Sylow subgroup by S. If T is
a Sylow subgroup of C, the normalizer N(T') of T contains a p-Sylow subgroup of
G since CN(T)=G. The normalizer of a conjugate T of T will therefore contain S,
and by Lemma 4. 1, S will centralize T. Consequently, for each prime ¢ dividing
the order of C there is a ¢-Sylow subgroup which is centralized by S. This implies
immediately that S and C commute so that G=S® C, as desired.

5. Examples

Every finite group satisfies an identity of the form studied in this paper. More
generally, we have the following resuit.

Theorem 5. 1. If G is a group of finite exponent k, then every pair x, y of elements
of G satisfies the identity

(5.1) xyx2p?. X =1,
PRrROOF. By hypothesis, the elements x and y have orders dividing k. It follows that
XY aX Y = (axdy?. a8 i ],

which proves the Theorem.

Remark. There is no bound to the nilpotency class of groups satisfying the
identity (5. 1) for k =p, where p is an odd prime, since this identity, by Theorem
5.1, is satisfied in all extensions of abelian p-groups of exponent p by abelian p-
groups of exponent p, the nilpotency class of which is not bounded (see, for instance,
Gruenberg [1], p. 166).

Theorem 5. 2. If G is metabelian and possesses an abelian normal subgroup N of
exponent m such that G|N is abelian and of exponent k, then every pair x, y of elements
of G satisfies the identity

(5.2 KPR . -

Y= 1.
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ProOF. We denote xyXx?y?...x**y?* by a. Since G/N is abelian and of exponent
k we observe that a=1 mod N and a€ N. Further, x*, y* and all their conjugates are
elements of the abelian normal subgroup N. Thus, by the commutativity of N and
G/N, we have
x2RHLPIRAL | yakyk (3 2k200h — gh,

ii+1) _Gi+1) iti+1) _ii+2)
huc{lly % 259 * Jx¥ yhe 2L

As both @ and b are products of k-powers, they are both in N. By induction, we

obtain
X2k+K P2+ 1 | X204 Dk P20+ Dk — x20- Dk+1y2@-Dk+1 | x2ky2tkh — g. bt

so that

where

2m2(m—1)
AP L g 3 =1,
which was to be shown.
Remark. If k and m in Theorem 5. 2 are odd, then

xyxtyd, i o 1,
while if one of k or m is odd, then xpyx?y?...x?™ky2mk — | For, if k is odd, we may

replace the element a in the above proof by xyx?y*..x**€N, and if m is odd,
m(m—1)/2 is divisible by m.

6. Identities with parameters

We say that G satisfies the law w(x, y; x,, ..., x,) =1 parametrically if there
exist fixed elements g,, ..., g,€ G such that each pair x, y of elements of G satisfy
the law w(x, y; gy, ..., &) = 1. In general, the class of groups which satisfy a law
parametrically do not form a variety since the property does not extend to sub-
groups in general.

As noted in the Introduction, a group satisfying the law xyx?y? =1 is abelian
and of exponent 3. This result admits the following generalization.

Theorem 6. 1. Let G be a group satisfying the law
6.1) xaybxcxdyeyf=1

parametrically, where a, b, ¢, d, e, f are certain jixed elements in G. Then G satisfies
the law xyx*y*=1.

PrOOF. With x=y=1 (6. 1) reduces to abcdef=1. Next, with y=a"1b"!,
(6. 1) gives
(6.2) x%cxda~'b~'ea~'b~'g=1.

It follows from (6. 2) that x?cx is constant in G for every choice of x so that with
x=1, x?¢x=c. Thus, ex=x"2¢ for every x€ G and (6. 1) is equivalent to

(6. 3) xaybxx~*cdyeyf=1.
Thus, for any choice of y, say y=g€ G, xaghx~" is constant in G, so that agb is in
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the center of G for any g€ G. Replacing g by a~'gb~', it follows that g is in the
center of G, that is, G is abelian. Since abedef = 1, it follows from (6. 1) that xyx?y? = |
for any x, y€G.

The following result generalizes Corollary 2.4 (with a=5b=1) analogously.

Theorem 6.2. Let G satisfy the law
(6. 4) xaybx*cy*dxiey*f=1, forall x, y€G,
parametrically for fixed elements a, b, c, d, e, f€ G. Then G is abelian with exponent 6.

ProOOF. It will be convenient to divide the proof into several parts.

1) If y has order 2, then (6. 4) reduces to xaybx?cdx3eyf=1 or yfxaybx*cdx’e=1.
Hence, for any fixed choice of x€G, yfxay is constant for any choice of y with
y2=1, so that, in particular, yfxay=/fxa. Substituting x=f""ga"! yields that
ygy =g, that is, y is central.

2) If y has order 3, then (6.4) reduces to xaybx’cy 'dx3ef=1 or
ybx*cy~'dx*efxa=1. With y=1 this yields bx?cdx*efxa=1 so that ybx*cy~'=
=bx?c for any x, y€G with y*=1. In particular, ybcy~!=bhc. Substitute b~'zb
for x: yz?bcy~' =z?bc, so that yz?y~!=z2, that is, y commutes with any square.

3) If y has order 4, then y* is central by Part 1 so that, by (6. 4),
xaybx*cdx3eyf=1 or yfxay=(bx*cdx¢)”'=fxa. In particular, for x=f"'a"!
this yields that y*> =1 so that, again by Part 1, y is central.

4) If y®=1, then it follows immediately from Parts 1 and 2 that y commutes
with any square in G.

5) For y=1, (6. 4) reduces to xabx*cdx*ef=1 so that, since (ab) =(ef)'(cd)™"
(set x=1),

(6. 5) xw™ o~ 1x%vx3w=1, where v=cd, w=eéf.

With the substitution x=vzv~"', (6. 5) becomes

1 1

(6. 6) 1=vzv"'w™1z%0z% " 'w or v~ 'wozo~'wlpep~1z%0z3 =1,
Since this is valid for any z€ G, comparing (6. 5) with (6. 6), identifying x with z,
yields that owe='xv~='w~'v=wxw™!, so that w='v~'wv is central in G.

Thus, mod Z(G), the center of G, [w, v]=1 so that in G/Z(G), (6. 5) yields,
first with the substitution x =v then with x=w, that v® =w®=1. Thus, by Part 4,
it follows that for any x € G, [x?, v] =[x2, w]=1 mod Z(G), or [x2, v], [x%, w]€ Z(G).

6) With x=w, (6. 5) reduces to

6.7 v wlowt =1,
and with x=v to
(6. 8) ow~lpdw=1.

From (6. 7) it follows that v='w®v=w='2, and since w®€ Z(G), by Part 5, this
in}piies that w'® =1, so that by Part 1, w? € Z(G). Since w® € Z(G), this yields that
w? € Z(G).

7) From (6. 7) and (6. 8) it follows that

v iwlowtowSwu =1, or wiwwhi=1.
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Since w* € Z(G), this means that w® =v~% so that w'® =p~'8 =1 and v° € Z(G), by
Part 1. Since v® € Z(G), this implies that v3 € Z(G).
8) Mod Z(G), [x*, v] =[x wl=1 so that, by (6. 5),

xw= o~ 1x2wxdw=1=xw"lo" lox’w=xw-Ix3w=xwxw=1 = x5[x, w=1].

Substituting x? for x yields that x'?[x?, w=']=x!2=1, that is, x'? € Z(G).

9) Writing (6.4) for x and y* yields xay*bx?cy®dx3ey'?f=1, so that, by
Part 8, xay*bx’cy*°dx3ef=1, or, y*bx*cy*°dx3efxa=1. Hence, y*bx?cy*®=bx’c.
In particular, y*bcy*°=bc so that cy?®=>b-'y=*bc. Therefore, it follows that
y*bx2cy?® =y*bx?b~ 'y~ *bc=bx*c, or, y*bx*b~'y~*=bx?b"'. Substituting
b~'zb for x, we have that y*z2y~*=x2, that is, [z%, y*]=1 for any z, y€G.

10) From Parts 5 and 9 it follows that for any x€G, [x2, v]=[x? w]=1
Thus, (6. 5) is equivalent to xw~'x*w=1. Hence, x’wxw~'=1=x° (x"'wxw=?)
so that, since [x2, w]=1, we have that x'?[x%, w]=x'2=1. By Part 3, this means
that x° =1 and x? is central in G, for any x € G. From Part 4 we have that [x?, y] =1
for any y€ G since x®=1 so that since x*€ Z(G), x€ Z(G), that is, G is abelian.
This proves the Theorem.

The following result generalizes the identity x3 =1.

Theorem 6.3. Let G satisfy the law
(6. 8) xaybxcydxeyf=1, forall x, y€gG,

parametrically, for certain fixed a, b, ¢, d, e, f € G. Then G has exponent 9, satisfies
an engel condition of length 2, and G|Z(G) has exponent 3, where Z(G) denotes the
center of G.

ProOOF, We first note the following general result:

If for certain g, h€ G and all x€ G,xgxhx =gh, then [g, x, x]=1 for all x€G
and x°=1. The proof runs as follows: By hypothesis, xgxhx=x?gx*h so that
x*hx=g~'x"'ghx. Further, x%gx*hx?*=x%gx*hx?® so that gx?h=xgx3hx and
gx*h=xgxg~'x"'gxh. Hence, gx=xgxg~'xg, that is, [g, x, x]=1. Further
the substitution xg~! for x in xgxhx =gh yields x2g~'hx =ghg, that is, there exists
g, € Gsuch that x2g,x =g, for all x€ G. Thus, x*g,x* =g,, so that x> =g7 'x~%g, and
g =x’g.x=gr'x"“gix, or x"'gr*x*=gy% The substitution x=g, gives
gi=1 so that x~'g,x*=g,. Since x%g,x*=g,, by hypothesis, this implies
finally that x®=1 for all x€G.

We now return to the proof of the Theorem. The substitution y=a~gh~!
in (6. 8) for arbitrary (but fixed) g€ G yields xgxca™'dxea~'gh~'g=1 so that, with
x=1, gca~'gb 'dea 'gb~'f=1. Thus, xgxca~'gh~'dx=gca 'gh~'d, which,
by the above remarks, implies that [g, x, x]=1 for any g€G, x€G, and x°=1.

Finally, it follows from the above argument that there exists an element g€ G
such that x?gx =g, for all x € G. In particular, for xy, where y is arbitrary, (xy)?g(xy)=
=g, or, (xy)’gxg~'-gye~' =1, and since gxg~! = x~2, this yields that (xy)*x~2y~?=1
for any x, y€G. Hence, y~'xyxyx~?y~'=1 so that [y, x~!][x~2, y~!']=1 and
since [x, y, x]=1 this implies that [x, y]*=[x?, y]=1, that is, x3®€Z(G). This
completes the proof of the Theorem. In particular, since x%gx=g, x’[x, g"']=1
so that x€Z(G) implies x*=1.
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Example. The following group G satisfies the law x’gx=g for all x€G:
G={a, b, c, dla®=c®=b’=d’=[a, c]=[a,d]=[b, c]=[b,d] =1,
b-tab=a’, d"‘cd=c")}.

(Take g=»bd.) However, there is no element g in {a, c}, such that {a, ¢} satisfies
the same law, because {a, c} is abelian of exponent 9. This shows that the class of
groups satisfying the law indicated is not closed under forming subgroups.
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