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Polyadic semigroups
By DAVID ZUPNIK (Chicago, 111.)

1. Introduction

A polyadic semigroup, specifically an n-semigroup, is an associative n-ary
operation F on a set M. I. e., Fis a function whose domain is the Cartesian power
" and whose range is a subset of M, such that each of the n—1 equations ')
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holds for every (2n—1)-tuple x, ... x,,_; of elements of M. The main purpose
of this note is to prove the following result:

Theorem 1. Let F be an n-semigroup on a set 9. Assume that F has a right
identity, i. e., there exists an (n—1)-tuple bb, ... b,_, a (briefly, aa) such that:

(3) Fxb, ... b,_,a=Fxaa=x

for every x in M. Define a binary operation S,, and a unary operation [ by:
3) S,xy = Fxay,

C)) Jx= Faxa,

Jor all x,y in M. Let c=Fa". Then S, is a (binary) semigroup with right-identity a,
f is an endomorphism of S,, and we have

(5) X2 ive X2 B0 35 s J" 20

Jor all n-tuples x;x; ... x, in IM".

This theorem, which will be proved in § 2, is a generalization of a theorem of
M. HosszU ([2]) for polyadic groups. A polyadic group (n-group) *) is an n-semi-
group in which, given any n of the n+1 elements x,, ..., x,4+, of M, a solution
of the equation
(6) FXy oo Xy =Xn41

g us; the parentheses-free (Lukasiewicz) functional notation. Expressions such as FF, FFF
aa, aaaa will be abbreviated to F2, F3, a2, a“, etc.

2) This definition, as well as that of generalized associativity (1), was first introduced by E.
Déornte [1].
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for the remaining unknown element of M always exists. In other words, each one-
place part function ?) of F is onto M. This phrasing corresponds to the Huntington
definition of a (binary) group as an associative system G where aG =Ga=G ([3)).
As in the binary case, it then can be shown that these 1-place part-functions are
one-to-one, i.e., the solutions of (6) are unique.

E. L. PosT ([4]) in his fundamental Coset Theorem showed that every polyadic
group F on a set M has a covering (binary) group K. This means that there exists
a (unique) group K generated by M, such that for any n-tuple x, ... x, of elements
of M we have:

() Fy ... xg=K" 1%, ... X,

and such that 9 is a generating coset of a cyclic factor group of K.

The use of the covering group K has the disadvantage of introducing elements
not in M. In [2], Hosszii showed that such introduction can be avoided, and that
any polyadic group can be realized as a composite of @ binary group G on 9 and
an automorphism f of G. Specifically, he proved that

(8) Fxg . ,m=G% f5 ... %2,

where ¢ is a fixed element of M, fc=c and /"~ 'x=C?cxc™!, i. e., /"' is an inner
automorphism of G.%)

In § 3, we show that Hosszu’s theorem is a special case of Theorem 1. Finally,
in §4 we use Theorem | to obtain a generalization to n-semigroups of a theorem
of Ddérnte on derivability of n-groups.

2. Proof of Theorem 1

Lemma 1. The function S, defined in (3) is a (binary) semigroup, i.e.,

©) SuSuxyz = 8;xS.yz,
for all x,y,z in M.
PROOF. SSxyz=FSxyaz= (3)
= FFxayaz= (3)
= FxaFyaz= (1)
= FxaSyz= (3)
= SxS)yz. (3)

Note that in this proof we did not have to assume the existence of any identity
for F. If F has a right-identity aa, then it is immediate from (3) that a is a right-
identity for S,.

3) A k-place part function of F is derived from F by fixing n-k of the arguments.

‘) As a byproduct, Hosszi was able to immediately obtain a theorem of E. Vincze [5],
which itself generalized a theorem of J. AczEL on real solutions of the functional equation of associa-
tivity.
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Lemma 2. The function f defined in (4) is an endomorphism of S,, i.e.,

(10) SSexy=S./x[y,
forall x,y in M.

PrROOF. S,fx fy = S,FaxaFays= 4)

= F FaxaaFayx = (3)

=FFaxbl - bn_zaFayﬂ=
=FaFx...Fb,_jaaya= (1)

= FaFxb,...b,_,ya= (2)
= Fa Fxayx =
=fFxay = 4
=f8.x. 3)
Lemma 3. For the functions f and S, of Theorem 1, we have:
(11) SaX1 fX2. o " X0 = 83X 1 fS:X 2+ f SaXn—1 SXnC.

Proor. The proof depends on the fact that if f is an endomorphism of §,,
then so are all the iterates of /. Hence for any positive integer m, we have

(4a) SSexy = So f"xf™y.
Now starting with the left hand side of (11), we have:
Slefxz ikt P‘_Ixnc = ngl szxz e Sufn_zxn- lf'—:xuc = (9)
- Slesafxl eee Saf”_zxu—lfn_zfxuc -
= S3x: S g .. 238, %, 1 SRs0 (4a)
Repeating this procedure leads us, after (n —2) more steps, to (11).
Remark: Although fis an endomorphism of S,, fS, is in general not®) a semi-
group on M. For example, let M be the set of real numbers, and S ordinary real

addition. For any a#0,1 let f, denote the linear function defined by fx=a-x.
Then f, is an endomorphism of S. But we have:

fuSfuSxyz = a(a(x+y)+2) = a*x+a*y+az#
“ax+a*y+a*z = (a(x+a(y+2)) = f,Sx f,Syz.

A sufficient condition for /S to be associative is that f be idempotent; in this case,
if fis onto 9, then fis the identity function on .

%) Occasionally one finds the statement such as: If f is an endomorphism of the semigroup
S then the image fS is a (sub-) semigroup. This is the result of using the same symbol ,,S™ to denote
the set M and the semigroup, i.e., the pair (M, S). What is meant is: The pair (N, S), where §’
is the restriction of S to the set ff, is a subsemigroup of (I, S).
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Lemma 4. If c=Fa", then

(12) Fxg...%; = S3%, 8. X5 f 8% 1 fR\C.
PROOF.
Fx,...x, =FFxaa Fxyaa... Fx,_,aa Fxoa= (2)
= FFx,aFax,u...Fax, - ;o Fax,aa= (1)
= FFx,aFax,ua...Fax,_ o fx.a= (4)
= FFx,aFax,a...Fax,_ o F fxaaa = (2)
= FFx,aFax,a... FaFx,_ a fx,0a* = (1)
= F Fx,aFax,a... FaS,x,_, fx0a* = (3)
= FFxaFax,o...f S.x,, fxa°. (4)
Applying the procedure in the last 4 steps n—2 times in succession we obtain:
Fxg...%y=FFx;0fS%3...  SeXp-1 J20" "= (2)
= FFx,aF fSx...f 8%, Jxpad" "= (2)
= FFx0f SX3...f SeXy-y [x0Fad" = (1)
=FSx [82%3... /8,1 e0c= (2)
= 83X [8:X2.. f SeXn— 1 fXnC. (2)
Equations (11) and (12) together yield (5), and so the proof of Theorem 1 is
complete.

N. B. Similar arguments will show that a semigroup with a left identity ax
can be realized in the form:

FXy.c Xy mn S 2. 8% 1 %0

where S,xy = Fxay, gx = Faxa, and c¢= Fa".

3. Hosszii’s Theorem

Lemma 5. If F is an n-group, « is any fixed (n —2) tuple, and S, is defined via (3),
then S, is a group.

PrOOF. By Lemma 1. §, is a semigroup. And since F is an n-group, any equation
of the form
S, %5 = X5

has a solution whenever two of the x’s are given. But this is one of the standard
definitions of a group.
In dealing with groups, we shall generally write G, instead of S,.

Lemma 6. For every (n—2)-tuple a€IM"~2, there exists an acM such that
aa and ax are each (two-sided) identities of the n-group F.
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Proor. The (binary) group G, has an identity, say a. Then G,ax= Faoax=
=x=Gxa= Fxaa. Thus aa is a right identity and ax a left identity of F. Now, to
show that ax is also a right identity we have:

Fxao= Fxab,...b,_, = Fxab,...Fb,_,xa= FxFab,...b,_,0a=
= FxFaub,...b,_,a= Fxb,...b,_,a= Fxoa=x.

Similarly, we can show, that «a is also a left identity.

This lemma is a special case of a more general theorem of Post ([4]): Given
any n—2 elements a,...q;_,8;4,...@,-y of M (i=1,2,...,n—1), there exists an
element @; in M such that a,...a,_,; is an identity of the n-group; furthermore,
any cyclic permutation of a,...a,_, is also an identity.

Lemma 7. Let ax be a right identity of F and ¢ = Fa". If f is as defined in (4),
then ¢ is a fixed point of f.

PROOF. fc= Faca= FaFa"s = FFad"x = FFa'ax = Feax = c.
Note that the proof does not require F to be an n-group.

Lemma 8. If F is an n-group, then f is an automorphism of G, and f"~* an inner
automorphism of G,: Specifically f*~'x=G? cxc™" where c is as in Lemma 7.

Proor. 1. By Lemma 2, f is an endomorphism of G,. Since F is an n-group,
fis one-to-one onto M, i. e., an automorphism.

2. lxm P lg—tat!l wm Pl g~ m Pl Fagaxot~! =
= FFFa"axaF" 3a" 2 = FFcaxaF" 3" 2 = FG,cxaF" 3a""2 = GlexF" 3 o"2

To complete the proof we need only show that F"~3x"-2=c¢-!, jie., that
G,cF" 3" 2=qg. Now

GeF 302 = GFa"F* 30" ? = FFa'aF*3a"% =
= Pigpgr=1 o -2 Faabi .. by g =3,
where b,...b,_, =a. Since ax is a left identity, we have
Qe gt o PR30k b il L R o PR AR G

Repeating the procedure, we reduce the right hand side to Faaax=a.
Lemmas 5, 6, 7 and 8 together show that Hosszii’s Theorem is a special case
of Theorem 1.

4. Derivable n-semigroups

If Fa"=a, we call a an idempotent element of F.

Lemma 9. Let F be an n-semigroup with an idempotent elen-ent a, and let a function
[ be defined by
(13) fx = Faxa"~*.
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Then f*~'x= F?a"~'xa"~', f"=fand f"~' is an idempotent function,i.e., f*~' "~ '=
=f"'_l_
PROOF l‘ fn-lx < Fn—laa-ixaﬂl-n(n—!) - F""‘a"““xa"a("“z""‘”"'=
- Fu-Zan—IxFana(u—Z}{u-l}—n = Fu—zan—lxaa(n—l)(n—l)—n =4
= Fn—zau—lxa(u—”(n—l)_
Repeating the above steps n —2 more times we get:
oy m PRy L,
2. fxmfr-tfxm P fxd ' = Fa ' Faxt 2qg" ! =
= Fig°xFa'a"? = Faxad"~> = Faxa"? = fx.
3. fu—-lfn-l :f2n—2 :fnfn~2 =Jt]'u—2 zf"_l,

Lemma 10. Ler F be an n-semigroup on a set M. Let a be an element of I,
and let f be as defined in (13). Then the following statements are equivalent: (i) a is
an idempotent element of F, and f is onto M; (ii) a"~ ' is a (2-sided) identity of F.

PROOF. (i) implies (ii).
Since fis onto M, /"' is onto M. But, by Lemma 9, /"~ ! is idempotent, and
an idempotent function onto a set is the identity function. We therefore have:

x=/f"1x=F¢'xa"' = Flaa" *xa"~' = F* Fa"a" *xa"~" =
= Fq-Y(Fa""'x)a" ! = f* ' Fa"'x = Fa"~'x,

i.e.,, @ ! is a left identity of F. Similarly we can show that @"~' is a right identity.
(ii) implies (i).
1. Fa" = Faa"~' = a i.e., a is idempotent.
2. f*x=Fg""'x¢" ' = Fg" ' Fxad* ! = Fa"'x = x,

i.e., /"~ ! is onto M. Since the range of /"' is a subset of the range of f, the proof
is complete.

DORNTE ([1]) already distinguished between genuine (echte) and derivable
(ableitbare) n-groups. An n-semigroup F is derivable from a binary semigroup S
if F=5"1,

Theorem 2. Let F be an n-semigroup on a set M. Then the following statements
are equivalent: (i) F is derivable from a (binary) semigroup S on I with identity a;
(i) F has an idempotent element a such that Faxa"~? = x for all xc¢M; (iii) there is
an element a€M such that a"~ is a right identity of F, and such that Faxa"~?=x
for all xcIM.

ProoF. (i) implies (ii). Fa"=S8""'a"=a, i.c., a is an idempotent element of F.
Furthermore
Faxad" 2 = S lgxg"~? = x.
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(ii) implies (iii). Since fx = Faxa"~* =x means that f is onto M, this implication
follows from Lemma 10.

(iii) implies (i). Let @ =a"~2. By hypothesis aa is a (right) identity. We can
therefore apply Theorem 1 and obtain

Fry oo m S3x s oo I Pt = S8ns Iy oo [ %0

Now fx = Faxa= Faxa"~? =x by hypothesis, and a is the identity of S,. Hence
we have
TSy %,

Since any group has an identity, Theorem 2 includes as a special case the
necessary and sufficient criterion for n-groups to be derivable from binary groups
(Démte, [1], §2, Theorem 6).
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Added in proof. I am indebted to Professor B. M. ScHEIN for directing my
attention to the fundamental work of L. M. GLUSKIN on n-semigroups and related
systems (Positional Operatives, Doklady Akad. Nauk SSSR 157, 1964, 767—770;
Positional Operatives, Mat. Sbornik 68, 1965, 444—472). In particular, Theorem 5 in
the Doklady paper is essentially a weaker form of Theorem 1 of this paper.
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