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On the structure of crossed products of
groups and simple rings

By S. V. MIHOVSKI (Plovdiv)

Abstract. Let K ∗G be a crossed product of the group G over the ring K with
a factor set ρ : G × G → U(K) and a map σ : G → Aut K, and let Gker = {g ∈
G | gσ is inner} be the kernel of σ. If for some central subgroup H of G the ring K
has no H-invariant ideals, then there exists an one to one correspondence between the
H-invariant left K-ideals of K ∗G and K ∗Gker. Thus, K ∗G is a simple ring if and only
if K ∗Gker is G-simple. If [G : Gker] < ∞, then the ideals of K ∗G satisfy ACC (resp.
DCC) if and only if the ideals of K ∗ Gker satisfy ACC (resp. DCC). In consequence,
necessary and sufficient conditions are given for some classes of crossed products to be
simple rings. Simple rings of skew Laurent polynomials in n variables are also studied.

Let R = (K, G, ρ, σ) be a crossed product of the multiplicative group
G and the associative ring K with a factor set ρ and a mapping σ and let
H be the kernel of σ [5]. A well known result of A. A. Bovdi [6] asserts
that if K is a simple ring, then the intersection AH = A ∩ (K, H, ρ, σ) of
every nonzero ideal A of R and the subring RH = (K, H, ρ, σ) is a nonzero
G-invariant ideal of RH . Furthermore, every G-invariant ideal AH of RH

generates an ideal A of R such that A ∩ RH = AH . If K is a field, then
this correspondence is one to one [5, Theorem 3]. These results have some
interesting applications when we discuss the structure of R. In this paper
we investigate the correspondence between the G-invariant ideals of RH

and the ideals of R in the case when K is not a field.
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§1. Preliminary notions and definitions

The crossed products of arbitrary finite groups over fields were in-
troduced by E. Noether in 1929 in her lectures in Göthingen (see [14]).
N. Jacobson [8] extended the notion of crossed products allowing coef-
ficient rings other that fields. Crossed products (K,G, ρ, σ) of arbitrary
semigroups G over general rings K with factor sets ρ and mappings σ were
introduced by A. A. Bovdi [4]. Here we recall this construction.

Let K be an associative ring with unity and let G be an arbitrary
semigroup. Suppose that we are given a single-valued mapping σ : G →
Aut K of G into the group of automorphisms Aut K and a family ρ =
{ρ(g, h) | g, h ∈ G} of elements of K such that

ρ(f, gh)ρ(g, h) = ρ(fg, h)ρ(f, g)hσ,(1.1)

α(gh)σρ(g, h) = ρ(g, h)αgσ.hσ(1.2)

for all f, g, h ∈ G and α ∈ K. Here αgσ is the image of α ∈ K under the
action of the automorphism gσ ∈ AutK. The family ρ is called a factor
set of the semigroup G in the ring K with respect to the mapping σ.

We associate to each element g ∈ G a symbol g and consider the free
right K-module R, generated by the elements g (g ∈ G). If the factor
set ρ is invertible, i.e. ρ ⊂ K∗ = U(K), and the K-basis G = {g | g ∈ G}
satisfies the conditions

(1.3) gh = ghρ(g, h), αg = gαgσ (g, h ∈ G, α ∈ K),

then R is an associative ring, where the product of arbitrary elements of
R is defined by using the distributive law and the conditions (1.3). This
ring R is called a crossed product of G and K with respect to the factor
set ρ and the mapping σ, and A. A. Bovdi denotes it by (K, G, ρ, σ) [4,
5, 6]. A number of properties of this ring can be found in [5, 15].

This definition shows how we can construct the ring (K,G, ρ, σ), if K
and G are given. But, at times it is necessary to verify that some right free
K-module R is a crossed product. It appears that there is no necessity at
all to verify that the factor set ρ is invertible and satisfies the conditions
(1.1) and (1.2).

Suppose now that R is both left and right free K-module with a basis
G = {g | g ∈ G}, where G is the set of indices of the elements g ∈ G. The
basis G of the free K-module R is said to be a diagonal basis if the elements
of G satisfy the conditions (1.3) for all g, h ∈ G and α ∈ K, where ρ(g, h)
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are nonzero elements of K, αgσ ∈ K and gh ∈ G. The diagonal basis G of
the free K-module R is called projective if

(1.4) f(gh) = (fg)h, α(gh) = (αg)h

for all f, g, h ∈ G and α ∈ K. It is clear that if R is an associative ring
containing K, then every diagonal K-basis of R is projective. Further-
more, if the K-module R has at least one projective K-basis, then R is an
associative ring.

Obviously, if G is a projective basis of the K-module R, then the
mapping (g, h) 7→ gh defines an associative binary operation of G and
therefore G is a semigroup. Moreover, the mapping α 7→ αgσ is an auto-
morphism of K and σ maps G into the group of authomorphisms AutK
of the ring K. Furthermore, from (1.3) and (1.4) we obtain that the factor
set ρ = {ρ(g, h) | g, h ∈ G} of the basis G satisfies the conditions (1.1) and
(1.2). Hence it follows that ρ is a factor set of the semigroup G in the
ring K with respect to the mapping σ. And so, the mapping g 7→ g is a
projective representation of G into the multiplicative semigroup of R (see
[8], p. 154), and this explains the name of the projective bases.

These arguments show that we have the following proposition:

Proposition 1.1. Let K be an associative ring with unity. The K-
module R is a crossed product of K and some semigroup G if and only if
R is both left and right free K-module with a projective basis G and an
invertible factor set ρ.

Thus we obtain

Corollary 1.2. Let R be an associative ring containing the subring
K with unity. Then R is a crossed product of K and some semigroup G if
and only if R is both left and right free K-module with a diagonal basis
G and an invertible factor set ρ.

Indeed, each diagonal K-basis of R is projective.
For example, let KG be an ordinary group ring and let H be a normal

subgroup of G. Then KG is both a left and a right free KH-module with
a diagonal basis T (G/H), a transversal of H in G, and an invertible factor
set ρ ⊂ H. Thus, as it is well known, KG is a crossed product of G/H and
KH. By analogy, (K, G, ρ, σ) is a crossed product of G/H over (K,H, ρ, σ)
with a basis G/H = {g | g ∈ T (G/H)}.

Throughout in this paper we shall assume that 1 ∈ K. Recall that the
element α ∈ K is said to be regular if α is neither a left nor a right divisor
of zero. The following proposition shows that it is not often necessary to
verify that the factor set ρ is invertible.
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Proposition 1.3. Let K be a simple ring (or a direct sum of simple
rings). The K-module R is a crossed product of K and some semigroup G
if and only if R is both left and right free K-module with projective basis
G such that each element of the factor set ρ is nonzero (or respectively,
regular) element of K.

Indeed, by Proposition 1.1, it is enough to prove that each factor
ρ(g, h) is an invertible element of K. Since gσ, hσ ∈ Aut K, the condition
(1.2) shows that ρ(g, h)K = Kρ(g, h) for all ρ(g, h) ∈ ρ. Thus, if K is a
simple ring, then ρ(g, h)K = K and ρ(g, h) is invertible. Moreover, if K
is a direct sum of simple rings, then ρ(g, h)K is also an ideal of K and
ρ(g, h)K = K, because ρ(g, h) is a regular element. Hence, ρ(g, h) ∈ K∗.

Observe that if in the preceding proposition R is an associative ring
containing K, then as in Corollary 1.2 the condition (1.4) for projectivity of
G can be replaced by condition (1.3) for diagonality. If G is not projective,
then R is nonassociative crossed product. Such constructions are studied
by Tihomirov [17] and Albert [1].

We shall assume throughout below that G is a group. The crossed
product of G and K with a factor set ρ and a mapping σ we shall denote
also by Kσ

ρ G or simply K∗G. One knows that then K∗G has an identity
element e = 1ρ(1, 1)−1 and that each g is invertible in K∗G [5].

After replacing the basis element 1 (1 ∈ G) by the identity element
e ∈ K∗G we can assume that the factor set ρ is normalized [15], i.e.

ρ(g, 1) = ρ(1, g) = ρ(1, 1) = 1, α1σ = α (g ∈ G, α ∈ K).

Moreover,

g−1 = ρ
(
g−1, g

)−1
g−1 = g−1ρ

(
g, g−1

)−1
(g ∈ G).

Each element a ∈ K∗G is uniquely expressible in the form a =
∑

gαg

(g ∈ G, αg ∈ K), where Supp a = {g ∈ G | αg 6= 0} is a finite set, called
the support of a. The subgroup 〈Supp a〉, generated by the elements of
Supp a is said to be the supporting subgroup of a.

It is worth to mention some special cases of this construction. If we
assume that ρ = 1, i.e. ρ(g, h) = 1 for all g, h ∈ G, then we obtain a skew
group ring, denoted by KσG. In this case the mapping g 7→ g is an affine
representation (see [8], p. 155) of G into the multiplicative group of units
in KσG. If we assume that σ = 1, i.e. αgσ = α for all g ∈ G and α ∈ K,
then we obtain a twisted group ring KρG. Here it is clear by (1.2) that
each ρ(g, h) must belong to the center of K. Finally, if ρ = 1 and σ = 1,
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then the mapping g 7→ g is a linear representation of G. In this case we
obtain the ordinary group ring which we denote by KG.

If H is a subgroup of G, then the subset S of K ∗G is said to be
H-invariant (respectively H-fixed) if h

−1
sh ∈ S (respectively h

−1
sh = s)

for all h ∈ H and s ∈ S. The set of all H-fixed elements of S is denoted
by SH . We say that K is H-simple if K has no H-invariant ideals.

Let Inn(K) be the group of the inner authomorphisms of K. Then
Gker = {g ∈ G | gσ ∈ Inn(K)} is a normal subgroup of G and Gker is called
a kernel of the mapping σ [5]. It is clear that Gker ⊆ Ginn [15] and if K
is a simple ring or a commutative domain, then Gker = Ginn [15].

If H is any subgroup of G, then K ∗H = {a ∈ K ∗G | Supp a ⊆ H}
is also a crossed product of H over K with Hker = H ∩Gker.

If L is a ring or a group, then the center of L will be denoted by
C(L) and we set CW (L) = {x ∈ W | xr = rx for each r ∈ L}. By ∆(G)
we denote the maximal FC-subgroup of G [10]. We recall that a group
G is said to be hypercentral or ZA-group [10] if every nontrivial factor
group of G has nontrivial center. One example of a hypercentral group is
of course a nilpotent group.

§2. Relations between the ideals of K ∗G and K ∗Gker

In this section we discuss the bonds between the ideals of K ∗G and
K ∗Gker.

Lemma 2.1. Let K ∗G be a crossed product of G over K and let K
be a H-simple ring for some central subgroup H of G. If the H-invariant
K-subbimodule L of K ∗G contains an element a with g0 ∈ Supp a, then
L contains an element b = g0 + a1 such that g0 /∈ Supp a1 and Supp b ⊆
Supp a.

Proof. Let a = g0α0 + g1α1 + · · ·+ gnαn ∈ L (αi ∈ K) and α0 6= 0.
We define

La = {x ∈ L | Suppx ⊆ Supp a} .

Obviously, a ∈ La and La is an H-invariant K-subbimodule of L. Now let

θ(La) =

{
β ∈ K

∣∣∣ there exists
n∑
0

giβi ∈ L with β0 = β

}
.

It is easy to see that θ(La) is an ideal of K. Moreover, if β0 ∈ θ(La) and

b = g0β0 + g1β1 + · · ·+ gnβn ∈ La (βi ∈ K),
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then for each element g ∈ H we have

bg = g−1bg =
n∑
0

g−1giβig =
n∑
0

g−1gigρ(gi, g)βgσ
i

=
n∑
0

giρ (g, gi)
−1

ρ(gi, g)βgσ
i .

Since bg ∈ L and Supp(bg) ⊆ Supp a, we conclude that bg ∈ La and
ρ(g, g−1

i )ρ(gi, g)βgσ
0 ∈ θ(La). Thus we obtain that βgσ

0 ∈ θ(La) and there-
fore θ(La) is an H-invariant ideal of K. Hence it follows that θ(La) = K
and 1 ∈ θ(La). This implies that La ⊆ L contains an element b =
g0 + g1β1 + · · ·+ gnβn (βi ∈ K), and the lemma is proved.

Lemma 2.2. Let K ∗G be a crossed product and let H be a central
subgroup of G. If the ring K is H-simple, then every nonzero H-invariant
K-subbimodule L of K ∗G contains an element a = g1α1 + g2α2 + · · · +
gnαn (αi ∈ K) such that g1, g2, . . . , gn ∈ g1Gker and α1, α2, . . . αn ∈ K∗.

Proof. Suppose that among all nonzero elements of L the element
a =

∑n
1 giαi (α ∈ K) has a minimal support size. In view of Lemma 2.1

we may assume that α1 = 1. Then for all g ∈ H and ε ∈ K∗ the element

x = εa− g−1ag =
n∑
1

gi

[
εgiσαi − ρ(g, gi)−1ρ(gi, g)αgσ

i

]

belongs to L. If we take ε = ρ(g, g1)−1ρ(g1, g)(g1σ)−1
, then we obtain that

the coefficient of g1 of the element x is zero. Hence |Supp x| < |Supp a|
and the minimality of Supp a implies x = 0, i.e. all coefficients of x are
equal to zero. Therefore, there exist elements εi(g) ∈ K∗ such that

(2.1) αgσ
i = εi(g)αi (g ∈ H; i = 1, 2, . . . , n).

Moreover, the element

y = γa− aγg1σ =
n∑
1

gi (γgiσαi − αiγ
g1σ)

belongs to L for all γ ∈ K and |Supp y| < | Supp a| because γg1σα1 −
α1γ

g1σ = 0. Thus y = 0 and

(2.2) γgiσαi = αiγ
g1σ (i = 1, 2, . . . , n).

Since g1σ and giσ are automorphisms of K, by (2.2) we conclude that Kαi

is a two-sided ideal of K and the condition (2.1) shows that this ideal is
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H-invariant. And so, Kαi = αiK = K (i = 1, 2, . . . , n) and therefore
α1, α2, . . . , αn are invertible elements of K. Then by (2.2) and (1.2) we
obtain that

γ(g−1
1 gi)σ = βiγβ−1

i (βi ∈ K∗)

and therefore g−1
1 gi ∈ Gker (i = 2, 3, . . . , n). Hence g1, g2, . . . , gn ∈ g1Gker

and the lemma is proved.

Recall that the left ideal I of K∗G is said to be a left K-ideal [5] if
aα ∈ I for each a ∈ I and α ∈ K, i.e. the elements of K act on I as rigth
operators.

The next result is a useful consequence of the above lemma.

Proposition 2.3. Let K ∗G be a crossed product and let H be a
central subgroup of G. If the ring K is H-simple, then for every nonzero
H-invariant left K-ideal A of K∗G the intersection A∩K∗Gkeris a nonzero
H-invariant left K-ideal of K∗Gker.

Proof. If A is a nonzero H-invariant left K-ideal of K∗G, then by
preceding lemma there exists a nonzero element a ∈ A such that Supp a ⊆
gGker where g ∈ Supp a. Then g−1a ∈ A∩K∗Gker. Moreover, A∩K∗Gker

is an H-invariant left K-ideal of K∗Gker.

Lemma 2.4. Let K∗G be a crossed product of G over K and let K
be a H-simple ring for some central subgroup H of G. If A1 and A2 are
H-invariant left K-ideals of K∗G such that A1 ⊂ A2, then A1 ∩K∗Gker ⊂
A2 ∩K∗Gker.

Proof. Suppose that A1 ∩ K ∗Gker = A2 ∩ K ∗Gker. Let a =∑n
1 giαi (αi ∈ K) be an element with a minimal support size n such

that a ∈ A2\A1. Since A2 is a left ideal of K ∗G we may assume that
g1 = 1. In view of Lemma 2.1, A2 contains an element

b = g1 + g2β2 + · · ·+ gnβn (βi ∈ K).

Suppose that b ∈ A1. Then bα1 ∈ A1 ⊂ A2 and c = a − bα1 ∈ A2, where
the element c has a support size smaller than n. Thus we conclude that
c ∈ A1 and hence a = c + bα1 ∈ A1. But this contradicts the condition
a ∈ A2 \A1. Therefore b ∈ A2 \A1 and for the element a we may assume
that g1 = 1 and α1 = 1. Now we define

A1 = {x ∈ A1 | Suppx ⊆ Supp a \ {g1}} .

Certainly, we think that 0 ∈ A1.
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Suppose that A1 = 0. Since A2 is a K-bimodule and a ∈ A2, the
element

x = γa− aγ =
∑n

1 gi(γgiσαi − αiγ)

belongs to A2 for all γ ∈ K. Furthermore x has a support size smaller
than n, since the coefficient of g1 is zero. Hence x ∈ A1 and x ∈ A1 for all
γ ∈ K. But A1 = 0 and thus x = 0, i.e.

(2.3) γgiσαi = αiγ (γ ∈ K, i = 1, 2, . . . , n).

Since A2 is an H-invariant left ideal of K∗G, we have g−1ag ∈ A2 for all
g ∈ H. Then the element

y = a− g−1ag =
∑

gi

[
αi − ρ(g, gi)−1ρ(gi, g)αgσ

i

]

belongs to A2 for all g ∈ H and | Supp y| < n. Thus we conclude that
y ∈ A1 and y = 0, i.e.

(2.4) αgσ
i = ρ(gi, g)−1ρ(g, gi)αi (g ∈ H, i = 1, 2, . . . , n).

From (2.3) and (2.4) we obtain that Kαi = αiK is an H-invariant
ideal of K for all i = 2, 3, . . . , n. So a2, a3, . . . , an are invertible elements
of K. Then (2.3) implies that g1, g2, . . . , gn ∈ Gker and

a ∈ A2 ∩K∗Gker = A1 ∩K∗Gker,

i.e. a ∈ A1. But this is impossible and therefore A1 6= 0. Let d =∑n
2 giγi (γi ∈ K) be a nonzero element of A1 ⊂ A1 and suppose that

γ2 6= 0. In view of Lemma 2.1 we may assume that γ2 = 1. Then the
conditions a ∈ A2 and d ∈ A1 ⊂ A2 imply that z = a − dα2 ∈ A2 and
| Supp z| < n. Therefore z ∈ A1 and a = z + dα2 ∈ A1. But this is also
impossible and the lemma is proved.

Theorem 2.5. Let K∗G be a crossed product of G over K and let K
be an H-simple ring for some central subgroup H of G. Then the mappings

A
ϕ−→ A ∩ (K ∗Gker) and B

ψ−→ (K∗G)B

set up a one to one correspondence between the H-invariant left K-ideals
of K∗G and the H-invariant left K-ideals of K∗Gker. Furthermore, under
this correspondence, ideals of K ∗G correspond to G-invariant ideals of
K∗Gker.

Proof. If A is a nonzero H-invariant left K-ideal of K∗G, then, by
Proposition 2.3, ϕ(A) = A∩K∗Gker is a nonzero H-invariant left K-ideal
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of K∗Gker. On the other hand, if B is a nonzero H-invariant left K-ideal
of K∗Gker, then

ψ(B) = (K∗G)B =
∑

g∈T (G/Gker)

gB

is a nonzero H-invariant left K-ideal of K∗G and

(2.5) (K∗G)B ∩K∗Gker = B.

Hence

B
ψ−→ (K∗G)B

ϕ−→ (K∗G)B ∩K∗Gker = B,

i.e. ϕψ = id. To see that ψϕ = id, it is enough to show that

A
ϕ−→ (A ∩ (K∗Gker))

ψ−→ (K∗G)(A ∩ (K∗Gker)) = A

for each nonzero H-invariant left K-ideal A of K∗G.
It is clear that A1 = (K∗G)(A∩K∗Gker) ⊆ A. Suppose that A1 ⊂ A.

Then in view of Lemma 2.4 we have A1 ∩ (K∗Gker) ⊂ A ∩K∗Gker. Now
applying the equality (2.5) for the left K-ideal B = A∩K∗Gker we obtain

B ⊃ A1 ∩K∗Gker = (K∗G)B ∩K∗Gker = B.

But this is impossible. Therefore, A1 = A and the equality ψϕ = id

is proved. Finally we observe that if A is an ideal of K ∗G, then A is
simultaneously an H-invariant and G-invariant K-ideal of K ∗G. Thus
A∩K∗Gker is a G-invariant ideal of K∗Gker, since K∗Gker is a G-invariant
subring of K∗G. This completes the proof.

The above theorem yields the necessary reduction of some problems
from K ∗G to K ∗Gker. As will be apparent soon, some results facilitate
the further reduction to C(K)∗Gker.

First let us recall a well known standard definition. A family of subsets
{Mi | i ∈ I} in a set M is said to satisfy the Ascending Chain Condition
(ACC) if in the family does not exist an infinite strictly ascending chain
Mi1 ⊂ Mi2 ⊂ . . . ⊂ Min ⊂ . . . . The Descending Chain Condition (DCC)
for a family of subsets of M is defined similarly.
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Corollary 2.6. Let K∗G be a crossed product of G over K and let K
be an H-simple ring for some central subgroup H of G.

(i) The ideals of K ∗G satisfy ACC (resp. DCC) if and only if the
G-invariant ideals of K∗Gker satisfy ACC (resp. DCC);

(ii) If [G : Gker] < ∞, then the ideals of K ∗G satisfy ACC (resp.
DCC) if and only if the ideals of K∗Gker satisfy ACC (resp. DCC);

(iii) If K is a simple ring, then the left K-ideals of K∗G satisfy ACC
(resp. DCC) if and only if the left K-ideals of K∗Gker satisfy ACC (resp.
DCC).

Proof. (i) and (iii) follow immediately from the preceding theorem,
as H = 1 in (iii). Therefore it is enough to prove (ii). Let A be any ideal
of K∗Gker and g ∈ G. Then g = hg1, where h ∈ Gker and g1 ∈ T (G/Gker),
a transversal of Gker in G. Hence we obtain Ag = g−1Ag = g1

−1Ag1. It
is clear that Ag is an ideal of K∗Gker. Thus G acts on the set of all ideals
of K ∗Gker by conjugation as finite group of authomorphisms. Then (ii)
follows by the preceding theorem and [7, Corollary 2.1].

The following propositions enable us to enlarge some well known re-
sults on the semiprimitiveness of twisted group rings (see [16]) to the case
of crossed products. Recall that the ring R is said to be semiprimitive if
the Jacobson radical J(R) of R is the zero ideal of R [2].

Proposition 2.7. Let K∗G be a crossed product of G over K. Then

(i) K ∗Gker is a twisted group ring with a central factor set ρ and
R = C(K)ρGker is a subring of KρGker;

(ii) If K is a C(G)-simple ring, then A∩R is a nonzero ideal of R for
each nonzero ideal A of K∗G;

(iii) If K is a central simple F -algebra, then J(K ∗G) ∩ FρGker ⊆
J(FρGker). In particular, if FρGker is semiprimitive, then K∗G is semiprim-
itive too.

Proof. (i). If g ∈ Gker then by definition there exists an element
εg ∈ K∗ such that αgσ = εgαε−1

g for all α ∈ K. Now we define G̃ =
{g̃ = gεg | g ∈ Gker}. It is clear that αg̃ = g̃α for all α ∈ K and g̃ ∈ G̃.
Therefore, K∗Gker is a twisted group ring of Gker over K with K-basis G̃,
i.e. K ∗Gker = KρGker where ρ is a central system of factors. Hence we
conclude that R = C(K)ρGker is a subring of K∗Gker.

(ii). Now suppose that K is a C(G)-simple ring and let A be any
nonzero ideal of K∗G. In view of the above theorem we obtain that A1 =
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A∩KρGker is a nonzero ideal of KρGker. Let x =
∑n

1 g̃iαi 6= 0 (αi ∈ K) be
an element of minimal nonzero support size in A1. Since we can multiply
x by any g̃ ∈ G̃ker without changing the support size, we may assume that
g1 = 1. From Lemma 2.1 we may assume also that α1 = 1. Then A1

contains the element

y = αx− xα =
n∑
1

g̃i(ααi − αiα)

for all α ∈ K and | Supp y| < | Suppx|. This shows that y = 0 and
ααi = αiα for α ∈ K and 1 = 1, 2, . . . , n. Hence αi ∈ C(K) and x ∈ R,
i.e. A ∩R 6= 0 and (ii) is proved.

(iii). Next assume that J(K∗G) 6= 0. In view of (ii), it is enough to
show that I = J(K∗G) ∩ FρGker is a quasi-regular ideal of FρGker. Since
K is a linear space over F , as a right F -module F is a direct summand
of K. Write K = F ⊕ L, where L is a suitable right F -submodule of the
F -module K. Hence

K∗Gker = KρGker = FρGker ⊕ LρGker

is a direct sum of F -modules, where

LρGker =
{

a =
∑

gαg | g ∈ Gker, αg ∈ L
}

.

The proof will be completed if we can show that r ∈ I implies that 1+ r is
left-invertible in FρGker. The element 1 + r is invertible in K∗G because
r ∈ J(K∗G). Moreover, 1 + r ∈ FρGker so that t = (1 + r)−1 ∈ KρGker.
Let t = t0 + t1, where t0 ∈ FρGker and t1 ∈ LρGker. Then

1 = t(1 + r) = t0(1 + r) + t1(1 + r).

Since 1, t0(1 + r) ∈ FρGker and t1(1 + r) ∈ LρGker, this implies that
1 = t0(1 + r), as desired.

If K∗G is a skew group ring, then we have the following proposition.

Proposition 2.8. Let KσG be a skew group ring of G over the com-
mutative C(G)-simple ring K. Then

(i) F = KC(G) is a field and A∩FGker is a nonzero ideal of the group
ring FGker for each nonzero ideal A of KσG;

(ii) J(KσG)∩FGker ⊆ J(FGker). In particular, if FGker is semiprim-
itive, then KσG is semiprimitive too.

Proof. (i). Obviously, F is a subring of K. If α ∈ F is a nonzero
element, then αK is a nonzero C(G)-invariant ideal of K and therefore
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αK = K. This yields α ∈ K∗ and α−1 ∈ F . Thus F is a subfield of
K. Let x =

∑n
1 giαi 6= 0 (αi ∈ K) be an element of minimal nonzero

support size in the nonzero ideal A of KσG. Obviously, we may assume
that g1 = 1 and α1 = 1. Then A contains the elements y = hx − xh and
z = αx− xα for all α ∈ K and h ∈ C(G). Moreover, | Supp y| < |Supp x|
and | Supp z| < | Suppx|. Thus we obtain that y = z = 0 and therefore
αhσ

i = αi and αgiσαi = αiα (α ∈ K; h ∈ C(G); i = 1, 2, . . . , n). Hence
we conclude that αi ∈ F , αgiσ = αiαα−1

i and gi ∈ Gker (i = 1, 2, . . . , n).
This shows that x ∈ F σG ∩ F σGker and (i) is proved.

The part (ii) may be proved as (iii) in the preceding proposition.

§3. Simple crossed products of groups and rings

In this final section we study crossed products K∗G which are simple
rings, i.e. K ∗G contains no proper ideals. From Theorem 2.5 we obtain
immediately the following theorem.

Theorem 3.1. Let K ∗G be a crossed product of the group G over
the C(G)-simple ring K. Then K ∗G is simple if and only if K ∗Gker is
G-simple.

Observe that this theorem is proved in [5] and [6] when K is a skew
field or a simple ring respectively.

It is clear that if A is a G-invariant ideal of K, then (K∗G)A is an ideal
of K∗G. Therefore, if K∗G is simple, then K is G-simple. In a different
way, in [3, Proposition 5.7] it is proved a result, which is analogical to the
following proposition. In [3] G is an Abelian or a torsion free ZA-group
[10] and K is a commutative G-simple ring. Here K is G-simple, but G is
arbitrary.

Proposition 3.2. Let KσG be a skew group ring of G over a com-
mutative C(G)-simple ring K. Then KσG is a simple ring if and only if
Gker = 1.

Proof. If Gker = 1, then KσGker = K contains no G-invariant
ideals, because K is C(G)-simple. In view of the preceding theorem we
conclude that KσG is a simple ring. Conversely, let KσG be a simple skew
group ring and assume that Gker 6= 1. Then KσGker = KGker is a group
ring which contains the proper G-invariant ideal ω(Gker) generated by the
elements {h− 1 | h ∈ Gker}. Indeed, if a ∈ ω(Gker) then

a =
∑

h∈Gker

αh(h− 1) (αh ∈ K).
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Since Gker is a normal subgroup of G,

g−1ag =
∑

h∈Gker

αgσ
h (g−1hg − 1)

is an element of ω(Gker) for each g ∈ G. But this contradicts the preceding
theorem and the result follows.

Corollary 3.3. Let KσG be a simple skew group ring of an Abelian
group G over a commutative ring K. Then KσG is simple if and only if
K is G-simple and Gker = 1.

Proof. The necessity follows from Theorem 3.1 and the sufficiency
follows from Proposition 3.2.

Proposition 3.2 is incorrect for arbitrary crossed products. For exam-
ple, let K∗G be a field (see [16]). Then Gker = G, but K∗G is simple.

The next assertion is announced in [12, Theorem 7] for torsion free
Abelian groups. For torsion free ZA-groups it is proved in [3, Theorem 5.6].

Lemma 3.4. Let K∗G be a crossed product of a torsion free ZA-group
G over a ring K. Then K ∗G is simple if and only if K is G-simple and
there is not a nonidentity central element h ∈ H such that

αhσ = εhαε−1
h , εgσ

h = ρ(h, g)−1ρ(g, h)εh

for all α ∈ K and g ∈ G, where εh is an invertible element of K.

The proof of this lemma is based on the fact that each ideal of K∗G
contains a nonzero central element of K∗G (see [13, Corollary 2.2]). More-
over, if an element h ∈ G satisfies the conditions of the lemma, then the
element a = 1 + hεh is central, but it is not invertible in K∗G.

Recall that the factor set ρ of the crossed product K ∗G is symmet-
rical [5], if gh = hg yields ρ(g, h) = ρ(h, g) for all g, h ∈ G. Then from
Lemma 3.4 we obtain immediately the following corollary.

Corollary 3.5. Let K∗G be a crossed product of the torsion free ZA-
group G over the commutative ring K with a symmetric factor set ρ. Then
K∗G is a simple ring if and only if K is G-simple and Gker = 1.

Observe that the preceding corollary takes place also in the case when
K is not commutative, but the factor group K∗/C(K)∗ is torsion and
C(K) contains the factor set ρ. Indeed, if 1 6= h ∈ Gker and αhσ =
εhαε−1

h (α ∈ K, εh ∈ K∗), then there exists an integer n such that
εn
h ∈ C(K). Thus αhnσ = α (α ∈ K) and the elements hn ∈ G and

εhn = 1 satisfy the condition of Lemma 3.4. The rest of the proof is clear.
If G is a torsion group, then the field of complex numbers shows that

Corollary 3.5 is incorrect.
Now we will prove the following theorem.
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Theorem 3.6. Let K∗G be a crossed product of a finitely generated

torsion free Abelian group G over an arbitrary ring K with a symmetric

factor set ρ. Then K∗G is not simple if and only if either

(i) K is not G-simple, or

(ii) G has a basis g1, g2, . . . , gn such that αgr
1σ = εαε−1 (ε ∈ K∗) for

some natural number r and every α ∈ K, and εgiσ = ε for i = 2, 3, . . . , n.

Proof. First assume that K∗G is not simple, but K is G-simple. In
view of the above lemma there exists an element h ∈ G such that

αhσ = εαε−1, εgσ = ε (ε ∈ K∗)

for all α ∈ K and g ∈ G, because the factor set ρ is symmetrical. Let
H = 〈h〉 be the cyclic subgroup of G, generated by h. Then there exists
a basis g1, g2, . . . , gn of G such that H = 〈gr

1〉 for some natural number r

[10, p. 120]. Thus h = gr
1 or h = (g−1

1 )
r

and the condition (ii) follows.
Conversely, it is clear that if K is not G-simple, then K ∗G is not

simple. Assume that K is G-simple, but G satisfies the condition (ii). Via
a change of the basis G =

{
gr1
1 gr2

2 . . . grn
n | ri ∈ Z

}
with the basis G̃ =

{gr1
1 gr2

2 . . . grn
n | ri ∈ Z}, there is really no loss of generality in assuming

that K∗G is a skew group ring KσG. This is possible since G is a torsion
free and ρ is a summetric factor set. We will prove that KσG is not
simple using the method of Jordan [9]. Indeed, if K is commutative,
then the assertion follows from Corollary 3.3. If K is a noncommutative
ring, then we define β = εεg1σεg2

1σ . . . εgr−1
1 σ. Since εgr

1σ = ε we conclude
that εgr+l

1 σ = εgl
1σ for l = 1, 2, . . . , r − 1 and

βg1σ = εg1σεg2
1σ . . . εgr

1σ =
(
εg1σεg2

1σ . . . εgr−1
1 σ

)gr
1σ

ε

= ε
(
εg1σεg2

1σ . . . εgr−1
1 σ

)
= β.

Furthermore, the conditions gs
1σ.giσ = giσgs

1σ and εgiσ = ε yield
(εgs

1 )
giσ = εgs

1σ for s = 1, 2, . . . , r − 1 and i = 2, 3, . . . , n. Thus we obtain
that β is a G-fixed invertible element of K. Moreover,

βαβ−1 = εεg1σ . . . εgr−1
1 σα

(
εεg1σ . . . εgr−1

1 σ
)−1

=
[
εg1σ . . . εgr−1

1 σα
(
εg1σ . . . εgr−1

1 σ
)−1

]gr
1σ
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=
[
εεg1σ . . . εgr−2

1 σαg−1
1 σ(εεg1σ . . . εgr−2

1 σ)
−1

]gr+1
1 σ

=
[
εg1σεg2

1σ . . . εgr−2
1 σαg−1

1 σ
(
εg1σεg2

1σ . . . εgr−2
1 σ

)−1
]g2r+1

1 σ

.

Thus we conclude that

βαβ−1 =
[
εg1σεg2

1σ . . . εgr−s
1 σαg1−s

1 σ
(
εg1σεg2

1σ . . . εgr−s
1 σ

)−1
]grs+s−1

1 σ

for all s = 1, 2, . . . , r. In particular, if s = r then

βαβ−1 =
(
αg1−r

1 σ
)gr2+r−1

1 σ

= αgr2
1 σ.

Therefore, the element h = gr2

1 ∈ G satisfies the conditions of Lemma 3.4
with εh = β and the proof is completed.

From here we obtain the following corollary.

Corollary 3.7. The crossed product K∗G of the infinite cyclic group
G over the ring K is a simple ring if and only if K is G-simple and Gker = 1.

Proof. If G is a cyclic group, then it is easy to see that the factor
set ρ of K∗G is symmetrical. Then the assertion follows from Theorem 3.6
with n = 1.

It is clear that the ring K[x, x−1;σ] of skew Laurent polynomials is a
skew group ring of the infinite cyclic group over K. Hence, the main result
of [9] (see also [11, Theorem 3.18]) follows from the above corollary.

Obviously, the ring K[xi, x
−1
i ; σi | i = 1, 2, . . . , n] of skew Laurent

polynomials of x1, x2, . . . , xn is a skew group ring of the torsion free
Abelian group G = 〈x1〉×〈x2〉×. . .×〈xn〉 over K, where αxk

i = xk
i α

σk
i

i (α ∈
K), i.e. xk

i σ = σk
i (1 ≤ i ≤ n, k ∈ Z). Then with the help of Lemma 3.4.

we obtain the following result, which is well known when K is commutative
(see [18]).

Proposition 3.8. The ring K[xi, x
−1
i ; σi | i = 1, 2, . . . , n] of skew

Laurent polynomials of x1, x2, . . . , xn over K is simple if and only if there
exists no nonzero system of integers m1, m2, . . . , mn and a nonzero ideal A

of K such that ασ
m1
1 σ

m2
2 ...σmn

n = εαε−1, εσi = ε and Aσi = A (1 ≤ i ≤ n)
for some ε ∈ K∗ and all α ∈ K.

If K is commutative, then it is clear that in the above proposition we
have ε = 1.
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