Sets of radical classes

By W. G. LEAVITT (Lincoln, Neb.)

1. Introduction

A class \mathscr{C} of rings is said to be homomorphically closed if $R \in \mathscr{C}$ implies $R\Phi \in \mathscr{C}$ for every homomorphism Φ of R, and is said to be hereditary if $R \in \mathscr{C}$ implies $I \in \mathscr{C}$ for every ideal I of R. A class which is both homomorphically closed and hereditary is said to be a universal class. In the following all rings considered are from an arbitrary but fixed class \mathscr{C} of (not necessarily associative) rings.

For a class 𝒯⊆𝒞 define

(1)
$$\mathscr{SP} = \{R \in \mathscr{C} | I \notin \mathscr{P} \text{ for every non-zero ideal } I \text{ of } R\}$$
 and

(2)
$$\mathscr{UP} = \{R \in \mathscr{C} | R\Phi \in \mathscr{P} \text{ for every non-zero homomorphism } \Phi \text{ of } R\}$$

Remark 1. It is well-known that if \mathscr{P} is a radical class [1, 3] then \mathscr{SP} is its semisimple class and $\mathscr{USP} = \mathscr{P}$ ([4] Theorem 1, p. 4). (Note that the proofs of [4] Chapter I apply equally well to classes of possibly non-associative rings.)

Remark 2. On the other hand, if \mathcal{P} is a semisimple class then \mathcal{UP} is a radical class (called the *upper* radical defined by the class \mathcal{P}) and $\mathcal{PUP} = \mathcal{P}$ ([4] Theorem 2, p. 5).

Remark 3. If \mathscr{P} is a radical class we will write $\mathscr{P}(R)$ for the \mathscr{P} -radical of the ring R. Note that if H is an ideal of R such that $R/H \in \mathscr{SP}$ then $\mathscr{P}(R) \subseteq H$. This is clear since otherwise $(\mathscr{P}(R) + H)/H \cong \mathscr{P}(R)/\mathscr{P}(R) \cap H$ would be a non-zero \mathscr{P} -ideal of R/H contradicting the definition (1).

Remark 4. In the Kurosh construction of the lower radical for a homomorphically closed class of rings \mathcal{H} (as modified by ANDERSON, DIVINSKY and SULINSKI ([4] footnote p. 12) a class \mathcal{H}_{α} is of degree α over $\mathcal{H} = \mathcal{H}_1$ (for an arbitrary ordinal $\alpha > 1$) if $\mathcal{H}_{\alpha} = \{R \in \mathcal{C} | \text{ every non-zero homomorphic image } R\Phi$ has an ideal $I \in \mathcal{H}_{\beta}$ for some $\beta < \alpha\}$. We will write $\mathcal{L}\mathcal{H}$ for the lower radical class defined by \mathcal{H} , namely $\mathcal{L}\mathcal{H} = \bigcup_{\alpha} \mathcal{H}_{\alpha}$. Note that from the definitions (1) and (2) it follows that $\mathcal{H}_2 = \mathcal{U}\mathcal{L}\mathcal{H}$, for if every $R\Phi$ has an ideal $I \in \mathcal{H}_1 = \mathcal{H}$ then $R\Phi \notin \mathcal{L}\mathcal{H}$, so that $R \in \mathcal{U}\mathcal{L}\mathcal{H}$. The converse is also clear.

2. The intersection radical

Let $\{\mathcal{P}_j\}_{j\in J}$ be a set of radical subclasses of \mathscr{C} .

Theorem 1. If $\mathscr{P} = \bigcap_{j \in J} \mathscr{P}_j$ then \mathscr{P} is a radical class such that for any ring R

$$\mathscr{P}(R) \subseteq \bigcap_{j \in J} \mathscr{P}_j(R).$$

If all the classes \mathcal{P}_i are hereditary, then so is \mathcal{P} , and the relation (3) becomes an equality.

PROOF. Since each \mathscr{P}_j is homomorphically closed, the same is true of \mathscr{P} . Also if $R \in \mathscr{P}$ then $R \in \mathscr{P}_j$ for some j, so there exists a non-zero $R\Phi \in \mathscr{SP}_j \subseteq \mathscr{SP}$. By [4] (Theorem 1, p. 4) \mathscr{P} is thus a radical class. Relation (3) is clear from the definition of the \mathscr{P} -radical. It is also clear that when all \mathscr{P}_j are hereditary then so is \mathscr{P} , and if $H = \bigcap_{j \in J} \mathscr{P}_j(R)$ then H is an ideal of each $\mathscr{P}_j(R)$. By the hereditary property, $H \in \mathscr{P}_j$ whence $H \in \mathscr{P}$ so that $H \subseteq \mathscr{P}(R)$.

Call $\mathcal{P}(R)$ the intersection radical of the set $\{\mathcal{P}_j\}$. We now proceed to construct for an arbitrary ring R a collection of subrings which, when R is associative, all equal $\mathcal{P}(R)$.

Define $V_1 = R$. For a given ordinal β assume that subrings V_{α} have been defined for all ordinals $\alpha < \beta$ and define:

(4)
$$V_{\beta} = \begin{cases} \bigcap_{\alpha < \beta} V_{\alpha} & \text{if } \beta \text{ is a limit ordinal. Otherwise,} \\ \mathscr{P}_{j}(V_{\beta-1}) & \text{for some } j \in J \text{ (if such exists) for which } \mathscr{P}_{j}(V_{\beta-1}) \neq V_{\beta-1}. \end{cases}$$

Since $\{V_{\alpha}\}$ is a set, it cannot be inductive for the class of all ordinals. Hence there must exist an ordinal γ such that $\mathscr{P}_{j}(V_{\gamma}) = V_{\gamma}$ for all $j \in J$.

Note that (4) may permit considerable arbitrariness at each non-limit ordinal. We have thus in general defined a collection of such subrings V_{γ} . As the following theorem shows, however, these coincide in the case R is associative.

Theorem 2. For an arbitrary ring R let V_{β} be defined by (4). Then there exists an ordinal γ such that $\mathcal{P}(V_{\gamma}) = V_{\gamma}$. In all cases $\mathcal{P}(R) \subseteq V_{\gamma}$, and if R is associative this becomes an equality.

PROOF. As in the above remarks there exists γ such that $\mathscr{P}_j(V_{\gamma}) = V_{\gamma}$ for all $j \in J$. But then $V_{\gamma} \in \bigcap_{i \in J} \mathscr{P}_j$ so that $V_{\gamma} \subseteq \mathscr{P}(V_{\gamma})$ and we have equality.

Since $V_1 = R$, $\mathscr{P}(R) \subseteq V_1$. Thus assume for induction that for a given ordinal β , $\mathscr{P}(R) \subseteq V_{\alpha}$ for all ordinals $\alpha < \beta$. Then clearly by definition $\mathscr{P}(R) \subseteq V_{\beta}$ when β is a limit ordinal. If $\beta - 1$ exists then by the induction hypothesis, $\mathscr{P}(R) \subseteq V_{\beta-1}$ and since $\mathscr{P}(R) \in \mathscr{P}_j$ it is a \mathscr{P}_j -ideal of $V_{\beta-1}$. Thus $\mathscr{P}(R) \subseteq \mathscr{P}_j(V_{\beta-1}) = V_{\beta}$. By induction $\mathscr{P}(R) \subseteq B_{\beta}$ for all β and hence $\mathscr{P}(R) \subseteq V_{\gamma}$. But we already have that V_{γ} is a \mathscr{P} -ring, so the reverse inequality would follow if V_{γ} were an ideal of R. Now when R is associative, the radical of an ideal is an ideal of R [4; Theorem 47, p. 124], and so by induction V_{γ} is an ideal of R.

3. The join radical

Again let $\{\mathscr{P}_j\}_{j\in J}$ be a set of radical classes and write $\mathscr{H}=\bigcup_{j\in J}\mathscr{P}_j$. In general \mathscr{H} is not a radical class, but in the associative case turns out to be only one degree from a radical. First we have

Lemma 1.
$$\mathscr{GH} = \bigcap_{j \in J} \mathscr{GP}_j$$
 and $\mathscr{H} \subseteq \mathscr{UGH}$.

PROOF. The first statement is clear since a ring has no non-zero ideals in any \mathcal{P}_j if and only if it is a member of every \mathcal{SP}_j . For the second relation it suffices by remark 4, to observe that \mathcal{H} is homomorphically closed.

We will write $\mathcal{J}(R)$ for the sum of all ideals of a ring R which are members of \mathcal{USH} . From lemma 1 it follows that $\Sigma\mathcal{P}_{\mathcal{J}}(R)\subseteq\mathcal{J}(R)$.

Let \mathscr{A} be the class of all associative rings and write $\mathscr{F}\mathscr{H} = \mathscr{G}\mathscr{H} \cap \mathscr{A}$. (Note that this is equivalent to $\mathscr{G}\mathscr{H}$ defined by (1) relative to the universal class $\overline{\mathscr{C}} = \mathscr{C} \cap \mathscr{A}$.)

Theorem 3. $\overline{\mathscr{G}}\mathscr{H}$ is a semisimple class in $\overline{\mathscr{C}}$ and hence for R an associative ring $\mathscr{J}(R) = \mathscr{L}\mathscr{H}(R)$.

PROOF. First suppose $R \in \overline{\mathcal{GP}}_j$ for all $j \in J$. Since $\overline{\mathcal{GP}}_j$ is a semisimple class for a radical class $(\mathcal{P}_j \cap \mathcal{A})$ in an associative universal class $\overline{\mathscr{C}}$, it is a hereditary class [4; Corollary 2, p. 125]. Thus every ideal of R is a member of $\bigcap_{j \in J} \overline{\mathcal{PP}}_j$, so by Lemma 1 it follows that $\overline{\mathcal{FH}}$ is hereditary. On the other hand, let $R \in \overline{\mathscr{C}}$ such that $R \notin \overline{\mathcal{FP}}_j$ for some j. Then ([4] Theorem 2, p. 5) R has a non-zero ideal I all of whose non-zero images $I\Phi \notin \overline{\mathcal{FP}}_j$. Thus $I\Phi \notin \bigcap_{j \in J} \overline{\mathcal{FP}}_j = \overline{\mathcal{FH}}$ for all homomorphisms Φ . Hence, again by [4; Theorem 2], $\overline{\mathcal{FH}}$ is a semisimple subclass of $\overline{\mathscr{C}}$.

Thus the upper radical $\overline{\mathscr{U}}\mathscr{F}\mathscr{H}$ defined in $\overline{\mathscr{C}}$ is a radical class with radical $\mathscr{J}(R)$ in any $R \in \overline{\mathscr{C}}$. But (relative to $\overline{\mathscr{C}}$) $\mathscr{H}_2 = \overline{\mathscr{U}}\mathscr{F}\mathscr{H} \subseteq \mathscr{L}\mathscr{H}$ and by the minimality of the lower radical ([4] lemma 5, p. 13) this becomes an equality. Thus for any $R \in \overline{\mathscr{C}}$ we have $\mathscr{J}(R) = \mathscr{L}\mathscr{H}(R)$. We will call $\mathscr{J}(R)$ the join radical for the set $\{\mathscr{P}_j\}$.

We now proceed, by a construction analogous to that of Section 2, to construct a collection of ideals which, when R is associative, will all coincide with $\mathcal{J}(R)$.

Let $W_1 = 0$ and for a given ordinal β assume that ideals W_{α} have been defined for all ordinals $\alpha < \beta$. Then define W_{β} as follows:

(5)
$$W_{\beta} = \bigcup_{\alpha < \beta} W_{\alpha}$$
 when β is a limit ordinal. Otherwise by $W_{\beta}/W_{\beta-1} = \mathscr{P}_{j}(R/W_{\beta-1})$ for some $j \in J$ (if such exists) for which $\mathscr{P}_{j}(R/W_{\beta-1}) \neq 0$.

This means, again, that to avoid 1-1 correspondence between the class of all ordinals and a subset of the set of all ideals of R, there must exist some ordinal γ such that

(6)
$$\mathscr{P}_{j}(R/W_{\gamma}) = 0$$
 for all $j \in J$.

Note that here also the arbitrariness of the choice of j at each non-limit ordinal means that we have in general defined a collection of such W_{γ} .

Theorem 4. For a ring R let W_{γ} be an ideal defined by (5), satisfying condition (6). Then $W_{\gamma} \subseteq \mathcal{J}(R)$ and if R is associative this becomes an equality.

PROOF. Suppose for induction we assume for a given ordinal β that $W_{\alpha} \in \mathscr{USH}$ for all $\alpha < \beta$. If β is a limit ordinal, W_{β} also satisfies this condition. So suppose $W_{\beta}/W_{\beta-1} = \mathscr{P}_j(R/W_{\beta-1})$ for some $j \in J$. Let $W_{\beta}/K \neq 0$ be an arbitrary homomorphic image of W_{β} . Since $W_1 = 0 \subseteq K$ while $W_{\beta} \subseteq K$ we may assume there exists an ordinal α such that $W_{\alpha} \subseteq K$ but $W_{\alpha+1} \subseteq K$. Thus $(W_{\alpha+1} + K)/K \cong W_{\alpha+1}/W_{\alpha+1} \cap K \neq 0$. But $W_{\alpha} \subseteq K$ so from the natural homomorphism of $W_{\alpha+1}/W_{\alpha}$ onto $W_{\alpha+1}/W_{\alpha+1} \cap K$ and the fact that by (5) $W_{\alpha+1}/W_{\alpha} \in \text{some } \mathscr{P}_j$, it follows that $(W_{\alpha+1} + K)/K \in \mathscr{P}_j$. Thus W_{β}/K contains a non-zero ideal from \mathscr{H} . Hence $W_{\beta}/K \in \mathscr{SH}$ and since K was arbitrary it follows that $W_{\beta} \in \mathscr{USH}$. By induction all W_{β} and hence $W_{\gamma} \in \mathscr{USH}$ so that $W_{\gamma} \subseteq \mathscr{J}(R)$.

Now by condition (6) we have $R/W_{\gamma} \in \bigcap_{i \in J} \mathcal{SP}_{j} = \mathcal{SH}$. By Theorem 3 the class

 $\overline{\mathscr{G}}\mathscr{H}$ is semisimple in $\overline{\mathscr{C}}$ and is thus the semisimple class of the radical class $\overline{\mathscr{U}}\mathscr{F}\mathscr{H}$. From Remark 3 it follows that when R is associative $\mathscr{J}(R) \subseteq W_{\gamma}$ and equality follows.

References

- [1] A. G. Kurosh, Radicals in rings and algebras, Mat. Sb. (N. S.) 33 (75) (1953), 13-26.
- [2] S. A. AMITSUR, A general theory of radicals. I: Radicals in complete lattices, Amer J. Math. 74 (1952), 774—786.
- [3] S. A. Amtsur, A general theory of radicals. II: Radicals in rings and bicategories, Amer J. Math. 76 (1954), 100—125.
- [4] N. J. DIVINSKY, Rings and Radicals, Toronto (1965).

(Received August 30, 1966.)