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On a problem of G. Griitzer

By B. H. NEUMANN (Canberra)*)

At a conference on Universal Algebra held a Oberwolfach in July, 1966,
Professor GRATZER proposed a problem, which can be paraphrased as follows.

Let S, €, be species of algebras, and let © be a subspecies of €; — this means
that the operations of © are also operations of €,. An algebra 4 in € is called the
S-restriction of an algebra 4, in €, if, firstly, the carriers (that is: sets of elements)
of A and A, are the same, and, secondly, the effect of the operations of € is the
same in both 4 and 4,. Thus, for example, if € is the species defined by a single
binary operation called addition, and &, is defined by addition and another binary
operation called multiplication, then the additive group of integers in & is the
S-restriction of the ring of integers in ©,. Next, if & is a subclass of the species S
and K, a subclass of &,, then K is the S-restriction of &, if it consists of the
S-restrictions of the algebras in K, .

Now G. Gritzer had proved**) that if & is a variety (that is: equationally defined
class) of algebras in the species S, and if & is defined by a finite set of laws, then
there is a species S, obtained from & by adding two binary operations, and a variety
K, in &,, such that, firstly, & is the S-restriction of &, and, secondly & is defined
by 4 laws. The problem is: can ,,4 here be replaced by a smaller number?

We shall show here that ,,4”" can be replaced by ,,1”" — which is clearly best
possible; this is done by adding the same two binary operations of & that Gritzer
uses: in fact it is simply done by showing how to replace his 4 laws by a single one
(but we do not quote Gritzer’s laws). The technique used is a variant of one used
in [2]; Professor Gritzer has recently communicated to me a reduction from ,,4”
to ,,2”, also using [2]. Though the present note is self-contained, the reader is re-
ferred for the motivation to Professor Gritzer’s paper [1], and for a further discussion
of the background to [2].

Thus we are given a species © with a set Q of operations, and a variety K in &
is defined by the laws

(1) P1=91,P2=q2s > Pm=9m>

*) This work was carried out while the author held a Visiting Professorship at the University
of Wisconsin.

**) In [1]. I am indebted to Professor Gritzer for giving me access o a prepublication copy of
this paper. In the published version of this paper, Professor Griitzer has already improved ,,4” to,.2".
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the p; and g; are words in variables ¢, 7,, ..., #, and the operations in Q. We form
the species €, by adding two new binary operations g, ¢ to £, forming

QI;QU{Q, a'}.

To avoid brackets, we write g, o as right-hand operators. In &, we single out the
variety &, by laws to ensure in its algebras the existence of an element e such
that, firstly,

2) xyo=e if, and only if, x=y,
and, secondly,

3) xyo=e if, and only if, x=y=e;
and, finally, that

4 P1910P2920---Pmdmeo™ ' =e.

Then (2), (3), (4) between them entail the laws (1) in &;. Moreover, we have to
choose our laws so that they imply no restriction on the carriers of algebras in
8, other than that they shall be carriers of algebras in &; and indeed so that they
make the given variety ! the S-restriction of the new variety K.

We achieve all this by means of a single law in variables x, y, z, Xy, ¥, X2, V2, Z2,
styas z3s tl L] IZ! seey 'r.ln namely

) xwe yze yxe® =z,
where we have used the abbreviations
W=Dy, 03040,
Uy =X1)10)1%,00,
Uy =X3)202;0X,),2,0°¢,
V3= X3¥3)300X30232302,0%,
V4=P1410P2920 - PmdmQ0™ " ".

[Thus v, is the left-hand side of (4), and involves the variables ¢, t,, ..., ¢, only.]
If A is an algebra in &, we make it the S-restriction of an algebra 4, in &,
by defining on its carrier an arbitrary abelian group structure with

(6) xye=xy~?,

and also a semilattice structure with the neutral element e of the abelian group as
least element, and with

) xXyo=xuy.

It is then easy to verify that v,, v,, v5, vg, and thus also w, are constant and equal
to e for all choices of the variables in them; and that the law (5) is satisfied.

We now assume, conversely, that the law (5) is satisfied, and show that (2),
(3), (4), and thus the laws (1), are a consequence of it. To this end we introduce
the following notation. The ,,right g-multiplication” R,, the ,left g-multiplication”
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L., and the ,right o-multiplication” S, are defined, as mappings of the carrier
of an algebra in &, into itself, by
x-Ry =ny =X)ye,

xS, =xyo;
the identity mapping is I.
With this notation, (5) can be expressed in the form

®) o A A ¢

It follows that every L, has a right inverse, and the left g-multiplications of the
form L., have, moreover, a left inverse, and thus are permutations. Thus also
Ry, is, for all x and y, a permutation. It follows then that yxg ranges over the
whole carrier of our algebra and so all right g-multiplications are permutations.
Now notice that x does not occur among the variables in w: hence xwg ranges
with x over the whole carrier, and so also all left g-multiplications are permutations;
in other words, our algebra is a quasigroup with respect to g.

Next we notice that

BB =Tk

does not depend on y; hence
©)] yzo yxo*=y'zo y'x0*.

Here we put z=x and y=uR;"', y'=wu'R; ", with arbitrary u, u’. Then yzp =yxp =u,

Yzg=y'xpo=u', and
uug =u'u’p.

We denote this constant element by e, and have then
(10) xXxQ =eeg=e.

As we are dealing with a quasigroup with respect to g, this implies the validity of (2).
Next we put x=z=w in (5) and obtain, by repeated application of (10),

(11) w=e,

independently of the values of the variables in w. Substituting this in (5), we get
the law

(12) xeQ yzo yxo* =z,
Here we put z=x and apply (10) to obtain
(13) Xxep eg=Xx.

Now put z=e, y"=x in (9); then the right-hand side becomes xegee, which by
(13) is x: thus we get
yeeyxe* =x,
which, with y=e, gives
eexp? =x,
or
Li=]
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On the other hand, putting x=y=e in (8) and recalling that w=e, we also get

LRL,=1I.
Thus finally
R =1
or
(14) xXep=Xx,

which supersedes (13), and allows us to simplify (12) to

xyzoyxo® =z.

This is the law (4. 11) of [2], which entails that our algebra is an abelian group
with the interpretation (6); but this fact is not needed for our argument.

We now analyse w. One easily sees that each of v,, v,, vy, vs is constant, as
they each involve distinct variables. The constant value in each case is e, as we now
show:

In v, we put x, =y, and obtain

vy =X,X,0X,X,00=e¢.

It tollows that ¢ is commutative:
(15) Xyo = yX0.
This implies in particular that
X3¥20220 =23 X,Y,0°;

hence, putting x, =y, =2, in v,, we obtain
V=X X3X202X,X,X,620=e.

It follows that o is associative:
(16) Xy6zo = xyzo*.
Next we put x;=2z3=e in v3, and notice that y;y,0 =e, too:

vy = eegegeedep’ =e.
Thus — as v, =v,=v;=e and

W=0,0,030,0° =e

— we also have v, =e, that is we have verified (4).
We return to vy =e. This means that

(17) Xeaxg=yyoyo,
and this in turn implies that this can not depend on either x or y, but is constant, say
(18) Xeoxp=c.

Now (18) allows us to conclude that right e-multiplication by e, that is S,, is a
permutation; for the equation
xec =y
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has for each y precisely one solution x, namely
xmelrt,
We return to the law (17) and put y =x. Then
Xeq xQ = xXxoxo,
and as R, is a permutation, this implies

(19) Xeo = xxa.
In this we put x =eeo, to get

eS? =eeceo = eeageeao =eeceoed = eec S’?

[using the definition of S,, (19), (16), and the definition of S, again]. As S, is a per-
mutation, this implies
eesg =e.

Putting x =e in (18), we that see that ¢ =e, and (18) itself then gives

(20) XxXeo =X,
or S,=1
To complete the proof, we assume that

(21) xyc =e,
and show that then x=y=e. Now we have
X = Xes = XXya* = XX0y0 = Xeasyo = xyc =e,

by (20), (21), (16), (19), (20), (21); and by the commutativity of o, also y =e. Thus
we have established also (3), and the result follows.
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