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Sets of radical classes

By W.G.LEAVITT (Lincoln, Neb.)

1. Introduction

A class € of rings is said to be homomorphically closed if R¢ € implies RP €€
for every homomorphism @ of R, and is said to be hereditary if R¢ € implies 1€ €
for every ideal 7 of R. A class which is both homomorphically closed and hereditary
is said to be a universal class. In the following all rings considered are from an ar-
bitrary but fixed class € of (not necessarily associative) rings.

For a class 2SS € define

(1) FP={Re¥|I¢2 for every non-zero ideal I of R}
and
(2) UP ={Re€C|RP¢ P for every non-zero homomorphism & of R}

Remark 1. 1t is well-known that if 2 is a radical class [1, 3] then %2 is its
semisimple class and #¥%? =2 ([4] Theorem 1, p. 4). (Note that the proofs of
[4] Chapter 1 apply equally well to classes of possibly non-associative rings.)

Remark 2. On the other hand, if 2 is a semisimple class then #2 is a radical
class (called the upper radical defined by the class #) and ¥ %2 = 2 ([4] Theorem 2,
p. J)

Remark 3. If 2 is a radical class we will write 2(R) for the 2-radical of the
ring R. Note that if H is an ideal of R such that*R/H €% 2 then (R)S H. This is
clear since otherwise (?(R)+H)/H39'(R)/.?(R)OH would be a non-zero #-ideal
of R/H contradicting the definition (1).

Remark 4. In the Kurosh construction of the lower radical for a homomorphi-
cally closed class of rings # (as modified by ANDERSON, DIvINSKY and SULINSKI
([4] footnote p. 12) a class 7, is of degree « over ¥ =#, (for an arbitrary ordinal
a>1) if #,={Re €| every non-zero homomorphic image R® has an ideal 7€
for some f<a}. We will write £ for the lower radical class defined by 5, namely
L H = |J #,. Note that from the definitions (1) and (2) it follows that #, =UFH,

for if every R® has an ideal J€ #, = # then RPEFH, so that REUS #. The
converse is also clear.
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2. The intersection radical

Let {2;};¢; be a set of radical subclasses of €.

Theorem 1. If = (| P; then P is a radical class such that for any ring R
jeJ

3) Z(R)ES ) Z;(R).
JjeJ

If all the classes 2; are hereditary, then so is 2, and the relation (3) becomes an equality.

ProOF. Since each 2; is homomorphically closed, the same is true of 2. Also

if R¢#2 then R¢ 2, for some j, so there exists a non-zero RO €SP, SFP. By [4]

(Theorem 1, p. 4) 2 is thus a radical class. Relation (3) is clear from the definition

of the Z-radical. It is also clear that when all 2; are hereditary then so is 2, and

if H= ] 2R) then H is an ideal of each #(R). By the hereditary property, H¢€ 2;
AN

J
whence He€Z? so that HS 2(R).

Call 2(R) the intersection radical of the set {#;}. We now proceed to construct
for an arbitrary ring R a collection of subrings which, when R is associative, all
equal Z(R).

Define ¥, = R. For a given ordinal # assume that subrings ¥, have been defined
for all ordinals < and define:

NV, if Bis a limit ordinal. Otherwise,

4) V, ={a<ﬂ
( g P{(Vy-1) for some jeJ (if such exists) for which Z(Vy_)# V.

Since {V,} is a set, it cannot be inductive for the class of all ordinals. Hence there
must exist an ordinal y such that 2,(V,)=V, for all j€J.

Note that (4) may permit considerable arbitrariness at each non-limit ordinal.
We have thus in general defined a collection of such subrings V,. As the following
theorem shows, however, these coincide in the case R is associative.

Theorem 2. For an arbitrary ring R let V, be defined by (4). Then there exists an
ordinal y such that ?(V,)=V,. In all cases Z(R)SV,, and if R is associative this
becomes an equality.

PROOF. As in the above remarks there exists y such that 2(V,)=V, for all
J€J. But then V,€ | 2, so that V,S2(V,) and we have equality.
4

J

Since ¥V, =R, Z(R)< V,. Thus assume for induction that for a given ordinal f3,
P(R)S V, for all ordinals @ <=pf. Then clearly by definition 2(R)S V; when f is
a limit ordinal. If f—1 exists then by the induction hypothesis, Z(R)< V;_, and
since Z(R)€ Z; it isa 2 -ideal of V;_,. Thus 2(R)S Z|(V-,)=V;. By induction
P(R) < By for all f and hence Z(R)S V,. But we already have that V, is a Z-ring,
so the reverse inequality would follow if ¥, were an ideal of R. Now when R is
associative, the radical of an ideal is an ideal of R [4; Theorem 47, p. 124], and so by
induction ¥, is an ideal of R.
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3. The join radical

Again let {Z; }jé ; be a set of radical classes and write # = J Z;. In general
jed
¥ is not a radical class, but in the associative case turns out to be only one degree

from a radical. First we have

Lemma 1. ¢ = (¥ P; and X SUS K .

jed

Proor. The first statement is clear since a ring has no non-zero ideals in any
2; if and only if it is a member of every #2;. For the second relation it suffices.
by remark 4, to observe that # is homomorphically closed.

We will write #(R) for the sum of all ideals of a ring R which are members
of #% #. From lemma 1 it follows that ZZ(R)& #(R).

Let o be the class of all associative rings and write ¥ =% # (/. (Note
that this is equivalent to % # defined by (1) relatlve to the universal class

€=¢Nst)

Theorem 3. & # is a semisimple class in € and hence for R an associative ring
F(R)=ZLH(R).

PrOOF. First suppose RE??_, for all j€J. Since .9_"9'_, is a semisimple class
for a radical class (#;(1.2/) in an associative universal class €, it is a hereditary

class [4; Corollary 2, p. 125]. Thus every ideal of R is a member of ﬂ.SPQ',. so by
jed

Lemma 1 it follows that £ is hereditary. On the other hand, let R€ % such that
RES"? for some j. Then ([4] Theorem 2, p. 5) R has a non-zero ideal 7 all of whose

non-zero images J®¢ 9’9’1 Thus mensfs',_y# for all homomorphisms @.
j€d

Hence, again by [4; Theorem 2], PHisa semisimple subclass of €.

Thus the upper radical #% # defined in € is a radical class with radical #(R)
in any RE€€. But (relative to €) H ,=US H# S L H and by the minimality of the
lower radical ([4] lemma 5, p. 13) this becomes an equality. Thus for any R¢ € we
have #(R)=2#(R). We will call #(R) the join radical for the set {Z;}.

‘We now proceed, by a construction analogous to that of Section 2, to construct
a collection of ideals which, when R is associative, will all coincide with _#(R).

Let W, =0 and for a given ordinal f assume that ideals W, have been defined
for all ordinals « <. Then define W as follows:

(5) Wy= |J W, when f is a limit ordinal. Otherwise by

a<f
We/Wy_y=P(R|Wy_,) for some jeJ (if such exists) for which
P(RIWg_,)#0.

This means, again, that to avoid 1 — 1 correspondence between the class of all ordinals
and a subset of the set of all ideals of R, there must exist some ordinal y such that

(6) P(RIW,)=0 forall jel.
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Note that here also the arbitrariness of the choice of j at each non-limit ordinal
means that we have in general defined a collection of such W,..

Theorem 4. For a ring R let W, be an ideal defined by (5), satisfying condition
(6). Then W, < #(R) and if R is associative this becomes an equality.

ProoF. Suppose for induction we assume for a given ordinal f that W, € #F #
for all a<p. If f is a limit ordinal, W, also satisfies this condition. So suppose
We|Wy_y=P{R|Wg_,) for some j€J. Let Wy/K##0 be an arbitrary homomorphic
image of Wj. Since W; =0< K while W; & K we may assume there exists an ordinal
a such that W,EK but W,,, LK Thus (W, +K)/K= W, /W, NK#0.
But W,C K so from the natural homomorphism of W, /W, onto W, /W,.,NK
and the fact that by (5) W,.,/W,€ some 2;, it follows that (W,,,+K)/K€2,;.
Thus W;/K contains a non-zero ideal from #. Hence W;/K{¥# and since K
was arbitrary it follows that W, € %% . By induction all W} and hence W, cUS H
so that W, S #(R).

Now by condition (6) we have R/W, € [\ P;=%#. By Theorem 3 the class

j€s

S is semisimple in & and is thus the semisimple class of the radical class US H .
From Remark 3 it follows that when R is associative #(R)< W, and equality follows.
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