Correction to my paper "The quasi-series decomposition of two-terminal graphs"

By ANDRÁS ÁDÁM (Budapest)

- 1. Dr. G. Pollák has kindly called my attention that the discussion of Case $4/b/\delta$ of the proof of Theorem 1 in my cited paper is incomplete. In order to correct the proof, I shall now point out a new lemma and give a more detailed treatment of the final part of the mentioned proof.
 - 2. Beside the lemma exposed in § 4 of [1], we need also

Lemma 11. Let \mathfrak{G} be an indecomposable graph having at least three final edges. Let k_1 and $k_2(BQ)$ be two final edges of \mathfrak{G} ; assume that B is an inner vertex of each 2-subgraph of \mathfrak{G} . Then there exists a chain a(PB) in \mathfrak{G} such that a contains k_1 but it does not contain k_2 .

PROOF. If we delete k_2 in \mathfrak{G} (for a moment), then the resulting 2-graph is likewise indecomposable. Hence \mathfrak{G} has two disjoint paths b, c which do not contain k_2 . Furthermore, there exists a (possibly degenerated) chain d(CB) such that

d contains no terminal of 6,

C is an inner vertex in b or in c, and

d has no vertex, different from C, which occurs in b or in c.

The symmetry makes possible to suppose that C is contained in c.

Case 1: k_1 is contained in b or c. Then the chain

$$b \cdot c^{-1}[QC] \cdot d$$
.

satisfies the conclusion of the lemma.

Case 2: neither b nor c contains k_1 . Let e be a path containing k_1 . Denote by E the last vertex of e which differs from Q and is contained in one of b, c, d. We can distinguish five possibilities according to the situation of E:

E = P,

E is an inner vertex of b,

E is an inner vertex of c[PC],

E is a vertex of c[CQ],

E is a vertex of d.

416 A. Ádám

According to the five possibilities enumerated, one of the chains

$$e \cdot c^{-1}[QC] \cdot d$$
,
 $b[PE] \cdot e[EQ] \cdot c^{-1}[QC] \cdot d$,
 $c[PE] \cdot e[EQ] \cdot c^{-1}[QC] \cdot d$,
 $b \cdot e^{-1}[QE] \cdot c^{-1}[EC] \cdot d$,
 $b \cdot e^{-1}[QE] \cdot d[EB]$

fulfils the conclusion, respectively.

3. On p. 104 of [1], the final section of the proof of Case $4/b/\delta$ (beginning with the words "There are two alternatives") should be replaced by what follows:

Denote by \mathfrak{H}_1 and \mathfrak{H}_2 the narrowest (non-trivial) 2-subgraphs of \mathfrak{G}^* which contain k_1 and k_2 , respectively. It suffices to study only the case $\mathfrak{H}_1 \supseteq \mathfrak{H}_2$. Denote by \mathfrak{H}^* the widest proper 2-subgraph of \mathfrak{H}_1 and by \mathfrak{H} the narrowest 2-subgraph satisfying $\mathfrak{H}_1 \supseteq \mathfrak{H} \supseteq \mathfrak{H}_2$ (provided that such a \mathfrak{H}^* or \mathfrak{H} does exist). The graphs $\mathfrak{H}_1/\mathfrak{H}^*$ and $\mathfrak{H}/\mathfrak{H}_2$ are irreducible or they consist of two edges. The subsequent seven situations are possible:

(i) $\mathfrak{H}_1 = \mathfrak{H}_2$,

- (ii) $\mathfrak{F}_1/\mathfrak{F}^*$ (exists and) consists of two parallel-composed edges, moreover $\mathfrak{F}_2 \subseteq \mathfrak{F}^*$,
 - (iii) $\mathfrak{H}_1/\mathfrak{H}^*$ is irreducible, $\mathfrak{H}_2 = \mathfrak{H}^*$, k_2 is a series component of \mathfrak{H}_2 ,

(iv) $\mathfrak{H}_1/\mathfrak{H}^*$ is irreducible, $\mathfrak{H}_2 = \mathfrak{H}^*$, \mathfrak{H}_2 is indecomposable,

- (v) $\mathfrak{H}_1/\mathfrak{H}^*$ is irreducible, $\mathfrak{H}_2 \subset \mathfrak{H}^*$, and $\mathfrak{R}/\mathfrak{H}_2$ consists of two parallel-composed edges,
- (vi) $\mathfrak{H}_1/\mathfrak{H}^*$ is irreducible, $\mathfrak{H}_2 \subset \mathfrak{H}^*$, and $\mathfrak{R}/\mathfrak{H}_2$ consists of two series-composed edges,
 - (vii) $\mathfrak{H}_1/\mathfrak{H}^*$ and $\mathfrak{R}/\mathfrak{H}_2$ are irreducible, $\mathfrak{H}_2 \subset \mathfrak{H}^*$.

In each of these cases we are going to point out that there exists a chain in \mathfrak{G}^* between P and A such that both k_1 and k_2 occur in it.

If (i) is valid, then k_1 and k_2 form a separating pair in \mathfrak{H}_1 ; we conclude by Lemma 4. If (ii) holds, then there exists a chain in \mathfrak{H}_1 between Q_2 and A such that this chain contains k_1 and k_2 (Lemma 10); it can be completed by a suitable path of \mathfrak{G}^* to a chain connecting P and A. (We have utilized Lemma 5, too; this result must be kept in mind also in what follows.) In cases (iii)—(vii) k_1 and k_2 are final edges in $\mathfrak{H}_1/\mathfrak{H}_2$. If (iii) is true, then it suffices to consider the possibility when k_1 , k_2 do not form a separating pair in \mathfrak{H}_1 ; $\mathfrak{H}_1/\mathfrak{H}_2$ has at least three final edges, thus we can apply Lemma 11 in $\mathfrak{H}_1/\mathfrak{H}_2$ for k_1 and k_2 . Among the remaining four possibilities, if (v) is valid, then Lemma 8 is applicable in \mathfrak{H}_2 ; if one of (iv), (vi), (vii) holds, we can utilize Lemma 10.

Reference

 A. ÁDÁM, The quasi-series decomposition of two-terminal graphs, Publ. Math. Debrecen, 10 (1963), 96—107.

(Received March 25, 1966.)