Polyadic semigroups

By DAVID ZUPNIK (Chicago, Ill.)

1. Introduction

A polyadic semigroup, specifically an n-semigroup, is an associative n-ary operation F on a set \mathfrak{M} . I. e., F is a function whose domain is the Cartesian power \mathfrak{M}^n and whose range is a subset of \mathfrak{M} , such that each of the n-1 equations 1)

(1)
$$FFx_1 \dots x_{2n-1} = Fx_1 \dots x_k Fx_{k+1} \dots x_{2n-1} \qquad (1 \le k \le n-1)$$

holds for every (2n-1)-tuple $x_1 \dots x_{2n-1}$ of elements of \mathfrak{M} . The main purpose of this note is to prove the following result:

Theorem 1. Let F be an n-semigroup on a set \mathfrak{M} . Assume that F has a right identity, i. e., there exists an (n-1)-tuple $b_1b_2 \dots b_{n-2}$ a (briefly, αa) such that:

$$Fxb_1 \dots b_{n-2}a = Fx\alpha a = x$$

for every x in \mathfrak{M} . Define a binary operation S_{α} , and a unary operation f by:

$$S_{\alpha}xy = Fx\alpha y,$$

$$(4) fx = Fax\alpha,$$

for all x,y in \mathfrak{M} . Let $c = Fa^n$. Then S_α is a (binary) semigroup with right-identity a, f is an endomorphism of S_{α} , and we have

(5)
$$Fx_1x_2 \dots x_n = S_{\alpha}^n x_1 f x_2 \dots f^{n-1} x_n c$$

for all n-tuples $x_1x_2 \dots x_n$ in \mathfrak{M}^n .

This theorem, which will be proved in § 2, is a generalization of a theorem of M. Hosszú ([2]) for polyadic groups. A polyadic group (n-group) 2) is an n-semigroup in which, given any n of the n+1 elements $x_1, ..., x_{n+1}$ of \mathfrak{M} , a solution of the equation

$$Fx_1 \dots x_n = x_{n+1}$$

¹⁾ I use the parentheses-free (Lukasiewicz) functional notation. Expressions such as FF, FFF

<sup>aa, aaaa will be abbreviated to F², F³, a², a⁴, etc.
2) This definition, as well as that of generalized associativity (1), was first introduced by E.</sup> Dörnte [1].

274 D. Zupnik

for the remaining unknown element of \mathfrak{M} always exists. In other words, each one-place part function ³) of F is onto \mathfrak{M} . This phrasing corresponds to the Huntington definition of a (binary) group as an associative system G where aG = Ga = G ([3]). As in the binary case, it then can be shown that these 1-place part-functions are one-to-one, i.e., the solutions of (6) are unique.

E. L. Post ([4]) in his fundamental Coset Theorem showed that every polyadic group F on a set \mathfrak{M} has a covering (binary) group K. This means that there exists a (unique) group K generated by \mathfrak{M} , such that for any n-tuple $x_1 \ldots x_n$ of elements of \mathfrak{M} we have:

(7)
$$Fx_1 \dots x_n = K^{n-1}x_1 \dots x_n,$$

and such that \mathfrak{M} is a generating coset of a cyclic factor group of K.

The use of the covering group K has the disadvantage of introducing elements not in \mathfrak{M} . In [2], Hosszú showed that such introduction can be avoided, and that any polyadic group can be realized as a composite of a binary group G on \mathfrak{M} and an automorphism f of G. Specifically, he proved that

(8)
$$Fx_1 \dots x_n = G^n x_1 f x_2 \dots f^{n-2} x_n c,$$

where c is a fixed element of \mathfrak{M} , fc = c and $f^{n-1}x = C^2cxc^{-1}$, i. e., f^{n-1} is an inner automorphism of G.⁴)

In § 3, we show that Hosszú's theorem is a special case of Theorem 1. Finally, in § 4 we use Theorem 1 to obtain a generalization to *n*-semigroups of a theorem of Dörnte on derivability of *n*-groups.

2. Proof of Theorem 1

Lemma 1. The function S_n defined in (3) is a (binary) semigroup, i.e.,

(9)
$$S_{\alpha}S_{\alpha}xyz = S_{\alpha}xS_{\alpha}yz,$$
 for all x, y, z in \mathfrak{M} .

PROOF.
$$SSxyz = FSxy\alpha z = (3)$$

$$= FFx\alpha y\alpha z = (3)$$

$$= Fx\alpha Fy\alpha z = (1)$$

$$= Fx\alpha Syz = (3)$$

Note that in this proof we did not have to assume the existence of any identity for F. If F has a right-identity αa , then it is immediate from (3) that a is a right-identity for S_{α} .

(3)

= SxSyz.

3) A k-place part function of F is derived from F by fixing n-k of the arguments.
4) As a byproduct, Hosszú was able to immediately obtain a theorem of E. VINCZE [5], which itself generalized a theorem of J. Aczél on real solutions of the functional equation of associativity.

Lemma 2. The function f defined in (4) is an endomorphism of S_{α} , i.e.,

(10)
$$fS_{\alpha}xy = S_{\alpha}fxfy,$$
 for all x, y in \mathfrak{M} .

PROOF.
$$S_{\alpha}fx fy = S_{\alpha}Fax\alpha Fay\alpha =$$
 (4)

$$= FFax\alpha\alpha Fay\alpha =$$
 (3)

$$= FFaxb_{1} \dots b_{n-2}\alpha Fay\alpha =$$
 (1)

$$= FaFx \dots Fb_{n-2}\alpha ay\alpha =$$
 (1)

$$= FaFxb_{1} \dots b_{n-2}y\alpha =$$
 (2)

$$= FaFx\alpha y\alpha =$$
 (4)

$$= fFx\alpha y.$$
 (3)

Lemma 3. For the functions f and S_{α} of Theorem 1, we have:

(11)
$$S_{\alpha}^{n}x_{1}fx_{2}...f^{n-1}x_{n}c = S_{\alpha}^{2}x_{1}fS_{\alpha}x_{2}...fS_{\alpha}x_{n-1}fx_{n}c.$$

PROOF. The proof depends on the fact that if f is an endomorphism of S_{α} , then so are all the iterates of f. Hence for any positive integer m, we have

$$f^{m}S_{\alpha}xy = S_{\alpha}f^{m}xf^{m}y.$$

Now starting with the left hand side of (11), we have:

$$S_{\alpha}^{n}x_{1}fx_{2}\dots f^{n-1}x_{n}c = S_{\alpha}^{2}x_{1}S_{\alpha}fx_{2}\dots S_{\alpha}f^{n-2}x_{n-1}f^{n-1}x_{n}c = (9)$$

$$= S_{\alpha}^{2}x_{1}S_{\alpha}fx_{2}\dots S_{\alpha}f^{n-2}x_{n-1}f^{n-2}fx_{n}c =$$

$$= S_{\alpha}^{2}x_{1}S_{\alpha}fx_{2}\dots f^{n-2}S_{\alpha}x_{n-1}fx_{n}c \qquad (4a)$$

Repeating this procedure leads us, after (n-2) more steps, to (11).

Remark: Although f is an endomorphism of S_{α} , fS_{α} is in general not^5) a semi-group on \mathfrak{M} . For example, let \mathfrak{M} be the set of real numbers, and S ordinary real addition. For any $a \neq 0,1$ let f_a denote the linear function defined by $f_a x = a \cdot x$. Then f_a is an endomorphism of S. But we have:

$$f_a S f_a S x y z = a(a(x+y)+z) = a^2 x + a^2 y + az \ne$$

 $\ne ax + a^2 y + a^2 z = (a(x+a(y+z)) = f_a S x f_a S y z.$

A sufficient condition for fS to be associative is that f be idempotent; in this case, if f is onto \mathfrak{M} , then f is the identity function on \mathfrak{M} .

⁵⁾ Occasionally one finds the statement such as: If f is an endomorphism of the semigroup S then the image fS is a (sub-) semigroup. This is the result of using the same symbol "S" to denote the set $\mathfrak M$ and the semigroup, i.e., the pair $(\mathfrak M, S)$. What is meant is: The pair $(f\mathfrak M, S')$, where S' is the restriction of S to the set $f\mathfrak M'$, is a subsemigroup of $(\mathfrak M, S)$.

Lemma 4. If $c = Fa^n$, then

(12)
$$Fx_1...x_n = S_{\alpha}^2 x_1 f S_{\alpha} x_2...f S_{\alpha} x_{n-1} f x_n c.$$

PROOF.

276

$$Fx_{1}...x_{n} = FFx_{1}\alpha a Fx_{2}\alpha a...Fx_{n-1}\alpha a Fx_{n}\alpha a = \qquad (2)$$

$$= FFx_{1}\alpha Fax_{2}\alpha...Fax_{n-1}\alpha Fax_{n}\alpha a = \qquad (1)$$

$$= FFx_{1}\alpha Fax_{2}\alpha...Fax_{n-1}\alpha fx_{n}a = \qquad (4)$$

$$= FFx_{1}\alpha Fax_{2}\alpha...Fax_{n-1}\alpha Ffx_{n}\alpha aa = \qquad (2)$$

$$= FFx_{1}\alpha Fax_{2}\alpha...FaFx_{n-1}\alpha fx_{n}\alpha a^{2} = \qquad (1)$$

$$= FFx_{1}\alpha Fax_{2}\alpha...FaS_{\alpha}x_{n-1}fx_{n}\alpha a^{2} = \qquad (3)$$

$$= FFx_{1}\alpha Fax_{2}\alpha...FaS_{\alpha}x_{n-1}fx_{n}a^{2}. \qquad (4)$$

Applying the procedure in the last 4 steps n-2 times in succession we obtain:

$$Fx_{1}...x_{n} = FFx_{1}\alpha fS_{\alpha}x_{2}...f S_{\alpha}x_{n-1} fx_{n}a^{n-1} = (2)$$

$$= FFx_{1}\alpha FfS_{\alpha}x_{2}...f S_{\alpha}x_{n-1} fx_{n}\alpha aa^{n-1} = (2)$$

$$= FFx_{1}\alpha fS_{\alpha}x_{2}...f S_{\alpha}x_{n-1} fx_{n}\alpha Fa^{n} = (1)$$

$$= FS_{\alpha}x_{1} fS_{\alpha}x_{2}...f S_{\alpha}x_{n-1} fx_{n}\alpha c = (2)$$

$$= S_{\alpha}^{2}x_{1} fS_{\alpha}x_{2}...f S_{\alpha}x_{n-1} fx_{n}c. (2)$$

Equations (11) and (12) together yield (5), and so the proof of Theorem 1 is complete.

N. B. Similar arguments will show that a semigroup with a *left* identity $a\alpha$ can be realized in the form:

$$Fx_1...x_n = S_{\alpha}^n c g^{n-1} x...g x_{n-1} x_n,$$

where $S_{\alpha}xy = Fx\alpha y$, $gx = F\alpha xa$, and $c = Fa^{n}$.

3. Hosszú's Theorem

Lemma 5. If F is an n-group, α is any fixed (n-2) tuple, and S_{α} is defined via (3), then S_{α} is a group.

PROOF. By Lemma 1, S_{α} is a semigroup. And since F is an n-group, any equation of the form

$$S_{\alpha}x_1x_2 = x_3$$

has a solution whenever two of the x's are given. But this is one of the standard definitions of a group.

In dealing with groups, we shall generally write G_{α} instead of S_{α} .

Lemma 6. For every (n-2)-tuple $\alpha \in \mathfrak{M}^{n-2}$, there exists an $a \in \mathfrak{M}$ such that αa and $a\alpha$ are each (two-sided) identities of the n-group F.

PROOF. The (binary) group G_{α} has an identity, say a. Then $G_{\alpha}ax = Fa\alpha x = x = Gxa = Fx\alpha a$. Thus αa is a right identity and $a\alpha$ a left identity of F. Now, to show that $a\alpha$ is also a right identity we have:

$$Fxa\alpha = Fxab_1...b_{n-2} = Fxab_1...Fb_{n-2}\alpha a = FxFab_1...b_{n-2}\alpha a =$$

$$= FxFa\alpha b_1...b_{n-2}a = Fxb_1...b_{n-2}a = Fx\alpha a = x.$$

Similarly, we can show, that αa is also a left identity.

This lemma is a special case of a more general theorem of Post ([4]): Given any n-2 elements $a_1...a_{i-1}a_{i+1}...a_{n-1}$ of \mathfrak{M} (i=1,2,...,n-1), there exists an element a_i in \mathfrak{M} such that $a_1...a_{n-1}$ is an identity of the *n*-group; furthermore, any cyclic permutation of $a_1...a_{n-1}$ is also an identity.

Lemma 7. Let $a\alpha$ be a right identity of F and $c = Fa^n$. If f is as defined in (4), then c is a fixed point of f.

PROOF.
$$fc = Fac\alpha = FaFa^n\alpha = FFaa^n\alpha = FFa^n\alpha\alpha = Fc\alpha\alpha = c$$
.

Note that the proof does not require F to be an n-group.

Lemma 8. If F is an n-group, then f is an automorphism of G_{α} and f^{n-1} an inner automorphism of G_{α} : Specifically $f^{n-1}x = G_{\alpha}^2 \csc^{-1}$ where c is as in Lemma 7.

PROOF. 1. By Lemma 2, f is an endomorphism of G_{α} . Since F is an n-group, f is one-to-one onto \mathfrak{M} , i. e., an automorphism.

2.
$$f^{n-1}x = F^{n-1}a^{n-1}x\alpha^{n-1} = F^{n-1}a^{n-2}ax\alpha^{n-1} = F^{n-1}a^{n-2}Faa\alpha x\alpha^{n-1} =$$

$$= FFFa^n\alpha x\alpha F^{n-3}\alpha^{n-2} = FFc\alpha x\alpha F^{n-3}\alpha^{n-2} = FG_{\alpha}cx\alpha F^{n-3}\alpha^{n-2} = G_{\alpha}^ncxF^{n-3}\alpha^{n-2}$$

To complete the proof we need only show that $F^{n-3}\alpha^{n-2}=c^{-1}$, i.e., that $G_{\alpha}cF^{n-3}\alpha^{n-2}=a$. Now

$$GcF^{n-3}\alpha^{n-2} = GFa^nF^{n-3}\alpha^{n-2} = FFa^n\alpha F^{n-3}\alpha^{n-2} =$$

= $F^{n-1}a^n\alpha^{n-1} = F^{n-2}a^{n-1}Fa\alpha b_1 \dots b_{n-2}\alpha^{n-3},$

where $b_1 ... b_{n-2} = \alpha$. Since $a\alpha$ is a left identity, we have

$$GcF^{n-3}\alpha^{n-2} = F^{n-2}\alpha^{n-1}b_1 \dots b_{n-2}\alpha^{n-3} = F^{n-2}\alpha^{n-1}\alpha^{n-2}$$
.

Repeating the procedure, we reduce the right hand side to $Faa\alpha = a$.

Lemmas 5, 6, 7 and 8 together show that Hosszú's Theorem is a special case of Theorem 1.

4. Derivable n-semigroups

If $Fa^n = a$, we call a an idempotent element of F.

Lemma 9. Let F be an n-semigroup with an idempotent element a, and let a function f be defined by

$$fx = Faxa^{n-2}.$$

Then $f^{n-1}x = F^2a^{n-1}xa^{n-1}$, $f^n = f$ and f^{n-1} is an idempotent function, i.e., $f^{n-1}f^{n-1} = f^{n-1}$.

PROOF 1.
$$f^{n-1}x = F^{n-1}a^{n-1}xa^{(n-2)(n-1)} = F^{n-1}a^{n-1}xa^na^{(n-2)(n-1)-n} =$$

$$= F^{n-2}a^{n-1}xFa^na^{(n-2)(n-1)-n} = F^{n-2}a^{n-1}xaa^{(n-2)(n-1)-n} =$$

$$= F^{n-2}a^{n-1}xa^{(n-3)(n-1)}.$$

Repeating the above steps n-2 more times we get:

$$f^{n-1}x = F^{2}a^{n-1}xa^{n-1}.$$
2. $f^{n}x = f^{n-1}fx = F^{2}a^{n-1}fx a^{n-1} = F^{2}a^{n-1}Fa xa^{n-2}a^{n-1} =$

$$= F^{2}a^{n}x Fa^{n}a^{n-3} = Fa xaa^{n-3} = Fa xa^{n-2} = fx.$$
3. $f^{n-1}f^{n-1} = f^{2n-2} = f^{n}f^{n-2} = ff^{n-2} = f^{n-1}.$

Lemma 10. Let F be an n-semigroup on a set \mathfrak{M} . Let a be an element of \mathfrak{M} , and let f be as defined in (13). Then the following statements are equivalent: (i) a is an idempotent element of F, and f is onto \mathfrak{M} ; (ii) a^{n-1} is a (2-sided) identity of F.

PROOF. (i) implies (ii).

Since f is onto \mathfrak{M} , f^{n-1} is onto \mathfrak{M} . But, by Lemma 9, f^{n-1} is idempotent, and an idempotent function onto a set is the identity function. We therefore have:

$$x = f^{n-1}x = F^{2}a^{n-1}xa^{n-1} = F^{2}aa^{n-2}xa^{n-1} = F^{2}Fa^{n}a^{n-2}xa^{n-1} =$$

$$= F^{2}a^{n-1}(Fa^{n-1}x)a^{n-1} = f^{n-1}Fa^{n-1}x = Fa^{n-1}x,$$

i.e., a^{n-1} is a left identity of F. Similarly we can show that a^{n-1} is a right identity. (ii) implies (i).

1. $Fa^n = Faa^{n-1} \neq a$ i. e., a is idempotent.

2.
$$f^{n-1}x = F^2a^{n-1}xa^{n-1} = Fa^{n-1}Fxa^{n-1} = Fa^{n-1}x = x$$
,

i.e., f^{n-1} is onto \mathfrak{M} . Since the range of f^{n-1} is a subset of the range of f, the proof is complete.

DÖRNTE ([1]) already distinguished between genuine (echte) and derivable (ableitbare) *n*-groups. An *n*-semigroup F is derivable from a binary semigroup S if $F = S^{n-1}$.

Theorem 2. Let F be an n-semigroup on a set \mathfrak{M} . Then the following statements are equivalent: (i) F is derivable from a (binary) semigroup S on \mathfrak{M} with identity a; (ii) F has an idempotent element a such that $Faxa^{n-2} = x$ for all $x \in \mathfrak{M}$; (iii) there is an element $a \in \mathfrak{M}$ such that a^{n-1} is a right identity of F, and such that $Faxa^{n-2} = x$ for all $x \in \mathfrak{M}$.

PROOF. (i) implies (ii). $Fa^n = S^{n-1}a^n = a$, i.e., a is an idempotent element of F. Furthermore

$$Fa \times a^{n-2} = S^{n-1} a \times a^{n-2} = x$$
.

- (ii) implies (iii). Since $fx = Faxa^{n-2} = x$ means that f is onto \mathfrak{M} , this implication follows from Lemma 10.
- (iii) implies (i). Let $\alpha = a^{n-2}$. By hypothesis αa is a (right) identity. We can therefore apply Theorem 1 and obtain

$$Fx_1 \dots x_n = S_{\alpha}^n x_1 f x_2 \dots f^{n-1} x_n F a^n = S_{\alpha}^n x_1 f x_2 \dots f^{n-1} x_n a.$$

Now $fx = Fax\alpha = Faxa^{n-2} = x$ by hypothesis, and a is the identity of S_a . Hence we have

$$Fx_1...x_n = S_n^{n-1}x_1...x_n$$
.

Since any group has an identity, Theorem 2 includes as a special case the necessary and sufficient criterion for n-groups to be derivable from binary groups (Dörnte, [1], § 2, Theorem 6).

Acknowledgment

I wish to acknowledge my thanks to Dr. A. Sklar for his many helpful discussions and criticisms during the preparation of this paper.

Added in proof. I am indebted to Professor B. M. Schein for directing my attention to the fundamental work of L. M. GLUSKIN on n-semigroups and related systems (Positional Operatives, Doklady Akad. Nauk SSSR 157, 1964, 767-770; Positional Operatives, Mat. Sbornik 68, 1965, 444—472). In particular, Theorem 5 in the Doklady paper is essentially a weaker form of Theorem 1 of this paper.

Bibliography

- [1] W. DÖRNTE, Untersuchungen über einen verallgemeinerten Gruppenbegriff. Math. Z. 29 (1928),
- [2] M. Hosszú, On the explicit form of n-group operations. Publ. Math. Debrecen 10 (1963), 88—92.
- [3] E. V. HUNTINGTON, Simplified definition of a group. Bull. Amer. Math. Soc. 8 (1901-02), 296-
- [4] E. L. Post, Polyadic Groups, Trans. Amer. Math. Soc. 48 (1940), 208—350.
 [5] E. VINCZE, Verallgemeinerung eines Satzes über assoziative Funktionen von mehreren Veränderlichen. Publ. Math. Debrecen 8 (1961), 68-74.

(Received August 18, 1966.)