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Some remarks concerning the stable sequences of random
variables

By I. KATAI and J. MOGYORODI (Budapest)

§1.

Let us consider a probability space {Q, o/, P}, where & is a o-algebra of some
subsets of the basic space 2 and P is a measure defined on &/ and normed by the
condition P(2)=1. The elements of Q will be denoted by w and the elements of
& will be called events. Random variables are defined as measurable functions
defined on Q. If 4 and B are events and P(B) =0, then P(A4|B) denotes the conditional
probability of A under the condition B. The sign A denotes the event consisting
of the non-occurrence of the event 4.

Let us recall some definitions.

Definition 1. ([1]) The sequence {£,} of random variables is called strongly
mixing within limiting distribution F(x) if the conditional distribution of &, under the
condition B with P(B)=0, i.e. the probability P(¢,<Xx|B), converges as n- + o
to the distribution function F(x).

Definition 2. ([2]) The sequence {{,} of random variables is called stable
if for any event B with P(B)=0 the conditional distribution of &, given B tends to
a limiting distribution function, i. e.

lim P(§,<x|B)= Fg(x)

n—+ + e
Jor every x which is a continuity point of the distribution function Fg(x).

It can be easily seen that the set of the discontinuity points of Fg(x) is a subset
of the discontinuity points of Fg(x) and hence the set of all discontinuity points
for every B is denumerable.

It can be shown [1] that if {£,} is a stable sequence of random variables then
for every fixed number x the function

O(x, B) = Fy(x)P(B)

is a measure in B. Q(x, B) is for fixed x absolutely continuous with respect to then
probability measure P. Thus by the Radom—Nykodim theorem

0w, B) = [ (w)dP (),
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where #,(w) is the Radon—Nykodim derivative of Q(x, B) with respect to P and
hence it is determined uniquely modulo P. The function a,(w) will be called the
local density of the stable sequence {£,}. We have 0=o(w)=1. Clearly, if o ()
is constant in @ with probability 1, then the sequence {£,} is strongly mixing with
limiting distribution o,.

We remark that Q(x, B) is for fixed B a monotonically non-increasing left-
continuous function of x with X lim Q(x, B)=0 and xliian(x, B)=P(B).

The local density a.(w) is uniquely determined except for a set of P-measure 0.
This means that we can change its values on an w-set of P-measure 0. We say that
/.(w) is a variant of a,(w) if they differ for a fixed x only on an w-set of P-measure 0.
Now we prove the following.

LEMMA 1. Let a,(w) be the local density of the stable sequence {£,} of random
variables. Then we can define avariant A () of o (w) which is a distribution function
in x with probability 1.

ProOF. We have evidently
Pt ()= (w))=1

if x <y. Let the sequence of rational numbers be r;, r,, .... We define 4, (w) to be
any variant of «, (w). Now 4, (w) is defined as a variant of «,,(w) such that 4,,(w) =
=/, (w)foreverywifr, <r,and 4, () =4, (o) forevery o if ry =>r, . If 4, , 4,,,... 2,,
is already defined then we can define 4, , (w) such that 4, , (w) is a variant of
a,, . (w) and

Ao (@ =4, (w), if j=k and rj<ryy,
or I @=4 (@) if j=k and rj=r.,.

For an irrational x we define 4,(w) to be lim 4, (w), where {r;} is an increasing
J=roo

sequence of rational numbers tending to x. It is easy to see that the value of 1, (w)
does not depend on the choice of the increasing sequence {r;} of rational numbers
tending to x.

We have to prove that 4 (w) is a variant of (). In fact, Q(r;, B) converges
for fixed B to Q(x, B) if r; converges to x from the left. From this by the Lebesque
theorem it follows that

[a(@)dP@) = [i(@)dP@).
2 0

Now evidently
P(a(w) = (w)=1.

From these two relations we obtain P(A.(w)=a,(w))=1, which means that i(w)
is a variant of the local density.

It follows also that if x<r., where x is irrational and ~ is rational, then
i) = A (w), and so A (w) = A (w), if x <y, x, y are arbitrary numbers. This mean
that 4. () is for fixed @ a monotonically increasing function.
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Let {r;} be an increasing sequence of rational numbers tending to the rational.
Then P( hm A (@) = A{w))=1. In fact, Q(x, B) being left-continuous at the point r,

we have by Lebesque’s theorem
[ mayae = i [ pip =0

which is our assertion. This means that except for an w-set of P-measure 0 the function
%(w) is left-continuous. It remains to prove that P( lirp I@)=1)=P( lim i (w)=
X+ 4 oo X+ — o0

=0)=1. We have Jim_QO(x, B) = P(B) for every fixed B. This means that
lim [ (1-4,(@)dP (@) = 0.

X =+ 00

By the Lebesgue theorem we have then
fa ~ lim_J,(@))dP () = 0,
n

which is our first assertion. The second can be obtained similarly. In paper [3] of
P. REvEsz a similar lemma is proved for sequences of equivalent random variables.
His proof, however, cannot be generalized verbatim to the case of stable sequences
of random variables. In fact, his formula (3), which is true for sequences of equivalent
random variables, is not true in our case.

On the basis of Lemma 1 we will suppose in what follows, that the local density
a,(w) is with probability 1 a distribution function.

In his paper [1] A. RENy showed that if {£,} is a mixing sequence of random
variables with limiting distribution F(x) and n an arbitrary random variable ha-
ving a discrete distribution and g(x, y) a continuous function of two variables,

G,=g(.n)

then the sequence of random variables is stable. We have generalized this result
in [4]. Namely, we omitted the supposition that # has a discrete distribution. In this
case the local density is

dF(y).
{obr.m) < x}

A Rényi asked the following problem: supposing {£,} to be stable instead of being
strongly mixing, is it true that g(&,, n) is also stable? The aim of the present paper
is to give a positive answer to this problem and to study some related topics.

§2.

Theorem 1. Let g(x) be a real-valued continuous function and {£,} a stable sequence
of random variables with local density x.(w). Then the sequence g(&,) is also stable
with local density

f dya,(w).
{g(y) <x)}
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Proor. The set A(x)={y:g(y)<x} is an open set on the real axis. Thus
A(x)= 2 I(x), where [,(x) are open intervals (k =1, 2, ...) and for any event B
k=1

P(g(,) < x,B) = é; P(¢,€I,(x), B).

Let us suppose that the endpoints of I (x) (k=1, 2, ...) are continuity points of
Fg(x) where Fy(x)= lir+n P(¢,<x|B). Then

Jim  P(E,€1(x), B) = P(B)[Fy(by(x)) — Fa(ar(x))]

exists, where a,(x)=b,(x) are the endpoints of the interval I, (x). Since we have
0= J(Fp(b,(x)) — Fg(a(x))) =1, we can choose a positive integer k, = k() such that
k=1

kgn (FB(bk (x)) = Fﬂ(ak(x))) =&

be satisfied. Let
l, if xt(x) {y{ bt(x), (k zkn.k:, 9-0)
) =1,

otherwise

and let us put a continuous and bounded function f;(y) such that f(y)=f;(»)
(—eo<y= + ) be satisfied and at the same time

[ 50V F0)= 3 (Falbi) - Fa(a()| <

hold. Here and in what follows integration with respect to a distribution function
means always Lebesgue—Stieltjes integration with respect to the measure generated
by that distribution function on the real axis. The construction of such a function
f1(») can be done with standard methods. Then, since

limsup [ f()dPG <yB)= [ £i()dFy(y) = 26,

LEE -

we see that if n =ny(e)
3 P(E.€L(x)|B) = 4.
k=ko

If k is an arbitrary fixed positive integer for which K=k, and if n=ny(c) we have

K K
2 PR, B) = P(g(6) < x,B) = 3 P(5,€L(x), B)+4e.

This means that

Jim P(e¢) <xB8)= [ 4008
(o) <x}
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Now we have for any B of positive probability

[ 400.8 = kg P(B)[Fy(bi(x)) — Fa(an(x))] =

(g <=x}
=§ f[ T)d,a,(w)] dP () = f[ f d’ay(w)]dP(w).
T ) B {gl»<x)

since by Lemma 1 o(w) denotes with probability 1 a distribution function of y.
It is easy to see that this limit relation is true for every real x with the exception
of a denumerable set of values of x. Since the last limit relation holds for every B
we conclude that the sequence g(£,) is stable and since the local density is uniquely
determined modulo P we see that the local density is with probability 1

[ da@)
{90») <x}
This proves the theorem.

Remark 1. If the sequence {&,} is strongly mixing with limiting distribution
F(x), then the sequence g(&,) is also strongly mixing with limiting distribution

[ ar@).
{eG) <x)}

Q(y, B)=F(y)P(B),

In fact, in this case

and thus

lim_P(g(¢) <x,B)=P(B) [ dF(y).
{g0) <x}

Let in what follows n and #, denote random vector variables of / dimensions
(n=1,2,...). We say that », converges in probability measure to 5 if the i-th com-
ponent of n, (i=1,2, ..., 1) converges in probability measure to the i-th component
of . Let further g(x, Yis Vas .-, ) denote a continuous real-valued function of

I+ 1 variables. We shall denote it in the sequel briefly by g(x,y), where y is a vector
of [ variables. -

Theorem 2. Let {C,} be a stable sequence of random variables with local density
(@) and n, a sequence of random vector variables of | dimensions. We suppose that

N, converges in probability measure to the random vector variable n. Let Surther g(x, l’)
be a continuous function of I+ 1 variables. Then the sequence X,=g(C,, N,) is also
stable with local density

; doo (w).
la(x, n(e)) <z}

To prove this theorem we state first some lemmas.
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Lemma 2. Let us suppose that n, converges in probability measure to the vector vari-
able n. Let D denote the domain, determined by the intervals [a;, b) (i=1,2,...,1]).
We suppose that a; and b; are continuity points of the distribution function of the i-th
component of n. Let A and A, denote the events {n€ D} and {n,c @} respectively.
Then P(AcA,)—~0 as n—~ + <. Here Ao A, denotes the symetric difference of A
and A,.

The proof of Lemma 2 is almost trivial.

Lemma 3. Ler {£,} be a sequence of random variables which has a limiting distri-
bution as n -~ + <= andn, a sequence of random vector variables converging in probability

measure to the vector variable n. If g(x,y) is a continuous function of 1+ 1 variables,
then the random variables

8 1) —8 (0 1)
converge in probability to zero as n— + =,
PrOOF. Since ,HT»P(E” < x) exist we can choose the numbers @ and » and the
domain D defined in the same manner as in Lemma 2 such that the inequality
Pla=¢é,<b, Na €D)=>1—¢

be satisfied if n=mny(e). Let us consider the bounded domain of /+ 1 dimensions:
{a=x<b, yE€ D}. The function g(x, y} being continuous, is uniformly continuous

in this domain. Thus the domain D can be splitted with the aid of the non-overlapping
subdomains D,, D,, ..., D, such that if Vi and y, are points of a subdomain,

say of D;, then the mequahty |g(x,_}1) —g(x, y2)| <0 holds. We have then
P(|g(ém rt'u)_g(fm ﬂ)! o é) —

k
= 3 P(|g(ns 1) —&&ns )| = 6,nED;, M, ED;a = §, < b)+

i=1

k
+1. 2 P& 1)~ m) = 8, n€D, mEDa = §, < b)+e.

The first sum on the nght-hand side of this inequality is zero because of the choice
of the domains D;. The second sum is smaller than

k
z; P(n€D;,n,E D).
Since k is fixed, this sum converges to zero by means of Lemma 2, if the domains

D; are defined accordingly to Lemma 2. (and this can be done without any difficulties.)

Lemma 4. Ler us suppose that {X,} and {Y,} are sequences of random variables
X, — Y, converges in probability measure to zero as n— + =. If one of them is stable
then the other is also stable with the same local density.

PrOOF. Suppose that the sequence X, is stable. Then for any event B of positive
probability we have

P(Y,<x|B) = P(Y, <X, A,|B)+ P(Y,<x, 4,|B),
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where 4,={|X,—Y,|<e}. Obviously
P(X,<x—¢|B)—P(A,|B)=P(Y,<x|B)=P(X,<x+¢|B)+ P(4,|B).
If x is a continuity point of the limiting distribution liIP P(X,~<x|B) we obtain

lim P(Y, < x|B) = ,.liT., P(X, < x|B), since lil_:;l P(A,|B) = 0.

n= 4 oo

This proves the lemma, since &¢ >0 was chosen arbitrarily.
Now the proof of Theorem 2. is as follows. On the basis of Lemmas 3. and 4.
it is enough to prove that the sequence g(,, #) is stable with the local density

p.(w) = f dy ot ().
{(g(x, n(w)) <z}

Let for this purpose B be any event and let us consider the integral
[ B.(w) dP ().
B

Since we have 0= f.(w) =1, we can divide the interval [0, 1] by the splitting points
BP (k=0,1,...,m) such that ¥ <p*+D (k=0,1,...,m—1), p{¥ =0, pi™ =1
and that the inequalities

[ B.@)dP@)-"S" pwp(p® = B.(w) < pr+1, B) <,
B k=0

and
[ B.(@)dP@)="S' pE+IPE® = fo(w) < pED, B)| -
B k=0
be satisfied. We denote by A, the event {f¥ =p.(w)<p**D}. Since the sequence

{£,} is stable, there can be found the real numbers a and b such that @ <b and for
n=ny(e) the inequality

Pa=¢, <b) = 1—%

hold. Further there can be found a domain D={aq;=y,<b;; i=1.2, ..., I} such that
P(n(w)€ D) = l—%
be satisfied. It follows from these that
Pla=¢,<b, n(w)eD)>1—¢
holds if n=n(e).
m~—1
We have > 4, =Q and 4,4, =0 if i#k. Since D is a bounded domain and
k=0

thus g(x,y) is uniformly continuous in the domain {a=x<b,y €D} of I+1

dimensions, we can divide D into disjoint subdomains D,, D,, ..., D, such that
iff, and y, are points of one of them, say of D;, (j=1,2, ..., p), then [g(x, y;)—
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—g(x, y;)| <0 hold. Let us denote by 4,; (k=0,1,...,n—1;j=1,2,...,p) the

m=1 p

event A{w:n(w)€D;}. Then A;; A,, =9, if k#v or j#u and 3 3 4; =

Jj=0 k=1

= {w:n(w)€D). Let y;€D; (j=1, 2, ..., p) be fixed points. Then as it can be easily
seen, '

043 3 P(eCny) <20 Ay B) = P(elusr) < 2,B) =

m—1 p ;
= go Jg; P(g(¢a, ) < z+0, Ayy, B) +e.

Since the sequence {£,} is stable and ¥ is fixed, we conclude by Theorem 1. that the
sequence g(&,, y;) is stable. Thus, if z is a continuity point of the limiting distribution
of this sequence and é >0 is chosen suitably, we obtain as n — + =

m—-1 p
—+> > [( [ da@)dP©) =liminf P(g(,,n <z B) =
k=0 j=1 AisB  {glu,y;) <z -8} n—soco e

= limsup P(g(&,,n) <z, B) =

1
n—+os k=0

20 [ da@)ap@+e

Ai;B {gluyj)<z+d}

By the choice of @, b and of the domain D for n=n,(¢e) we conclude
Pa=¢,<b, n(w)e D, B)=P(B)—2¢.

Thus letting n—~ + == and taking into account that «,(w) is with probability 1 a
distribution function in u, we obtain

m—=1 p
pB)-2=3 > [( [ da@)dP@) = P@).
k=0 j=1 AxjB {a=u<b)
This means that

m—1

> fs ([ dea@)dP) =2

1 AkiB {g(u, y;) <z +3)

u<a,n=h

k=0

.

We have thus from the above limiting relation

m=1 p
“%+> > [ [ da@)dP@) = liminfP(¢,.n) <z.B) =
k=0 J=1 4B (glu,y))<z~3) ns 4o =
(a=u<h)
m=1 p
= limsup P(g(&,.n) <z,B)= > X f [ f d,a,(w)] dP(w) + 3e.
A=+ i k=0 j=1 Ax,;B {glu.¥;)<=+48)

(a=u<bh)
If w€A,; and a=u-<>b we have

g, y;) —&(u, n(w))|<o.
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We obtain from two last inequalities

m=-1
“3+3 3 [( [ do@)dP@) =liminf P(g.n) <z B) =
k=0 J“An;ﬂ {'(-'!)."_2‘} ns4eo -
(a=u<b)

-]
= lim sup P(g(¢,,n) <z, B) = _Sp" f [ f d,x,) ]dP(w)+s.
n—++ oo 0 J= lAHB {g(u, n)<z+24)
(@mu<b)

Thus omitting the restriction a = u <b and summing with respect to j one has

it [( [ da@)dP) = liminf P(g(E,,n) <z B)=

k=0 4B (g(u, n)<z-28}

=limsup PeGun) <2B)= > [( [ da)dP@)+3e.
e e AxB  {g(u,m) <z + 28}

Now if B is fixed, the function
[ [ dou@)drP@)
B ({g(u.m<z

is monotonically increasing in z. It is also left continuous. In fact, if z, is an arbitrary
point of this function and {z,} is a monotonical sequence of numbers tending
from the left to z,, then by our Lemma 1 and by Lebesgue’s theorem

Iim [( [ da)adre) = f (lim [ doy@)dP@).
TR {ewm <) "7 (gum) <)
Then the inequality _
[ [ da@)dP@) = f (fim [ da)dpP@)

B {g(u,n) <zo} (g, m) <z}
is a contradiction, since

[ o)
{g(u,m <z}
is with probability 1 a distribution function in z and so is left continuous with
probability 1.
Thus if z is a continuity point of this function and if 6 >0 is chosen according
to £¢=>0, we conclude

I =rs z' [ [ da@)drP@) = lim inf P(g(¢,. 1) < . B) =

k=0 A8 {g(u.m)<2)

=limsup PG n) <28)= 3 [( [ da@)dr@)+de.

=0 AxB (g(u,m) <z)
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Taking into account that on the set 4, we have

W= [ ) =pr,
{‘h‘nﬂ)“zl
we obtain finally
— 66+ 2 P P(A,B) = liminf P(g(¢,,n) < z,B) =

n-+ 4 oo

= limsup P(g({,,m) <2, B) = ﬁ‘“ DP(A,B)+4e.

n=s 4 oo

This proves our theorem.
§3.

In this section we consider some questions concerning the moments of a stable
sequence of random variables.

Theorem 3. Let {¢,} be a stable sequence of random variables with local density
a(w) and let us suppose that the sequence {&,} is uniformly integrable with respect
to P. Let P* be an arbitrary probability measure, which is absolutely continuous
with respect to P and let us suppose that dP*|dP — the Radon—Nykodim derivative
of P* with respect to P — is bounded with probability 1. Then

+ oo

lim fﬁ.dP*= f x dF(x),

n= + oo

where

Fi(x) = lim P*(, <.

PrOOF. The uniform integrability of {,} with respect to P implies
(cf. e.g. [2], p. 196.).

+ oo

lim &, dP = f x dFq (x).

It is known [4] that the sequence {£,} is also stable with respect to P* and its local
density in the probability space {2, o, P*} is the same as in {Q, &7, P}. It turns
out particularly that Fg(x)= lir+n P*(&,<x) exists. By the supposition that

dP*|dP is bounded with probability 1, we deduce that the sequence {£,} is uniformly
integrable with respect to P* too. It follows from this that

+ oo
f &, dP* = f x dF}(x).

- oo

il—i + oo
This is our assertion.

Remark 2. Putting especially in Theorem 3. P*(A)= P(A|B) where P(B)=0,

we obtain
+ oo

Jim MG|B) = [ xdFy(x).

- 00
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Remark 3. Let us suppose that the sequence {&,} is strongly mixing with limiting
distribution F(x) and that the other conditions of Theorem 3. hold. In this case o (w)=
= F(x) with probability 1, thus we have F§(x)= F(x). This means that

n— 4 oo

+ oo
Iim JidP= Im | & 4dP*= x dF (x).
e feo ]

It follows particularly that putting P*(A)= P(A|B) where B is a fixed event of positive
probability we obtain

lim MJB) = lim M) = [ xdF().

(cf. [5].)

Remark 4. Itis easy to verify that one cannot omit in Theorem 3. the assump-
tion that dP*/dP is bounded with probability 1. In fact, let {£,} be a sequence of
independent and identically distributed random variables with mean-value 0 and
variance 1. Let us suppose that the fourth moment of £, does not exist. By the
central limit theorem we have

lim P[ﬁ"'+€f' =X

1
ne b Vn ] " V2n
, o it tle

is strongly mixing with limiting distribution @(x). Thus it is a fortiori stable. Let
us consider the measure

f e~ dt = & (x)

and the sequence

Pr) = [&aP.

Obviously this is absolutely continuous with respect to P and it is a probability
measure. We have dP*/dP=¢7 with probability 1, and dP*/dP is not bounded.
The sequence nZ by Theorem 1. is also strongly mixing with limiting distribution

20()x) —1 and uniformly integrable with respect to P. Then
. 2 *
nl-lollllﬂfn”dp

does not exist, since the fourth moment of &, is not finite.
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