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BV-solutions of some systems of nonlinear
functional equations

By CZESLAW DYJAK (Czgstochowa, Poland)

Abstract. In the paper the solutions of bounded variation (BV-solutions) of
the systems of functional equations ¢;(x) = hi(z,e1[fi,1(x)],. .., em[fi,m(z)]) and
wilf(@)] = gi(z,01(x),...,om(x)), ¢ = 1,2,...,m, are considered. Under suitable
hypotheses about given functions h;, g; and f; ; it is proved that he first system has in
an interval (a,b) a unique BV-solutions and that BV-solution of the second system in
an interval (a,b) depends on an arbitrary function.

Introduction. In this paper we consider the solutions of bounded
variation (BV-solutions) of the systems of functional equations

W) i) = hi(z, @il fian@)], - omlfim(@)]), i=1,2,..,m

(2) pilf(2)] = gi(x, 01(2), s om(@), P=1,2,...,m,

where ¢; are any unknown functions.

In our previous papers [1], [2] (with J. MATKOWSKI ) and [3] we
have considered BV-solutions of the single functional equations (linear,
nonlinear of first order and nonlinear of higher order). This is the first
paper in which the BV-solutions of the systems of functional equations are
considered. The special role in our considerations play some Lemmas and
Theorems proved by Professor J. MATKOWSKI in his habilitation work [4].

Let (X,d) be a metric space and I C R an interval. By P(I) we
denote the set of all finite partitions p : 9 < 1 < --- < x5 of the
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interval I, where z; € I, i =0,1,...,s. Similarly as in the papers [2] and
[3], for the function ¢ : I — M we denote by
(3) V?“P = 1831(15 Z d(e(xi), @(wi-1)).

i=1

By BV(I) we denote the space of all functions ¢ : I — X such that
V?rgo < 00.

Also similarly as in [4] let us define the numbers cgrk) as follows:

(r) () ™ o
(4) LD Cid Cixiker — Cit11 Clppr fori=k

Cﬁ Cz('i)l,kJrl + 61(21,1 cﬁ’j,lﬂ for i # k

L,k=1,2,....m—r—1, r=0,1,...,m—2.

1. In this section we assume the following hypotheses:
(i) (X,d) is a complete metric space,

(i) fix:{(a,b) — (a,b) are continuous and strictly increasing in
(a,b), i,k =1,2,...,m,

(iii) h;:{a,b) x X™ — X, i=1,2,...,m,

(iv) There are H; € BV (a,b) and ¢; ;, € R such that 0 < ¢, < 1,
t,k=1,2,...,m, and

(5) d(hi<xay1w~~:yTn)7hi(j7g_17"'7?;771))

<D likd(yr, 5r) + d(Hi(x), Hi(7)),
k=1

i=1,2....m, (,y1,-- - Ym), (T, 91, -+, Tm) € {a,b) x X™

and the numbers

1—4; fori =k
o G={ " e
’ Uik for i # k

fulfil the conditions
(7) &) >0, i=12...,m—r; r=01,...,m—1,

where c,fr,g are defined by (4).
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Now we have the following;:

Theorem 1. If hypotheses (i)-(iv) are fulfilled then the system of
equations (1) has in the interval (a,b) a unique solution ¢ = (p1,...,¢m),
such that ¢; € BV (a,b), i = 1,2,...,m. This solution is given by the
formula ¢; = nli_)n;owi,n (uniformly in (a,b)), where @; ,11(x) =

hi(z, 01 0fi1(@)]s s Omunlfim(2)]), € (a,b), i =1,2,...,m,
n=20,1,... and ¢; o € BV (a,b) is arbitrarily choosen. Moreover

> ¥ Var ¢, + Var H;
k=1 (a,b) (a,b)

)

- . i=1.2....m.
(ab) 1—4;; ! "

PrROOF. In view of Lemma 1.1 from [4], there exist the numbers
r; >0,7=1,2,...,mand ¢, 0 <t < 1, such that

(9) Zﬁi’krkgtri, i=1,2,...,m.

k=1

ki
Note that for every A > 0 the numbers Ar;, ¢ = 1,2,...,m, also satisfy
(9). It follows that without any loss of generality we can assume that

(10) }/%SHig(l—t)ri, 1=1,2,...,m.

Now let us define the system of functions spaces

(11) Xiz{goiEBVm,b}:(Vaél;cpigm, i:172,...,m}

with the metrics

(12) 0i (Pi,pi) = sup d(pi(z),pi(x)), @i, pi € Xi,
z€(a,b)
for every 1 =1,2,...,m.

Evidently, the space (X;, 0;) is a complete metric space,
1=1,2,...,m.
Let us consider now the system of transformations

\Iji:Ti[Qola-"agomL 1=1,2,...,m,
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where ¥, (x) is defined by the formula

Vi(x) = hi (x,p1(fi1(@)], .- omlfim(D)]),
x € {a,b), i=1,2,...,m.

We shall show that T; : X1 X Xo x--- x X,,, = X;, i =1,2,...,m.
Let ¢; € X;. We shall show that <V&zr\Il¢ <r;, i=1,2,...,m. For this

purpose, let us take into account the set of all partitions P(a, b) of interval
(a,b) and estimate VarV,.

(a,b)

In virtue of hypotheses (i)—(iv) and inequalities (9) and (10), we have

S

T e ;d(w%)’ Yileim)
= sup Zd<hi(xj7901[fi,1(mj)]a-~a%0m[fz‘,m($j)])a

P<avb> j=1

hiwss @rlfin @) emlfom(zi-1))

< sup Yy { > tiwd(nlfir(ay)] erlfi(zi-0)])

Pla,b) 51 k=1

+ d(H;(z;), Hi(le))}
< sup » > Cigd(rlfin(z;)] orlfin(ei-1)])
Plab) 521 =1

+ sup Y d(H;(x;), Hi(zj-1))

P(a,b) j=1

< DS bk swp Y d(@rlfin(ey)] enlfin(zi-)])

k=1 Pla,b) i1
S

+ sup Y d(H;(x;), Hi(zj-1))

P(a,b) j=1

= lix Varpp + Var H,
k=1 <fi7k(a)afi,k(b)> <a7b>
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m

<Z£ kVargok+<Vai)1;H< Ek?“k—f-(l—t)
“ k=1

<tr;, + (1 — t)?“i =
Next, we shall prove that the transformation V¥, is a contraction map,
1=1,2,..

Let us take an arbitrary ¢;, »; € X; and, taking into account (ii), (5),
(9) and (12), estimate

)

QZ(Tl[@lvucpm]aTz[_élv795771]) (\I} \i)
= sup d(V,(z),Y,(x))
z€{a,b)
= m:?apwd(hi(fc, 1lfin(@)], .., Pmlfim(T)]),

R Gilfia @), Bl fim(@)]))
< swp 3l d@lfi@l Bulfin(@)

z€(a,b)

< sup Y Lind(@r(@), §(@))
2€(a,b) p—

< Z&-,k sup d(¢k(z), o (x Z&k@k Pk Pr)-
1 x€(a,b) k=1

Thus, the first statement of the theorem results from Theorem 1.4
in [4].

To prove that the estimation (8) holds let us take the set P(a,b) of
all partitions of the interval (a,b). Using succesively (1), (iv) and (ii) we
obtain

Var ¢; = sup d(p;(z i(x
Var o, Pw); 0i(x;), pi(xj-1))

= sup Zd( (23011031 @), - ol (25))

hi<xj_1,so1[f@-,1<a:j_1>1,...,som[fz-,m@:j_l)n)
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< sup Z{Z Ci e d(orlfi e (25)], or[fik(2j-1)])

Pla,b) 51 (k=1

+d(Hi(~’Cj)»Hi($j—1))}

< sup > > Lip dlr[fin(@y)] orlfin(zi1)))

Pla,b) 51 =1

S

+ sup Zd(Hi(wj),Hi(ﬂfj—l))
P{a,b) j=1

Cig sup > d(prlfin(@)]s erlfir(zi1)])

P{a,b)

NE

e
I
MR

j=1
S

+ sup Zd<Hi(-Tj)7Hi($j—1))
P{a,b) j=1

[
NE

l;, Vary,  + Var H;

k=1 (fir(a),fir())  (ab)

NE

< 4; i, Var ¢y, + Var H; .
(a,b) {a,b)

k=1

This completes the proof of the Theorem 1.

Remark. If in the hypothesis (iv), instead conditions (7), we assume

that the characteristic roots of the matrix [¢; ] have absolute values less

than 1 then Theorem 1 remain true. It follows from the Lemma 1.2 and

Theorem 1.5 in [4].

2. Now let us consider the system (2) and assume the following hy-

potheses:

(i) (X,d) is a complete metric space,

(ii) f : (a,b) — (a,b) is continuous, strictly increasing in (a,b) and

a< f(x) <z for x € (a,b),
(iii) g; : (a,b) x X™ — X, i=1,2,...,m,
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(iv) There are functions G; € BV(a, b) and positive constants ¢; g,
i,k=1,2,...,m, such that

d(gi<$,y1, s 7ym)agi(§j7gl7 B 7ym>)

<> ik d(yr, Ur) + d(Gi(z), Gi(T)),
k=1
i=12....m, (2,91, Ym), (&, G1,---,Um) € (a,b) x X™,

(v) All the characteristic roots of the matrix [¢; ;| have absolute val-
ues less than 1.

We shall prove the following:

Theorem 2. Let hypotheses (i)—(v) be fulfilled. Then the system
of equations (2) has in the interval (a,b) a solution ¢ = (p1,...,¢m),
w; € BV(a,b), i =1,2,...,m, depending on an arbitrary function. More
precisely: for any system of functions {p; o} : (f(b),b) — R, such that
wio € BV(f(b),b), i =1,2,...,m, there exists the unique system of func-
tions ¢ = (p1,...,90m), vi € BV(a,b) satisfying the system of equations
(2) in (a, b) and such that ¢; = @, ¢ in the interval (f(b),b), i =1,2,...,m.

PRrROOF. Let I, = (f"*(b), f*(b)), n = 0,1,2,..., where f"(z) de-
notes the n-th iterate of the function f(z). In virtue of hypothesis (ii) we

have |J I, = (a,b). In the interval Iy = (f(b),b) we define an arbitrary
n=0

system of functions {¢; o}, i = 1,2,...,m, fulfilling the conditions of the

theorem. Notice, that if x € I3 then f~1(x) € Iy. So let us define the

function ¢; 1 : I1 — R in the following way:

pin(x) = gi(f7 (@), rolf M@)o emolf @),
rel, 1=1,2,...,m.
We shall show that ;1 € BV([;). Let P(I;) be the set of all finite

partitions of the interval I;. From the hypotheses (iv) and (ii) we get
succesively

V;al"%ﬂ = sup Zd(%,l(l‘j),%,h (75-1))
! P(I) 555

S

= sup Zd<gi(f_1($j)7901,0 M @)] s s mo [FH (),

P(I) =5

gi(F 7 (i1 010 [ @) s [ @50)]) )
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< sup Z{ Zﬂz k d(or,olf 1 (x5)], orolf T (z5-1)]
(6 [ )] 6 [ o)

< sup Zz&kd SDkO 1(%‘)] » Pk,0 [fil(xjfl)})

P([l)j 1 k=1

S

+sup > d(Gi [f N x)] G [f N (@-1)])

P(I) =1

< Z ik SUD Zd ero [f 1 (®5)] ko [fH@i-1)])

P(I)

S

+ sup > d(Gi [f N (x)] G [f T (@i-1)])

P(I1) j=1

—Z&k Var cpk + Var G; = Uik Vargok0+VarG
(f(b),b) Py

Hence ¢; 1 € BV(Il).

More generally, let us take the interval I,,,1. If z € I,y then
f‘l(x) € I,,. Let us define a function ¢; 41 : [,41 — R in the following
way:

(13) Qpi,n—l—l('x) = Gi (f_l(x)a P1i,n [f_l(i')} yor o Pmon [f_l(x)}) ’
€y, i=1,2,...,m.

By similar calculation as above one can prove that ¢; 41 € BV(l,11)
and that

(14) Vargozn+1<z&k Vargokn+Vaer, 1=1,2,...,m.

Inta k=1
Now we introduce the following notations:

(15) a; = Var g, i bir = Var G,
I I

Using these notations we can write the inequality (14) as follows:

m
16 Ajnt+1 < Kikakn—f_bin; i:1727"'7m
’+ K ) 2
k=1



BV-solutions of some systems of nonlinear functional equation 15

In the interval (a,b) we define the function ¢ = (¢1,..., @) in the fol-

lowing way:
piolr) forxely, i=12...,m
(17) pi(r) = Yinti(x) forx ey, i=1,2,...,m,
n=0,1,....

From (13) and (17) it follows that ¢ satisfies the system of equations
(2). The uniqueness of the solution is obvious.

We have to prove that p; € BV(a,b), i = 1,2,...,m. From (15) and
(17) it follows that

o0 [&.9]
Varp; = »_ Varg; = Varg; + Y Varg;
e = 2 Ve = ok 3 Ve

[e@] [o@)
= \gﬁf ¥i,0 + Z \;ilr Pin = \%}r ¥i,0 + Z Qg

n=1 n=t

Since, by hypotheses of the theorem, \/;ar ©i.0 is finite, and every com-
0

[o.¢]

ponent of the series ) a;, fulfils inequality (16), in view of Lemma 4.1
n=1

from the paper [4], this series converges. This completes the proof of The-

orem 2.
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