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On the regularity of the locally integrable solutions
of the functional equations

;' ai(x, D f(x+ (1) =0

By HALINA SWIATAK (Krakéow)

The equations

k
(1) 2 ai(x, )f(x+@u1)) = 0,

where x=(x;, ..., X), (pi(t)=({p“(r), .oes @i(1)), n>1 are a generalization of some
known functional equations (cf. e.g.[2]).

General theorems on the regularity of the integrable solutions of similar equations
with n=1 are known (cf. AczfL [1]).

We shall prove theorems on the regularity of the locally integrable solutions
of equations (1) under some general assumptions on the functions a(x,t) and
oft) (i=1, ..., k). The idea of proof is the following: to show that every locally
integrable solution of equation (1) satisfies some differential equation in the distri-
butional sense and that this differential equation is hypoelliptic i. e. every distri-
butional solution of it is a function of class C=.

The theory of distributions was already used in connection with functional
equations by FeENYG. In [5] and [7] he solved distributional equations adequate to
some known functional equations in which the unknown function is dependent
on one variable. In [6] he solved the distributional equation adequate to the functional
equation

Sy +x3, X3) +(x, X3) = f(xy, X3 +X3) +/(x2, X3)

which was solved by HosszU ([3]) whithout any regularity assumptions. The most
general solution of this functional equation has a form different from the most
general distributional solution of the adequate distributional equation which was
considered by FenyG. This is not strange since not all the functions can be identified
with distributions. Distributional methods can be used only to find locally integrable
solutions of the functional equations.

We are not looking for the locally integrable solutions of special functional
equations but for the classes of functional equations which can easily be solved
in the class of locally integrable functions in view of the regularity of such solutions.

Basic definitions and theorems which we shall use can be found e.g. in [9],
the notation will be the same as in [8].
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Notation and definitions

X=(X15 s X)ER" y=(P15 e0s J)ER", 0=(0,...,00€R", p=(py;..cs Pu)s
where p; are integers =0,
|pi =P1+---+Pm
o\l

OxP...0xPn "
Z={y: ycC~ in R", supp ¥ is compact}.

Definition 1. We say that y, -0 in Z if there exists a compact set £ R"
such that supp ¥, E and D, -0 uniformly for every p.

Dr =D =

Definition 2. We say that the operator
T:y—~(T,y), where Y2, (T,y)ER
is a distribution if it is

1° linear,

2° continuous in the following sense:

If Y,—~0 in 2, (T, ,)~0 in R.

The set of all the distributions in R" will be denoted by 2’. (T, ) will be denoted
also by (7(x), ¥(x)),. By %,(x) we shall denote the function ¥(x, t) with a flxed
teACR.

20 =(T(x), Y(x, 1)) =(T, ¥,),
D(1) =(P,(1), ..., (1)),
@) =(9is (1), ..., 0ia(1))  (i=1,...,n).

Definition 3. We say that ®(1)cC™ (or ¢(t)eC™) in R if ®,(t)eC™ (or
@i (1) eC™) for j=1,...,n.

Basic theorems
I If T€Z’, then the equality
(DPT, ) =(—=1)'?I (T, D?y) foreach YeZ

defines the distribution DPT.
Il If T€¢2’,acC™ in R", then the equality

(aT, y)=(T,ay) foreach Yec2Z

defines the distribution aT.
Il If TE2' acC™ in R", then

0 J J
8—&(041") = 0-{}‘: T+ (}—X‘j aT.
IV If Te2’ and the mapping y —-x(y) is a diffecomorphism, then
ox,
beine X | BN

(T(»(x)), Y(x)). = | T(»), ¥(x(»)) et 5

|
i n )y
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V If Te€Z" Y(x,1)€C™in R" X 4, where 4 is an open interval in R, ¥ (x)eC~
in R" for each 7€ 4, and there exists a compact set £C R" such that

supp ¥, E foreach €4,
2W(6) =(T(x), Y(x, 1)),

is of the class C™ in 4 and

100) = (10, )|

then the function

for I=1, ....m
Now, we can prove the following

Lemma. If T¢92', a(x, 1) C~ in R" for every fixed t from an open interval
ACR,a(x,1)EC™ in R" XA, ®EC™ in A, there exists o€ A such that ®(o)=0, and

W EZ, then the function
2W(0)=(a(x, 1) T(x + (1)), Y(x))s
is of the class C™ in A and

1

P(2) = |a(x, 2) Z D} (). D5 (0) 5= o, T(x), ¥ (x)]

Jiyen di=1 ax.h
+( o c,(r, gf)D"T(x), w(r))x,

P|<
where c,(x,x) depend on ®{(x), Dla(x, ), f?’i alx,¢) A=1,...,1 j=1, ... n

lpl=41=1, ..., m).
ProoF. In view of II, we have

1) =(alx, ) T(x+ &(1)), = (T(x + (1)), alx, ) Y(x))x.
Making use of IV, we obtain
1O =(T(y), aly— (1), 1) (y — (1)),

Now, let us take into account an arbitrary closed and bounded interval
[a, b] < 4 such that € (a, b). Since the function @: A — R" is continuous, the image
of the interval [a, b] is bounded and closed in R".

Hence and from the fact that the support of the function y(y) is compact it
follows that there exists a compact set £c R" which contains the supports of all
the functions ,(y) =¥(y — ®(1)) (1£[a, b)).

Since, moreover, the function ¥ (y— ¢(!)) is of the class C™ in R" X 4, we may
apply V for the function y(¢) considered in (a, b), and we obtain:

() =

T(y), (~1)'a(y— (1), 1) Z’ @5,(0)...95,(1) 5 33 Wy~ ¢(r))]

iy J1=1

(T, 2 (v =), 1)D*Y(y—2(D)),,

Pi=
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where ¢f(y—@®(1),7) depend on @{V(r), Dla(y—®(1),1), g};—;a(y—di(t), 1)

(] i, TEL il INSE 1=1...m) Heao

() = [T (»), (=1a(y, o) Z' D (). D () - T a . l.(f(y)]

J1aeees Ji=1

HTO), 3 60 0D 0)),,

where c,(y, ) depend on ¢“’(a), Dla(y, rx},aaia(l @) A=1,...,4 j=1,...,n

Ipl=l, I=1, ..., m).
In view of II and I

v‘”('x)=[ 2 d’h(a) () 5 %, a (a(y. 0)T(y)), lll(y)]
+( P (—1)""9"(%(1’ a)T(y)) v(»),

lpl<i

and by III
(n — S ’ 2 9
1@ = ana) | 2 9, 5o TO)Y0) +

+( . oy, @)D T(), v (),

lp| <1

I

where ¢,(y, ) depend on @ (a), DPa(y, a), 571“(-"’ K Ul ol F=l.oun

p| =1, 1=1, ..., m).
We may replace y by x in the last equality and this finishes the proof.

Theorem 1. Suppose that

1° afx, t)EC~ in R" for every fixed t from an open interval ACR (i=1, ..., k),
2 alx, t)EC™ in X4 (i=1,.... k),

3 0(0=(0u(0) - 9ult)ECT in 4 (=1,.... )

4° there exists a€ A such that (x)=0 for i=1, ..., k,

% Z’ 2 ay(x, 095, @)...07, @&, .. &, # 0

Jtnim=11i=1

for every £=(,, ...,E,)#0 and for every x€R".
Then every locally integrable solution f of the equation

(1 Z: a(x, ) f(x+ 1)) = 0

is a function of class C= almost everywhere.

ProoF. The locally integrable function f(x) can be identified with the distri-
bution f defined by the equality

(fid) = f_f(x)q(/{.r) dx for each Y€g.
K
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If the function fis locally integrable, the functions a,(x, 1)/ (x + ¢(1)) (i=1, ..., k)
are locally integrable with respect to x, too. They can be identified with the distri-
butions defined by the equalities

(@(x, )f(x+ (1)), (%)) = f a(x, ) f(x+ @ ())Y(x)dx for each YED.
I

The functions

2t @) = (a(x, 1)f(x 4+ @(1)), ¥(x))

satisfy the assumptions of the Lemma and since it follows from (1) that

k
Z: 7(t, ) =0

we have

: 0
2 [ai(x, %) 2’ | 0in(@)---003,(@) 5 ), w(x)]

vvvvv

+ Z‘ ( Z (X, )DPF(X), Y(x)), = 0 for each YED.

i= |pl<m
1. €.

k
g“i(x, a) Z ‘Pu,(a) @i, () ‘J‘—a_f(x), ‘1’(\‘)]

+( 2’ c,(t, ) DPf(x), Y(x)), =0 for each YED.
p =m
The last equality means that f is a distributional solution of the differential
cquation

@ Sawa) 3 0000, %fm +

+ 2 cp(x, 0)DPf(x) =
Ipl<m

In view of 5° this differential equation is elliptic. In view of other assumptions
of this theorem its coefficients are functions of class C=. It is known (cf. e.g. Hor-
mander [4], pages 101, 102) that every distributional solution of such a differential
equation is a function of class C~. *)

We have shown that an arbitrary locally integrable solution of equation (1)
satisfies in a distributional sense an elliptic differential equation with coefficients of
class C=. Therefore it must be a function of class C~, almost everywhere.

Remark 1. Notice that we obtained equation (2) making use of 17, 2%, 37, 4°
only. Condition 5° means that equation (2) is elliptic.

*) The distribution f is a function of class C™ i.e. there exists a function f:‘ C* such that

(fiw) = ff(x)w(x)dx for each we%.
th
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Remark 2. Condition 5° can be satisfied only in the case if m is an even
number.

Remark 3. Condition 5° can be replaced, in the case a(x, t)=a(t), by an
arbitrary condition which guarantees the hypoellipticity of the resulting differential
equation (cf. Hormander [4], pages 99. 100).

Now, we shall prove (very easy in applications)

Theorem II. Suppose that assumptions 1°, 2°, 3°, 4 of Theorem I are satisfied
and, moreover,

5% the equation
* -
3) ™ ,=2,' ai(x, Nf(x+ (1) =0

(where the unknown function f¢ C™ in R") is elliptic for t =u.
Then every locally integrable solution of equation (1) is a function of class C~
almost everywhere.

PrOOF. In view of Remark 1, every locally integrable solution of equation
(1) statisfies equation (2) in the distributional sense and to prove our theorem it is
enough to show that condition 5°° implies condition 5°. To establish this fact we
shall show that equation (2) is elliptic if and only if equation (3) with 7=« is elliptic
i.e. that the principal parts of these equations are the same.

The principal part of equation (2)

m

k
8
J;:a,-(x, ) Z 0, ()., (%) - ar f(\)

wim=1

can be written as

k
() > 2 afx, 2) (@] () ...(9 ()P D f(x).

i=1|pl=m

The left-hand side of equation (3) can be written as

oem [Zae(’f f)f(*ﬂo.(f))] ZZm’[T]a 7 ai(x, 1)- 3”,:, S S ou(0) =

i 1=0

1
k m m gm-1
= a(r r)a.. S(x+oi(n) + 22[,] gr 406 1) 5 flx +0u1) =

i 1
k
= Saeun) 3 @LOP oD s+ 00)+

k k m
+-Z:a‘("" ;)HZ Eip(()DPf(.\‘+<p;(t))+ZZ[ ] o1 A, r) a — ,f(vc+<p(r))
i= pl<m i=1il=1

where ¢ (1) depend on @P(1) (j=1, ...k, I=1,...,m).
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Now, it is easy to see that the principal part of equation (3)

k
2 a(x, 1) | |Z (o1, () ...(0L, () D f(x + (1))
i= pl=m
has for ¢ =« also form (4).
This finishes the proof.

Remark 4. If the assumptions of our theorems are satisfied, every continuous
solution f of equation (1) is a function of class C~ everywhere. Adding some assump-
tions on the functions ¢,(r) it is possible to prove that also every locally integrable
solution f of equation (1) is a function of class C* everywhere.
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