On the zeros of solutions of ordinary second order differential equations

By A. ELBERT (Budapest)

We consider the solution of the differential equation

$$(1) y'' + q(x)y = 0,$$

where q(x), q'(x), q''(x) are continuous functions, q(x) > 0, q'(x) > 0 for x > 0, and

(2)
$$\alpha g'^{2}(x) - g(x)g''(x) \ge 0 \text{ for } x > 0,$$

with the initial conditions y(0) = 0, $y'(0) \neq 0$. Using the notation $\sigma = \sigma(x) = \sqrt{q(x)}$ we obtain from (2)

(3)
$$(2\alpha - 1)\sigma'^{2}(x) - \sigma(x)\sigma''(x) \ge 0 \text{ for } x > 0,$$

where we put in the following $\beta = 2\alpha - 1$.

We denote the first n roots of the equation y(x) = 0, if they exist, by $x_0 = 0, x_1, ..., x_n$, those of y'(x) = 0 by $x'_1, x'_2, ..., x'_n$, where

$$x_0 = 0 < x_1' < x_1 < ... < x_n' < x_n$$

For the root x_i it follows from a result of E. Makai (see [1]), that the inequality

(4)
$$\int_{0}^{x_{i}} \sigma(x) dx < i\pi \qquad (i = 1, 2, ..., n)$$

holds, if α is not greater than $\frac{5}{4}$.

Makai conjectured (see [2]) that the quantities on the left of (4) are in certain circumstances greater than $(i-\frac{1}{2})\pi$. In this paper we will prove the following

Theorem. If the inequality $\alpha < 1$ holds for the quantity α in (2) then the inequalities

(5)
$$\begin{cases} \int_{0}^{x_{i}} \sigma(x) dx > i\pi - \frac{1}{3 - 2\alpha} \frac{\pi}{2} & (i = 1, 2, ..., n), \\ \int_{0}^{x_{i}} \sigma(x) dx > \left(i - \frac{1}{2}\right) \pi - \frac{1}{3 - 2\alpha} \frac{\pi}{2} & (i = 1, 2, ..., n) \end{cases}$$

14 A. Elbert

hold, and if $1 \le \alpha \le 3/2$ then

(6)
$$\begin{cases} \int_{0}^{x_{i}} \sigma(x) dx > i\pi - \frac{\pi}{2} & (i = 1, 2, ..., n), \\ \int_{0}^{x_{i}'} \sigma(x) dx > \left(i - \frac{1}{2}\right)\pi - \frac{\pi}{2} & (i = 1, 2, ..., n). \end{cases}$$

PROOF. Let us introduce the continuous function

(7)
$$\varphi(x) = \arctan \frac{\sigma(x)y(x)}{y'(x)}$$

and let be

$$\varphi(0) = 0.$$

It is easy to see that this function satisfies the differential equation

(9)
$$\varphi'(x) = \sigma(x) + \frac{\sigma'(x)}{2\sigma(x)} \sin 2\varphi(x).$$

We will prove that the inequality

(10)
$$\varphi'(x) > 0, \ 0 < x < x_n$$

holds. It follows simply from the definition of $\varphi(x)$ that the inequality $0 < \varphi(x) \le \pi/2$ is true provided $0 < x \le x_1'$ hence (10) is true for $0 < x \le x_1'$.

Assuming that (10) does not hold always we define a by

$$a = \min \{x; x'_1 \le x \le x_n, \varphi'(x) \le 0\}.$$

In this case we have

$$(11) \varphi'(x) > 0$$

for every 0 < x < a. Since

(12)
$$\begin{cases} \varphi'(a) = \sigma(a) + \frac{\sigma'(a)}{2\sigma(a)} \sin 2\varphi(a) = 0, \\ \varphi''(x) = \sigma'(x) + \left[\frac{\sigma'(x)}{\sigma(x)}\right]' \frac{1}{2} \sin 2\varphi(x) + \frac{\sigma'(x)}{\sigma(x)} \cos 2\varphi(x) \cdot \varphi'(x), \end{cases}$$

we obtain, taking into account (3), that

$$\varphi''(a) = \frac{2\sigma'^2(a) - \sigma(a)\sigma''(a)}{\sigma'(a)} > \frac{\beta\sigma'^2(a) - \sigma(a)\sigma''(a)}{\sigma'(a)} \ge 0.$$

From the continuity of $\varphi''(x)$ it follows that if $a - \varepsilon < x < a$ and ε is sufficiently small, then $\varphi''(x) > 0$ and

$$0 < \int_{x}^{a} \varphi''(x) dx = -\varphi'(x).$$

Consequently $\varphi'(x) < 0$, which contradicts to (11), therefore (10) is true.

On the basis of (7), (8) and (10) we have

(13)
$$\begin{cases} \varphi(x_i) = i\pi & i = 0, 1, 2, ..., n \\ \varphi(x_i') = \left(i - \frac{1}{2}\right)\pi & i = 1, 2, ..., n. \end{cases}$$

Integrating the differential equation (9) between 0 and x we obtain

(14)
$$\varphi(x) = J(x) + F(x)$$

where

$$J(x) = \int_0^x \sigma(u) du \quad \text{and} \quad F(x) = \int_0^x \frac{\sigma'(u)}{2\sigma(u)} \sin 2\varphi(u) du.$$

It can be easily seen that F(x) takes on its local maxima at $x'_1, x'_2, ..., x'_n$ and its local minima at $x_0 = 0, x_1, ..., x_n$. We will prove that

(15)
$$F(x_i') > F(x_{i+1}')$$
 $i = 1, 2, ..., u-1.$

Now we have taking (9) into account

$$F(x'_{i+1}) - F(x'_{i}) = \int_{x'_{i}}^{x'_{i+1}} \frac{\sigma'(x)}{2\sigma(x)} \sin 2\varphi(x) \, dx =$$

$$= \int_{x'_{i}}^{x'_{i+1}} \frac{\sin 2\varphi(x)}{2\sigma(x)} \, \varphi'(x) \, dx = \int_{x'_{i}}^{x'_{i+1}} \frac{\sin 2\varphi(x)}{2\sigma^{2}(x)} + \sin 2\varphi(x) \, dx.$$

The function $s(\varphi(x)) \stackrel{\text{def}}{=} 2\sigma^2(x)/\sigma'(x)$ is steadily increasing because from our restriction for α and from (3)

$$\left[\frac{\sigma^2(x)}{\sigma'(x)}\right]' = \frac{\sigma(x)}{\sigma'^2(x)} \left[2\sigma'^2(x) - \sigma(x)\sigma''(x)\right] > 0.$$

So we have

$$F(x'_{i+1}) - F(x'_i) = \int_{(i-\frac{1}{2})\pi}^{(i+\frac{1}{2})\pi} \frac{\sin 2\varphi}{s(\varphi) + \sin 2\varphi} d\varphi =$$

$$= \int_{i\pi}^{(i+\frac{1}{2})\pi} \left[\frac{\sin 2\varphi}{s(\varphi) + \sin 2\varphi} - \frac{\sin 2\varphi}{s(\varphi - \frac{\pi}{2}) - \sin 2\varphi} \right] d\varphi =$$

$$= -\int_{i\pi}^{(i+\frac{1}{2})\pi} \sin 2\varphi \frac{\left[s(\varphi) - s(\varphi - \frac{\pi}{2}) \right] + 2\sin 2\varphi}{\left[s(\varphi) + \sin 2\varphi \right] \left[s(\varphi - \frac{\pi}{2}) - \sin 2\varphi \right]} d\varphi < 0$$

16 Å. Elbert

hence the inequalities (15) and

$$(16) F(x) \leq F(x_1'), x \geq 0$$

hold. 1) We obtain another inequality for $F(x_1)$ from (14) by putting $x = x_1$:

$$\frac{\pi}{2} = J(x_1') + F(x_1') > F(x_1')$$

and $J(x) = \varphi(x) - F(x) \ge \varphi(x) - F(x_1') > \varphi(x) - \frac{\pi}{2}$. The inequalities (6) follow from this last inequality by putting in it $x = x_i$ and $x = x_i'$ (i = 1, 2, ..., n) respectively. To prove the statements (5) a more precise estimation is needed.

Now we want to prove the validity of the inequality

(17)
$$F(x_1') < \frac{1}{3 - 2\alpha} \frac{\pi}{2}$$

if $\alpha < 1$.

This is sufficient for our purpose because from (14) and (16) we have

$$J(x_i) = \varphi(x_i) - F(x_i) > \varphi(x_i) - F(x_1), \quad i = 1, 2, ..., n$$

and

hence

$$J(x_i') = \varphi(x_i') - F(x_i') \ge \varphi(x_i') - F(x_1'), \quad i = 1, 2, ..., n,$$

and taking into account (13) and (17) we obtain (5). At first we need the inequality

(18)
$$\varphi(x) < x\sigma(x) \quad \text{for} \quad x > 0.$$

From (7) we have $\sigma(x) = \operatorname{tg} \varphi(x) \cdot y'(x)/y(x)$ therefore

(19)
$$\lim_{x \to 0} \frac{\varphi(x)}{\sigma(x)} = \lim_{x \to 0} \frac{\varphi(x)}{\operatorname{tg} \varphi(x)} \cdot \frac{y(x)}{y'(x)} = 1 \cdot \frac{0}{y'(0)} = 0.$$

Again, it follows from equation (9), by using the well known inequality $\sin x < x$ for x > 0 that

$$\varphi'(x) < \sigma(x) + \frac{\sigma'(x)\varphi(x)}{\sigma(x)}$$

or $[\varphi(x)/\sigma(x)]' < 1$ (x > 0). Integrating this between 0 and x and taking into account (19) we obtain $\varphi(x)/\sigma(x) < x$, i.e. the inequality (18).

We now derive an inequality, which we shall need in proving the inequality (17). If $\sigma(x) > 0$, $\beta < 1$, $\beta \sigma'^2(x) - \sigma(x)\sigma''(x) \ge 0$ for a < x < b then

(20)
$$\int_{a}^{b} \sigma(x) dx \ge \sigma(b)(b-a) \frac{1-\beta}{2-\beta}.$$

$$F(x_{i+1}) - F(x_i) = \varphi(x_{i+1}) - \varphi(x_i) - [Y(x_{i+1}) - Y(x_i)] = \pi - \int_{x_i}^{x_{i+1}} \sigma(x) dx > 0,$$

$$0 = F(x_0) < F(x_1) < \dots < F(x_n).$$

¹⁾ In the case $\alpha < 5/4$ there exist inequalities among $F(x_0)$, $F(x_1, ..., F(x_n))$ similar to (15). E. Makai proved (see [1]) that with our notations

Indeed, let us consider the function $t(x) \stackrel{\text{def}}{=} [\sigma(x)]^{1-\beta}$. This function is concave because its second derivative $t''(x) = (1-\beta)\sigma^{-1-\beta}[\sigma\sigma'' - \beta\sigma'^2]$ is not more than 0 by our assumptions, so that

$$t(x) \ge \frac{t(b)}{b-a}(x-a)$$
 for $a \le x \le b$,

hence

$$\sigma(x) \ge \frac{\sigma(b)}{(b-a)^{\frac{1}{1-\beta}}} (x-a)^{\frac{1}{1-\beta}} \quad \text{for} \quad a \le x \le b.$$

Integrating this over [a, b], we obtain

$$\int_{a}^{b} \sigma(x) dx \ge \int_{a}^{b} \frac{\sigma(b)}{(b-a)^{\frac{1}{1-\beta}}} (x-a)^{\frac{1}{1-\beta}} dx = \frac{1-\beta}{2-\beta} \sigma(b)(b-a)$$

i.e. inequality (20). Since in our case $\beta \sigma'^2(x) - \sigma(x)\sigma''(x) \ge 0$, where $\beta = 2\alpha - 1 < 1$, $\sigma(x) > 0$ for $0 < x < x_n$, we have from (20) by applying (18) at $x = x_1$

$$J(x_1') = \int_0^{x_1'} \sigma(x) \, dx \ge \frac{1-\beta}{2-\beta} \, x_1' \, \sigma(x_1') > \frac{1-\beta}{2-\beta} \, \frac{\pi}{2} \, .$$

It follows from (14) and from the last inequality that

(21)
$$F(x_1') = \frac{\pi}{2} - J(x_1') < \frac{1}{2 - \beta} \frac{\pi}{2},$$

which is the same as (17), since $\beta = 2\alpha - 1$.

We mention the interesting case $q''(x) \le 0$ when $\alpha = 0$. In this case $F(x_1') < \pi/6$.

I should like to express my gratitude to Mr. E. Makai for his suggestion to study this problem.

References

- E. Makai, Über die Nullstellen von Funktionen, die Lösungen Sturm-Liouville'scher Differentialgleichungen sind. Comment. Math. Helv. 16 (1943—44), 153—199.
- [2] E. Makai, Über Eigenwertabschätzungen bei gewissen homogenen linearen Differentialgleichungen zweiter Ordnung. Compositio Math. 6 (1939), 368—374.
- [3] E. Makai, Asymptotische Abschätzung der Eigenwerte gewisser Differentialgleichungen zweiter Ordnung. Ann. Scuola Norm. Sup. Pisa, Ser. II. 10 (1941), 1—4.

(Received November 12, 1965.)