On a problem of G. Grätzer

By B. H. NEUMANN (Canberra)*)

At a conference on Universal Algebra held a Oberwolfach in July, 1966, Professor Grätzer proposed a problem, which can be paraphrased as follows.

Let $\mathfrak{S}, \mathfrak{S}_1$ be species of algebras, and let \mathfrak{S} be a subspecies of \mathfrak{S}_1 —this means that the operations of \mathfrak{S} are also operations of \mathfrak{S}_1 . An algebra A in \mathfrak{S} is called the \mathfrak{S} -restriction of an algebra A_1 in \mathfrak{S}_1 if, firstly, the carriers (that is: sets of elements) of A and A_1 are the same, and, secondly, the effect of the operations of \mathfrak{S} is the same in both A and A_1 . Thus, for example, if \mathfrak{S} is the species defined by a single binary operation called addition, and \mathfrak{S}_1 is defined by addition and another binary operation called multiplication, then the additive group of integers in \mathfrak{S} is the \mathfrak{S} -restriction of the ring of integers in \mathfrak{S}_1 . Next, if \mathfrak{R} is a subclass of the species \mathfrak{S} and \mathfrak{R}_1 a subclass of \mathfrak{S}_1 , then \mathfrak{R} is the \mathfrak{S} -restriction of \mathfrak{R}_1 if it consists of the \mathfrak{S} -restrictions of the algebras in \mathfrak{R}_1 .

Now G. Grätzer had proved**) that if \mathfrak{R} is a variety (that is: equationally defined class) of algebras in the species \mathfrak{S} , and if \mathfrak{R} is defined by a finite set of laws, then there is a species \mathfrak{S}_1 obtained from \mathfrak{S} by adding two binary operations, and a variety \mathfrak{R}_1 in \mathfrak{S}_1 , such that, firstly, \mathfrak{R} is the \mathfrak{S} -restriction of \mathfrak{R}_1 , and, secondly \mathfrak{R} is defined by 4 laws. The problem is: can "4" here be replaced by a smaller number?

We shall show here that "4" can be replaced by "1" — which is clearly best possible; this is done by adding the same two binary operations of $\mathfrak S$ that Grätzer uses: in fact it is simply done by showing how to replace his 4 laws by a single one (but we do not quote Grätzer's laws). The technique used is a variant of one used in [2]; Professor Grätzer has recently communicated to me a reduction from "4" to "2", also using [2]. Though the present note is self-contained, the reader is referred for the motivation to Professor Grätzer's paper [1], and for a further discussion of the background to [2].

Thus we are given a species $\mathfrak S$ with a set Ω of operations, and a variety $\mathfrak R$ in $\mathfrak S$ is defined by the laws

(1)
$$p_1 = q_1, p_2 = q_2, ..., p_m = q_m;$$

^{*)} This work was carried out while the author held a Visiting Professorship at the University of Wisconsin.

^{**)} In [1]. I am indebted to Professor Grätzer for giving me access to a prepublication copy of this paper. In the published version of this paper, Professor Grätzer has already improved ,,4" to ,.2".

326 B. Neumann

the p_i and q_i are words in variables $t_1, t_2, ..., t_n$ and the operations in Ω . We form the species \mathfrak{S}_1 by adding two new binary operations ϱ , σ to Ω , forming

$$\Omega_1 = \Omega \cup \{\varrho, \sigma\}.$$

To avoid brackets, we write ϱ , σ as right-hand operators. In \mathfrak{S}_1 we single out the variety \mathfrak{R}_1 by laws to ensure in its algebras the existence of an element e such that, firstly,

(2) $xy\varrho = e$ if, and only if, x = y,

and, secondly,

(3) $xy\sigma = e$ if, and only if, x = y = e;

and, finally, that

$$(4) p_1 q_1 \varrho p_2 q_2 \varrho \dots p_m q_m \varrho \sigma^{m-1} = \varrho.$$

Then (2), (3), (4) between them entail the laws (1) in \Re_1 . Moreover, we have to choose our laws so that they imply no restriction on the carriers of algebras in \Re_1 other than that they shall be carriers of algebras in \Re ; and indeed so that they make the given variety \Re the \mathfrak{S} -restriction of the new variety \Re_1 .

We achieve all this by means of a single law in variables $x, y, z, x_1, y_1, x_2, y_2, z_2, x_3, y_3, z_3, t_1, t_2, ..., t_n$, namely

$$(5) xw\varrho yz\varrho yx\varrho^3 = z,$$

where we have used the abbreviations

$$\begin{split} w &= v_1 v_2 v_3 v_4 \varrho^3, \\ v_1 &= x_1 y_1 \sigma y_1 x_1 \sigma \varrho, \\ v_2 &= x_2 y_2 \sigma z_2 \sigma x_2 y_2 z_2 \sigma^2 \varrho, \\ v_3 &= x_3 y_3 y_3 \varrho \sigma x_3 \varrho z_3 z_3 \sigma z_3 \varrho^2, \\ v_4 &= p_1 q_1 \varrho p_2 q_2 \varrho \dots p_m q_m \varrho \sigma^{m-1}. \end{split}$$

[Thus v_4 is the left-hand side of (4), and involves the variables $t_1, t_2, ..., t_n$ only.] If A is an algebra in \Re , we make it the \Im -restriction of an algebra A_1 in \Re_1 by defining on its carrier an arbitrary abelian group structure with

$$(6) xy\varrho = xy^{-1},$$

and also a semilattice structure with the neutral element e of the abelian group as least element, and with

$$(7) xy\sigma = x \cup y.$$

It is then easy to verify that v_1, v_2, v_3, v_4 , and thus also w, are constant and equal to e for all choices of the variables in them; and that the law (5) is satisfied.

We now assume, conversely, that the law (5) is satisfied, and show that (2), (3), (4), and thus the laws (1), are a consequence of it. To this end we introduce the following notation. The "right ϱ -multiplication" R_{ν} , the "left ϱ -multiplication"

 L_x , and the "right σ -multiplication" S_y are defined, as mappings of the carrier of an algebra in \mathfrak{S}_1 into itself, by

 $xR_y = yL_x = xy\varrho$

$$xS_{v} = xy\sigma;$$

the identity mapping is I.

With this notation, (5) can be expressed in the form

$$(8) L_{y}R_{yx_{0}}L_{xw_{0}}=I.$$

It follows that every L_y has a right inverse, and the left ϱ -multiplications of the form $L_{xw\varrho}$ have, moreover, a left inverse, and thus are permutations. Thus also $R_{yx\varrho}$ is, for all x and y, a permutation. It follows then that $yx\varrho$ ranges over the whole carrier of our algebra and so all right ϱ -multiplications are permutations. Now notice that x does not occur among the variables in w: hence $xw\varrho$ ranges with x over the whole carrier, and so also all left ϱ -multiplications are permutations; in other words, our algebra is a quasigroup with respect to ϱ .

Next we notice that

$$L_{\mathbf{y}}R_{\mathbf{y}\mathbf{x}\varrho} = L_{\mathbf{x}\mathbf{w}\varrho}^{-1}$$

does not depend on y; hence

(9)
$$yz\varrho \ yx\varrho^2 = y'z\varrho \ y'x\varrho^2.$$

Here we put z = x and $y = uR_x^{-1}$, $y' = u'R_x^{-1}$, with arbitrary u, u'. Then yzq = yxq = u, y'zq = y'xq = u', and

$$uu\varrho = u'u'\varrho$$
.

We denote this constant element by e, and have then

$$xx\varrho = ee\varrho = e.$$

As we are dealing with a quasigroup with respect to ϱ , this implies the validity of (2). Next we put x = z = w in (5) and obtain, by repeated application of (10),

$$(11) w = e,$$

independently of the values of the variables in w. Substituting this in (5), we get the law

(12)
$$xe\varrho \ yz\varrho \ yx\varrho^3 = z_{\varepsilon}$$

Here we put z = x and apply (10) to obtain

$$(13) xe\varrho \ e\varrho = x.$$

Now put z=e, y'=x in (9); then the right-hand side becomes xeqeq, which by (13) is x: thus we get

$$ye \varrho y x \varrho^2 = x$$

which, with y = e, gives

$$eex \rho^2 = x$$

or

$$L_e^2 = I$$
.

328 B. Neumann

On the other hand, putting x=y=e in (8) and recalling that w=e, we also get

$$L_{e}R_{e}L_{e}=I$$
:

Thus finally

$$R_e = I$$

or

$$(14) xe\varrho = x,$$

which supersedes (13), and allows us to simplify (12) to

$$xyz\varrho yx\varrho^3 = z.$$

This is the law (4.11) of [2], which entails that our algebra is an abelian group with the interpretation (6); but this fact is not needed for our argument.

We now analyse w. One easily sees that each of v_1, v_2, v_3, v_4 is constant, as they each involve distinct variables. The constant value in each case is e, as we now show:

In v_1 we put $x_1 = y_1$ and obtain

$$v_1 = x_1 x_1 \sigma x_1 x_1 \sigma \varrho = e$$
.

It follows that σ is commutative:

$$(15) xy\sigma = yx\sigma.$$

This implies in particular that

$$x_2 y_2 \sigma z_2 \sigma = z_2 x_2 y_2 \sigma^2$$
;

hence, putting $x_2 = y_2 = z_2$ in v_2 , we obtain

$$v_2 = x_2 x_2 x_2 \sigma^2 x_2 x_2 x_2 \sigma^2 \varrho = e.$$

It follows that σ is associative:

$$(16) xy\sigma z\sigma = xyz\sigma^2.$$

Next we put $x_3 = z_3 = e$ in v_3 , and notice that $y_3y_3\varrho = e$, too:

$$v_3 = ee\sigma e\varrho ee\sigma e\varrho^2 = e$$
.

Thus — as $v_1 = v_2 = v_3 = e$ and

$$w = v_1 v_2 v_3 v_4 \varrho^3 = e$$

— we also have $v_4 = e$, that is we have verified (4). We return to $v_3 = e$. This means that

$$(17) xe\sigma x\varrho = yy\sigma y\varrho,$$

and this in turn implies that this can not depend on either x or y, but is constant, say

$$(18) xe\sigma x\varrho = c.$$

Now (18) allows us to conclude that right σ -multiplication by e, that is S_e , is a permutation; for the equation

$$xe\sigma = y$$

has for each y precisely one solution x, namely

$$x = cL_v^{-1}$$
.

We return to the law (17) and put y = x. Then

$$xe\sigma x\varrho = xx\sigma x\varrho$$
,

and as R_x is a permutation, this implies

$$(19) xe\sigma = xx\sigma.$$

In this we put $x = ee\sigma$, to get

$$eS_e^2 = ee\sigma e\sigma = ee\sigma ee\sigma\sigma = ee\sigma e\sigma e\sigma = ee\sigma S_e^2$$

[using the definition of S_e , (19), (16), and the definition of S_e again]. As S_e is a permutation, this implies

$$ee\sigma = e$$
.

Putting x = e in (18), we that see that c = e, and (18) itself then gives

$$(20) xe\sigma = x,$$

or $S_e = I$.

To complete the proof, we assume that

$$(21) xy\sigma = e,$$

and show that then x = y = e. Now we have

$$x = xe\sigma = xxy\sigma^2 = xx\sigma y\sigma = xe\sigma y\sigma = xy\sigma = e$$
,

by (20), (21), (16), (19), (20), (21); and by the commutativity of σ , also y = e. Thus we have established also (3), and the result follows.

References

- [1] G. GRÄTZER, On the spectra of classes of algebras, Proc. Amer. Math. Soc. 18, (1967), 729-735.
- [2] GRAHAM HIGMAN and B. H. NEUMANN: Groups as groupoids with one law, Publ. Math. Debrecen 2, (1952), 215—221.

(Received October 25, 1966.)