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On polylogarithms*

By W. F. PICKARD (Cambridge, Massachusetts)

1. The polylogarithm function of arbitrary complex order v=v"+iv" is
defined for |z| <1 by the special Dirichlet series

(1. 1) L) o sl

n=1

Since |Li(2)|= 2 iz|"/n¥, the following bounds are readily derived by using ele-

mentary techmques and the Cauchy—Maclaurin integral method [3]:

(1.2a) [Li‘.(z)|grz[{1+w[1,2_\-';|n-é1-]} for |z]<1, v'>0;

(1.2b) ILi,2)| = |z|/(1=|z]) for |z]<I, v = O;

ra—v)

(1.2) |Li,(2)] = (lnT‘

+(—=Vv)"¥(—eln|z])” for |[z]<1, v'=<O0,

where ¥ denotes the second solution of the confluent hypergeometric equation [7].
It is easily shown by differentiating (1.1) that

(1.3) L )

By analytic continuation (1. 3) will hold over all regions of the complex z-plane
where the polylogarithm is defined. Higher derivatives are readily computed from

(1.3) as
(1.4) ““’L.'p“ =+ Z S¢ Li,_(2)
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34 W. F. Pickard

where the S{™ are defined by

(1. 5a) S, = Stm=U _pS™M  for 0<m<p,
(1. 5b) SW=1 for m=p=0
(1. 5¢) S =0 for m=0.

The equations (1. 5) serve to generate the Stirling numbers of the first kind as defined
and tabulated by MiksA [12]; it should be noted that there is still no uniformity
of definition (or symbolism) for these numbers, and usage varies from tabulation
to tabulation [9], [13], [14], [15], [17].

There are two integral representations which should be cited. The first, deriving
from AppeLL [20], is

mt\'—l

(1.6) , Liv(z)zfa)-fe‘_zm.

where z is any complex number not on the cut (I, ==) and v =0; it is clear from (1. 6)
that the polylogarithm function is closely related to both the Fermi-—Dirac and
Bose—Einstein integrals of mathematical physics, and additional information
can be obtained by consulting standard references an these integrals [4], [5]. The
second, deriving from BARNES [l], is

iz (—z)
7_ ('I +5)" sin @S ™

“

(1.7) Li,(z) =

where it is assumed that —r <arg (—z) <m unless v/ =1 '). The contour % is shown
in Figure 1.; by closing the contour in the right half-plane one obtains (1.1) and
by closing it in the left half-plane one obtains (3. 9).

Figure 1

') The convention to be followed in this paper is —1=¢~'". When v'= 1, the restriction on =
is —w=arg(—-z)=n.
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2. The factorization theorem

2.1 N1-vLi(zY) = 2 Li, (0™ z

where the ®f" are the N*" roots of unity, is well known for real z and positive

integer v [10]. That it also holds for arbitrary complex z and v will now be shown.
The proof of (2.1) hangs upon the lemma

(2. 2a) Z [N =0 for p20 (modN),

N

(2.2b) Z oMP =N for p=0 (modN).

., m

N ani
(2. 2b) is obvious. To demonstrate (2.2a) rewrite the sum as > e ¥ ” and
m=1

let k be the greatest common divisor of p(=g¢k) and N(= Mk). Then

... 2m
Z e M= 2 e
The sum on the right is obwously zero for g=1, since in this case it is simply the

coefficient of z™~! in ]] (z—wM)=zM—-1=0. To show that the sum

vanishes forg#1 itis sul’ﬁment to prove that {mq} = {m} (mod M). If this last relation
is not true, then there must be two integers n, and n, belonging to {m} and such
that n,qg=n,q (mod M). Since q is relatively prime to M, it follows from the theory
of congruences [2] that n, =n, (mod M), or, since both »#, and n, are less than
M, n,=n,. Hence, {mg}={m}(mod M), and (2.2a) holds. Given (2.2), it is
easy to complete the proof of (2.1) by expanding the polylogarithms on the right-
hand side of (2.1) using (1. 1), interchanging summation, applying (2. 2) and once,
again using (1.1).
A useful corollary to (2.1) is

(2.3) 21-vLi (z%) = Li,(z) + Li,(—2).
A more general factorization theorem can be shown by noting that, by (1. 3),

dLi(z*)/di=1n z Li,_,(z*) or, more generally, d™Li[(z*)/dA™=1In"z Li,_,(z*). This
leads to the Taylor expansion

— 4o)"

'_I m.,le m zio)

(2. 4) Li) = > m!
which will be valid when Li(z*) is analytic in and on a circle of radius (1—4,)
about 4,. As an example of a convergent expansion of the type (2. 4), it can easily
be shown by real variable techniques that for z, v, 4, and 4, real and for 0 <z<1,
O=v=eo, 0=A=2e, and 0 =], =< a sufficient condition for the validity of (2. 4)
is [(A—20)/&| <1, where ¢ lies between A and 4,.

3. Since Li(z) is a function of two complex variables, it is possible to consider
expansions of it in either. In particular, one can consider expansions as the variable
becomes large or small or expansions about some arbitrary value.
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As z -0, Li(z) is given by (cf. (1.1))
N-1
3.1 Li,(z) = 2 z'/n"+ Ry (2] <1),
n=1
where Ry= >’ z"/n". Two bounds will be given for |Ry|. Proceeding in a manner
n=N
analogous to that used in deriving (1. 2a), one has

oo —iln :
a3 " lz] P+N
= 1IN 2| ~nl e w2218
IRy| = || Zo iy =" ) e A ey
where P is that value of n for which (NE‘ ) is maximal and N=1; and utilizing

an integral representation of the confluent hypergeometric function of the second
kind [7], one has

e o) i)

i | - 2 PR, s 1)
(3.2) IRl = 3 |N¥ Nln| + T PINY
Limits can also be derived in terms of polylogarithms.

For v' =0
Ry = 20 f A Sl TR }
MENT I R hniNY. = NY L Ta T
or
1
(3. 3a) Rl = =5 _1—|12| Li,(|2|"). N=1, |z]<]).

For v/ =0 it is obvious that

(3.3b) |Ry| = |2 = |z]N-1 Liy(]z]). (N=1, |z|<])

1
1—|z]
For v <0 an approach similar to that used for (3. 3a) yields
2| =¥
N\-
For expansions about some point z, one can utilize a Taylor series

Li, (z2)=Li, (zo) +(z—20)Li,(29) + ... + Ry,

(3. 3¢) [Ry| =

———[Ll (121™) = [21"] (N=1, |z2|<]).

where Ry = Z(Z "zo) Li®(z,), and the derivatives Li™(z,) (n<N) can be
n=N .

evaluated by using the series (1. 4). To bound Ry assume that on a circle of radius
r about z,, within and on which Li(z) is analytic, the maximum modulus of Li(z)
is M(r). It then follows at once from Cauchy’s inequality that

AN

(3.4) Ry| = M()

_zo
r .

where 4 = ‘z
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The question of asymptotic expansions is more difficult. Two will be derived
here, valid, respectively, for v'=0 and v <0.
For v'=0 one proceeds from the integral representation (1.6). Let

7 oo
‘I’—l ze~t
- e A — - { fp > PP S
. c?fl—l/ze‘r . 1 f‘ 1—ze~t %
where y=In [z}:-(} and z does not lie on the line (1, =); obviously, Li(z)=
J‘( )[ I, +1,). Consider first /;. Since the geometric series is of bounded

convergence in and on the unit circle except at unity itself, it follows that, the de-
nominator of the integral having been expressed as a geometric series, integration
and summation can be interchanged to yield

o ?
= Zz"'ft"“e’"dr.
n=0 0

Integrating by parts,

- = k) i g
f’ 1e"‘dt-e‘"r “;'-‘Tf Yen dt = e"‘ 2( nr) (+l)p

= e"‘—i’— O(l,v+1; —nt),

where (), is the Pochhammer symbol I'(w+m)/I'(w). Hence

v
y.3

v +l; —"}’)’

j’|=

where ff =arg z. The asymptotic expansion of the confluent hypergeometric function
is known to be [18]
1 I'(v+1) - P
®(1,v+1; —m) = ——= = Z’ (1= ) ()" + () ==y »
ny TI(v)
Hence

- ’Z e=ind — Z(I—v),..(ﬂ?)‘

I~

where the summation in m can be continued until the series bottoms and the symbol
~ is used to denote asymptotic equality.
Consider next 7,. Here a series expansion of the integral yields

I, = Z:"ft"“e""dt.
n=1 E
Direct integration by parts then yields the desired asymptotic form

[ ~ % \ 1 ?emﬂ ?(]_")m(_'ni)_

rll “mU
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Hence
(3.5) Li,(z)~

NS R g 2([ V)m?~" (L io ym+1 L it
r(‘,+]) r(v) m? 1M+|(e )+(“ ) ]m+l(e ))
where 0 <=0 <=2r, y=1, and the summation in m can be continued with profit until
the series bottoms.
For v/ <0 one proceeds from the integral representation (1. 7). The contour
of integration in the s-plane is % (cf. Figure 1.) plus an arc from ce¢™? to coe*/?
in the left half-plane, the arc being suitably indented about the branch line emanating

Figure 2

from s = —1; this is shown in Figure 2. Since the residue at s=m (m # —1)

is —2:”, z"*Y(m+1)~", it follows at once that

Lf‘.(z)+e*""Li(l]= — (integral around the branch line)
(|zD=1or |z|=1, vV=1).

The branch line integral is simply expressible as

' o £ . —3x/2 '
i eiva_l (_Z)t, d‘, + v i ( Z)rew iaei\ﬁ dllb
2 i5r ¢*  sinhxl 5 2 ()" sin(mee¥)

3 :

It is desirable to let ¢ -0, and when this is done it is seen that simple forms obtain only
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if vis a positive integer or if v/ <0. The case of positive integral v has been discussed
elsewhere [1][7], [10], [19]: the resultant formula for the polylogarithms is
. 1 1 g2l InP-2r(—z)
6 2)+(=1)?Li, | =| = ——In?(—2) + W b el
3.6) Li,+(=D LIP[ZJ r n?(—z)+ 2r§L|,_,( 1) (=21’

where p=2, 3, ... and [} p] denotes the largest integer contained in 1 p. The well-
known formulae for v=0 and v=1, given here for completeness, are

(3.7) Lio(z) + Lip(1/2) = —1,

(3. 8) Li\(z)—Li(1/z) = —In(—2).

When v =0 the branch-line integral can be reduced to

iv d&:
—e 2 sinmv | (—2)%L -
0

sinh n{

O LRI :
After the substitution { = and a rearrangement of terms, the integral can be

2n
seen to represent [7] a generalized zeta function. Hence

l"%v 5
4 r{(‘?’;n) {.’[l —v, 2l?flnz] (v'<0, O<argz<2n);
(3.9) is the well-known JONQUIERE relation [7], [8]. The sought after asymptotic
expansion for |z/ —+<= and v"<=0 can be obtained from (3.9) by using the known
asymptotic forms [7] for the generalized zeta function and the elementary relations
[7] between the BerRNouLLI numbers and the polylogarithms of unity argument

(3.9) Li(2)+e*Li(l/z) =

'\.\\Imcmn( i“—|3-')

3
! REE

Figure 3
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(zeta functions). It can also be obtained directly from the branch-line integral by
integrating along a constant phase trajectory in Quadrant 7 until the integrand
is small and then switching onto a ray toward =ee!'/#i* in order to avoid the singularity
at { = + 1, this contour is shown in Figure 3. Either method yields

3.10) Li»(z) +eiv Li(1/2) ~
smnrrv ei* (In z) {F(—' ‘-')+ — F(l —v)—2 Z Li,,(1)I"(2n —v)(In Z)—z.}

(VV<0, O<argz<2n).

Li(1/z) can often be neglected, or it can be expanded by using (1.1); N can be
increased profitably until the series bottoms. An analogous expansion has been
derived by BARNES [1] who did not, however, note that the asymptotic series must
be terminated because it eventually diverges as N — oo,

4. An expansion valid as |v| -0 can be obtained from the Maclaurin expansion

dLi(z)

Liv(z) 0( )'i- I "+R29

v=

where R, has the integral representation [11]

1
Ry = v? [(1=1)(d*Liy (:)/d(v1)?)dt.
0

Since, for |v'|=1/2,

|d? Li,(2)di?| = 2 |z"In? njn’| = Z |z["n
n=1

| I)‘.

-L1 1('I)~ 7 |zl/(1=2])?,

one has |R,|= 2 [v2| ﬁ_—iz}iz[)z . To evaluate the first derivative for |z <1 one pro-
ceeds as follows:
Lo = — Z z*Inn = ——-——- 2 2 In(1+1/n) =
dv ) —Z p=1
o Z 7 l)m .
= — 5 — z
n;l' !; - [ "! —: m= l ”! LIM( ),

the interchange of summation having been justified by a simple application of
Pringsheim’s theorem [3]. Hence

%(—)

An expansion valid near some arbitrary v, can be derived in a manner exactly
analogous to that used for (4. 1):

(4.2)  Li(2) = Li,(2)+(v—v) i

le( }+ R"' [:r’,i = %5 l:f“'-:ll.

(4.1) Li,(2) = Liy(z )-H

= % 21 ]}m \"-t-m( )—I_R" (::‘e:‘l)s

—Z =l M
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where R, can be bounded by using Cauchy’s inequality in a manner analogous

to that employed in deriving (3. 4).
An expansion valid as v* - < can be derived from (1. 6), for, expanding (¢! —z) !
in powers of e~*, one obtains

ZN+1 - di
. i v=1,—A____ /= 00
(4.3) Li(z) = 2 + N*. r(‘.) f ar-le etN —z v )

The remainder Ry, , is easily bounded:

IZ¥¥1 P(v) 1
NY |r()| B’

4.4) |Ry+1| =

where B is the minimum value assumed by |e*/N —z| over the Z-range (0, =). It is
easy to show by using Euler’s integral for the gamma function that I'(v')/[I'(v) =1
and by using Stirling’s series for the gamma function that I'(v")/|I'(v)| =

exp I(v’— 1/2)(In v/ —In|v]) + v" arc tan :7] = O {exp[|v|f(@)])}, where ¢@=argyv

and f(¢)=cos ¢ Incos ¢ + ¢ sin ¢. However, n/2=f(¢)=0 when || ==n/2, and
hence the remainder as given by (4. 4) may be objectionably large for some nonreal v.

5. It is of course obvious that certain functions are expressible in terms of
sums of polylogarithms, and indeed examples of this have been given by EASTHAM [6],
or may be seen in (1. 4), (2.1), and (2. 4). The problem of interest is to determine
the conditions under which such expansions can be made. A theorem and an additional
example will be given here.

Theorem. If F(z) is expressible in the form
F@) = 2 2"ftm)  (z|<R),

where f(m) can be expanded in a Laurent series of the form

r”ﬂ'k

flm) = Za : ZK' b (K finite),

and if the order of summation can be interchanged, then

K =)
F(z) = ;.-2': b, ZapLid”p(:).

—_—

The proof is trivial, the real questions being when the summation interchange
can be accomplished and when the f(») can be suitably expanded. The problem of
summation interchange has not been fully resolved, but many cases of interest can
be treated by using rules given by BRoMwiICH [3]. f(m) can obviously be expanded
as desired if f(7) is analytic except (perhaps) at the origin and at infinity. A simple
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example of practical importance in hydraulics is provided by the backwater function

[16]
(3)(2)‘_ 2(_ ) kil ZZ?L"}'"M;’ Z(ia)'"[ ]}:

m-+7y

1 . ‘
=z {; + ._ZU'(—T)" Ll..H(tZ)} (I71=<1, |z|<1).
where the (+) sign is to the used for #!"(z) and the (—) sign for Z{*(z).
It has been shown by EAsTHAM [6] that there is no recurrence relation of the
P
form 0= 3 A,(z) Liy - ,(z), where the A4,(z) are algebraic, 44(z) is not identically
p=0

zero, M is an integer and M =1, and P=M is allowed. However, when v' <0 it is
possible to prove the following relation

(5.1 Li,(2) = léz-{l + ‘_E{ap(v) Li,,+,,(z)}, (Jz] <1, v <0),
where g

s I'(l V) 1
2 ap(v) = F(l—v-—p) F(l+p)

This follows from (1.1), since

z)=z+z Zl' ] =24z 0 = Zﬂ ,,() =z+2 Zoa,,(v)Li,.w(:),
n= = p=

where the absolute convergence of the binomial expansion and of the double series

has been ensured by requiring v" <0. It is thus possible to express any polylogarithms,

function not of positive integer order as a series of other polylogarithms, the

coefficients of the series being algebraic. When v = —m, the series is finite and

contains (m <+ 1) terms.

6. In concluding it is appropriate to cite a number of areas in which knowledge
of the polylogarithm is especially incomplete. .
First, little is known about behavior in the v-plane except along and near the

line (0, ==). Of interest would be a Maclaurin expansion of the form >'v?h(z),
p=0

an asymptotic expansion for v'— —e=, and information regarding the functions
of purely imaginary order.

Second, integral transforms involving these functions seem not to have been
studied.

Finally, there is but little information on the function’s zeros. Considered
as a function of z, only the zero at the origin is well known; it is, however, easy

: I
to demonstrate from (1.1) that as z—-0 the zeros are given by 1'=l-ﬁ-2-(lr1 |z] +

-Harg:+r’rz(2p—l)). Considered as a function of v, it has, since Li(l)={(v),
infinitely many zeros along the line v"=1/2. One is tempted to conjecture that all
zeros in the complex (v, z)-plane lie on trajectories that lead to the line v =In |z|/In 2
as z—+0 and the line v'=1/2 as z—+1.



On polylogarithms 43

References

[1] E. W. Barnes, On certain functions defined by Taylor’s series of finite radius of convergence,
Proc. London Math. Soc. (2) 4 (1906), 284-—-316.

[2] G. BIRKHOFF—S. MACLANE, A Survey of Modern Algebra, New York, (1941).

[3] T. J. I'A. BRomwicH, An Introduction to the Theory of Infinite Series, (2nd ed.) London, (1926).

[4] R. B. DINGLE, The Fermi—Dirac integrals, Appl. Sci. Rev. 6B (1957), 225239,

[5] R. B. DinGLE, The Bose—Einstein integrals, Appl. Sci. Rer. 6B (1957), 240—244.

[6] M. S. P. EastHAM, On polylogarithms, Proc. Glasgow Math. Assoc. 6 (1964), 169—171.

[7] A. ErpELyI (ed.) Higher Transcendental Functions, (Vol. I.) New York. (1953).

n=ea
[8] A. JoNQuiEre, Note sur la série ¥ x"/n*, Bull. Soc. Math. France., 17 (1889), 142—152.
n=1
[9] C. JorpaN, Calculus of Finite Differences, Budapest, (1939).

[10] L. Lewin, Dilogarithms and Associated Functions, London, (1958).

[11] T. M. MacRoserT, Functions of a Complex Variable. (4th ed.), London, (1954).

[12] F. L. Miksa, unpublished tables quoted in Handbook of Mathematical Functions (ed. by M.
Abramowitz and I. A. Stegun), Washington, (1964),

[13] W. E. MiLNg, Numerical Calculus, Princeton, (1949).

[14] D. S. Mitrinovic—R. S, MiTriNovi¢, Tableaux d’une Classe de Nombres Reliés aux Nombres
de Stirling (I and 11), Publikacije Elektrotechnickog Fakulteta Univerziteta u Beogradu,
77 and 107, (1962 and 1963).

[15] N. Niersen, Handbuch der Theorie der Gammafunktion, Leipzig, (1906).

[16] W. F. PickarD, Solving the equations of uniform flow, Proc. Amer. Soc. Civ. Eng. (HY4) 89
(1963), 23—38.

[17] W. F. PickArD, Tables of the generalized Stirling numbers of the first kind, J. Assoc. Comput.
Mach., 11 (1964), 70—78.

[18] L. J. SLATER, article in Handbook of Mathematical Functions (ed. by M. Abramowitz and 1. A.
Stegun), Washington, (1964).

[19] W. Spence, Mathematical Essays, London, (1819).

[20] C. TruEesDELL, On a function which occurs in the theory of the structure of polymers, Ann. of
Math., 46 (1945), 144—157.

{ Received October 18, 1966,)



