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On Taylor series absolutely convergent on the circumference
of the circle of convergence II.

By GABOR HALASZ (Budapest)

Let
= 2 a2
k=0

be regular for |z| <1 and substitute z by a conformal mapping of |w| <1 onto |z| <1
different from a rotation:

w—{

T(w) = ew -— ‘ng

fIT(wW)] = Z by

(Freal, 0<|[{|<1),

L. ALPAR [1] proved that the absolute convergence of > a:z* on the periphery
k=0

is not necessarily inherited by S'b w". Generalizing his result, in part 1. *) we

constructed examples with Zla,‘l-: + < where Z’lb | not simply diverged but
did so in a certain sense rapldly In this paper we are concerned with extra condi-

tions imposed on the original series Zak:
k=0

Theorem 1. If > |a,| has a convergent majorant series of decreasing terms:
k=0

] = Ay, Agiy = 4, k,_ZoAk—:w

or what is the same thing

Z max |a| <+ e,
I=k

k=

(=1

then always

oo

2 1ba] <+-o.

n=0

*) Publ. Math. ( Debrecen) 14 (1967), 63—68.
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If the majorant is only a little greater we have, on the contrary,

Theorem 2. If a series > A, is given with
k=0

Ap+1 = 4, k_ZlOAk o

then a, can be chosen to satisfy the conditions ')

) = A, 2 lag| <+, ”Zo'ib..l=+m.

In that follows ¢, ¢,,¢;, ... denote positive constants which may possibly depend
on quantities we think to be fixed (such as { in the expression of 7(w) e.t.c.) The
notation O(...) will be understood similarly.

PrROOF OF THEOREM 1. Putting the Taylor series of 7(w) into that of f(2),
we find

bn — Zrhak.-
k=0

1, being the nth coefficient of the kth power of T(w).
Let {=re'® and fix somehow p and ¢ subject only to the conditions 0 <=p <
l—r 1+4r 1 1—r D v

1—r ) i =9 1A =T step we prove
<l+r‘:l_r“:q,eg byputtlngp 2]+r,q 21_r As a first step we pr

(1) S+ D el = cyemcm,

k=pn k=gn

We may confine ourselves to the first sum, the treatment of the second being
similar.
According to the definition of #,,, by Cauchy’s formula

K(w
PR S
" 2 wntl

lw|=1

Let =0, to be determined later and 5 =0 sufficiently small depending on J and
let us deform the path of integration into the circle of radius 1+ n 2). This is possible

. : - ; | | . g
if the pole of 7(w) lies outside, that is | +n= i1 i A simple analysis of the

1) Theorem 2 disproves the following conjecture of Mr. SHIELDS: ,, X |a,| < + = and Zk'a, /> <= +e

- - 1
{ = | 2= et = oo
K log & (k=2) and then ;,‘k.a,(l __;& P
As we were informed a better example in this direction had been constructed by Messrs, KAHANE
and KATZNELSON,

) For the range k=gn we would choose 1—1.

imply X'b,| < + " since we can put 4, =
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behaviour of the mapping 7'(w) tells us that on this circle it takes the largest absolute
value at (1 +n)e’ (¢ =arg () namely

i T PRTIG L |
l—r—ngr l—r—nr—

(1 +n)eie —reie
1—(1+n)elere=te

T([1 +nle)|= ‘

while for the constant |w|
W =14n= e1-9

so that we have

1 \T(w)* ] faey)
in| = 2n l[u|"+'1' dw| = e [1" )e"'"“"”s
|lwl=1+n
kn 1+r a] PM[I—"H]
2 | = €~ ™1=0) p o = e—m(1-9) —
k=pn k=pn 1- +J]
fap”
| —m|1- -————[|+ ]a]
A e nﬂ( P P = c,e 2
] _e_"[r_;+a]

if we first fix 6>0 with 1 —p :—+£—[l +plo=0 [lake notice of p{%—;—;) and

then =0 in accordance with é and l+q<:% ;

Now we deal with b, on the range N<n=2N. Let us put
a;=a, if pN<k<2gN

a; =0 otherwise,

f*(z)=§‘a:z*= 2 o,

pPN<k<2gN

*(Tw) = n=ZO' bEw",

We have for N<n=2N (since |q;| =c;)

|by—b2| = kgoth(ak—a:)i =| 2+ 2 tat|= cs{ Z+ Z |teal} =

k=pN k=2gN k=pN

= ey { 3+ 3 l) = cueem = cyeme

k=pn kTqn

by what we have just proved. This estimation suggests that b, can be replaced by b;.



26 G. Halasz

For this latter by Parseval’s formula

Z!b [t - f!f*(T[" D2 law| = 5 f!f“(Z)l2 d“‘ldl
|W| 1 |:|=l
= max | 5 f [S* @ |dz] = e Z!m’i‘l’ =cs 3 |af
, 121 pN<k<2gqN

Using the majorant of a, and Schwartz’s inequality, we get further

Bl s|NZSBP =1 Nes 3 |af® =VNes2NgAZny = csNApyy S
N<n=2N n=0 pN<k<2gN

T Cq z Ak [N = —l—].
+pN<k=pN P

Finally, using this and the bound for |b,—b; /|
2 |by| = cg{Ne~N+ 2 Ay

N<n=2N +pN<k=pN

and summing for N=1,2,4,8, ...

St = el S reens| S af <=,
n=2 1=0 =1
q.e.d.

Remark. From the proof we see, choosing A4, = max la;| that

n;ﬂ |b,| = ck;; max la,|
where ¢ is depending only on the transformation 7°(w).

PrROOF OF THEOREM 2. Let us regard as a test function

gn(2) = —b—zj,; Z(Qz)"" def Zu"’”z (le| = lconst,m=1)
I=0
and put
(2 gn(Tw]) = def Z o{™ wh,

[eT(" )) T
We have

:
N
() g
2, ] = -+ 0(1)

and if we can show that with ¢ suitably chosen and for large m

N
2 loi™|
n=0
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will be much greater than this, then we have good enough functions g,(z) for which
2.(T[w]) behave much worse. Once we are in possession of such functions the
actual construction of an example required by Theorem 2 will be a straighforward
one.

Actually we prove the following. There exists a ¢ (/¢/=1) depending only
on T'(w) such that for every m=1

(3) 5 ™| = ¢ lfi whenever N = N,y(m).

aN<n=N

0=ua<1 will be fixed in the application and so ¢, is also fixed.
To begin with, let us derive this inequality from

N

4) > o2 = ¢y0—,
aN<n=N m

y N

(3) 2 |0 =iy —5
" aN <n=N m

(N=Ny(m)). In fact, by Holder’s inequality

DA ol e A e A

aN<n=N aN<n=N aN<ns=N

3/2

< (m)23,r'2
c_-_
(2. P) [

/“ [Pfﬂl)[ _.1__.'_\’1._11!'51\ ‘ i 2 ‘:3: — _]__2_ f— C9 _Ai .
aN<n=N ( - 2 % |l{m] ) f NY Vm
aN<n= c e
1 2

To prove (4) and (5), we represent v{™ as a finite sum. Its definition (2) and
Cauchy’s formula give us

o 1 [8a(TIW) 1 :
o = Zm'_[ ot 1 o = 2ri w1 (1 —[eT(w)]™) 5

integrated on a closed curve round the origin in |w/<1. Substituting w=S(z)
where S(z) is the inverse mapping of 7T'(w):

© S@) = e-w I

[\(m] —

4 2ni) S"*1()[1—(e2)"]

S'(2) dz,

the integration is over a closed curve round —{e" in |z|=<1. Replacing this path
by |z/=R, R— - we find that the integral on |z| =R tends to zero so that we have
§'(2)

only to collect residues outside the original path. )

is (for n=1) regular
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1 i ;
there, while =" has poles of the first order at ¢~ 'n (n denoting mth unit
roots) with residues ———— = —- " hence

omn mo

1 S'(e ')
s(m) —J— — =
W e 2 sy =D

Here S(¢~'n) are numbers of unit absolute value.
Turning to (4) we have

1 S(e'n)S (e "ny) - 1
o '.SI”') y - ST : e e —_—— 5
aN <nsN o™ .z:vé%;_mmz m.zn;z S*+1(@=1n,)S*+ (@™ " ny) R m.zn'z %'
I = S(e~"n,)

The inner sum is a geometric series with quotient ——— =~ = 5
9 ; Ste~'n)S(e™'ny)  Se~'ny)
This is 1 if n, =n, and all such terms give
I | N(1 —a) . N
—_— | - - — = ———— . |2 = —_—
3 2 1S O NV E =g m il B = 175

Here by conformity S’(z) #0, ¢,3=0.

Again by conformity, the numbers S(¢~'n) are all different hence, on the other
hand, the quotient is different from 1 if », ##,, though of unit absolute value and
the geometric series is bounded by a quantity independent of N. Summation for
such (1,, n,) is also independent of N, therefore the remaining terms give a quantity
bounded by a constant depending only on m (once g is determined). If N is so large
that ¢, g is greater than the double of this bound we get (4) with ¢,, =%.

For (5) we have

Sl =
aV<n=N
s L v S n)Se 1)@ n)50 1)
N Er=n MY g i [S@T )87 12) 8@ n3)S(e ™ )
s, < i S

T
m N1, 92, 03, 4

NiM2Malls =

The inner sum is again a geometric series. Its quotient is certainly 1 if n, =n3, 1, =1,
or 1, =H4, N2 =Hn3. The contribution of these terms is less than

1 y N . N
25 2 I8@ n)? S (e 'n)2(N—[aN)) = & m?® max IS@)* = cra—5.
ni.n2 1 Izl =1 m

If we can choose |g| =1 so that the quotient differ from | for all the other quadruples
(71 M2, M3, ns) then just as in the case of (4) we get that the contribution of all
the other terms does not exceed a bound depending only on m which can be included

; i 2. N .
in the estimation ¢, pov for, large enough N. So we have but to choose ¢ and it



On Taylor series absolutely convergent... 29

is here that we use the fact that 7(w) and consequently its inverse S(z) is not a rotation.
Suppose that for fixed #,,#n,, 73,74 the quotient in question is 1 that is

S(e~"n)S(e~"'n2) =S(e~'n3)S(e~ "ny).

Varying ¢ on the circle |¢| =1 this can happen only for a finite number of ¢ since
otherwise, by the analyticity of S(z) it would follow

S(zn,)S(zn,) = S(zn3) S(zn,)

everywhere. The left hand side has zeros at —{e"n;' and —{e"y;' and only
there (see (6)), the right hand side at —{e®n3 ', —{ey;'. Since the zeros of the
left and right hand side have to coincide and (=0 this implies 5, =n3, 71, =14
or 1§, =04, N, =n3 which cases are now excluded. So there are only a finite number
of ,,wrong” ¢ for each quadruplex (y,, 7., %3, 74). But to each m there are only
a finite number of quadruples while there are only denumerably many m. This
means at most denumerably many ,,wrong” ¢ and we can choose a ¢ from the
remaining part of |o|=1 which makes all the quotients in question different from 1.

Now follows the actual construction. We use some notations and the first

result from the proof of Theorem 1. Let s be a fixed integer definitely greater than f; .

Successively we can select numbers N,, with the following properties:
N,, is a power of 5, N+ =N,
N,, =qNy(m), Ny(m) as defined in (3).

Further, since
o0
ZS,AS: =
i=o

choosing N, in the (m + 1)th step sufficiently large we can achieve that in addition

) l sitiag

l oo
Z At:.;":T ZA3=+°°,
k=1

i=0s—1 )=zt

|
SlA,! = o —a
Nm<si=SNm+1 Ym
so that if
1
(7 .. > sd, = —
N <sI =N+t Vm'’

then 0<d,, = 1.

After these preparations we define a, as follows. Let kK€(N,, N,+1]. The
endpoints of this interval are powers of s and possibly the interval is subdivided
by other powers of 5. Suppose that k belongs to the subinterval (s'~!, 5']. To define
a; for such k& we use our test function corresponding to » and the prescribed majorant
A, corresponding to s':

(8) ag EdmA,a H,(‘m).

If for k =N, we put g, =0, a, is defined completely and we have to verify the three
requirements of our theorem.

First of all |g|=4, is trivial by 0<d,=1, [uf™|=1 (see definition (2) of
u™) and A, = A, for k=5
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oo

Let us turn to lag]| < + .
k=0

5 wdids B 1l A

i Iakl"" mAst et |uk l: miigh "l .

s!-V<k=st st=lck=sl m

Here m is defined by (s'"', s )c(N,, N,,+,]. Keeping m fixed and summing for
all such intervals (s'~, 5]
2 lay| = . = s'Ag =

m
N <k=Npm+1 M Np<sTENm s

11 1
mym md?
owing to (7) and summation for m gives finally

1
— <+ oo,

a =
Ik' m,;

DM
E

k

(]
o
il

Let us regard now the transformed series with coefficients

bl'l = Zrhlair
k=0

Recalling (1) we see that similarly as it was used for Theorem 1, in the expression
of b, we can change g, for k=pn and k =gn anyhow, being careful only that the
changed values should not exceed a fixed bound. The error made by this change
is namely O(e~“*") and denoting the modified b, by b, it is sufficient to prove that
2 ba| = +<=.

s -1 l

Let <n= SE . This is possible by the choice s>J of s. Fors=1 <k=s ay

was defined by (8) and since for our n s'~' <pn, s'=gn we change a, in the way
said before if we put in place of g, (8) with the same / and m even for k=s'"! and
k =s'. (A bound of the changed values is provided by |d, A4.u{™|= A,). This means
that we put

b* = d, A, kZO lntli™ = d, Agv™

recalling that the relation between u{™ and vy™ is the same as between a, and b,.
" O, ; q
Using (3) with N=— [é— 2=N, (m)] ,0=-
¢ ") o e ps

‘ st c
S i =dedy 3 [0 = codpAg—— = 23 dp Ays.
Ednﬁi ﬂ::(ng-s—‘ qlr’m l m

q r q

Summing for all / with (s'"', s'l<(N,, N,+:] and taking into account that the

I-1 1
intervals = %] are disjoint (p<gq)
1 p -3 c
bl =c;s——4d b SIA,‘:C ———:=£
N_»,ﬂé\fr_u o2l = e1s Vit maddn: T P¥mim om

P
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owing to (7). Summing for m

oo P l
HZ(; by = Clsm;;; = + o,
q.e.d.
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