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On the distribution of digits

By I. KATAI and J. MOGYORODI (Budapest)

1. Introduction

Let K(=1) be a fixed positive integer. Then any integer n can be uniquely
represented as follows:
n=ag, K"+..+aqKm™

where n,>n,>ny>...>n=0 are integers; 1=ag,=K-—1 (i=1,...,1). We set
i
a(n)= Da,.
i=1

R. BELLMAN and H. SHAPIRO proved the relation

xlogx
= log 1
..é o(n) 2log?2 + O(xloglog x)
in the case K=2 [1]. S. C. TANG extended this result to the general case and disco-
vered a better alternative residual, namely he proved [2], that for any positive
integer

_ K—1 xlogx
é’ a(n) = = log K + O(x).

The first named author proved in [3], that assuming the validity of the density
hypothesis concerning the Riemann zeta function

E-1 =x *
S T ‘*’O[ (log Iti:;?)W]

holds, where p in the sum runs over all of the primes not exceeding x.

In the present paper we shall investigate the limit distribution of «(n) and
of a(p), assuming the validity of the density hypothesis in the second case.

In what follows we use the following notations:

1 d cdd £10, 3 du
(1. 1)—(1.2) o0 = = [eran tix= [l

Let us put

_ K=1logx . K*-1 logx
(1‘3) (l‘4) M.‘l’ S ] Dx i 12 log Rr
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and let N,(y) be the number of those n-s for which

(1.5) n=x and am)<M_+yD,,

and similarly let M (y) be the number of those primes p for which
(1.6) p=x and o(p)<=M,+yD,

holds.

Let {(s) be the zeta function of Riemann and let N(¢,, 7) denote the number
of the zeros of {(s) in the rectangle co=c=1,[t|=T,s=0+il.
We shall prove the following statements.

Theorem 1. For every fixed K

N:()
X

(1.7)

= 0(3)+0 loglogx]

(log x)'/2
holds uniformly in y as x tends to infinity.

Theorem 2. Assuming that

N(e,T) < cT*( -9 og? T, if

b —
|
|

for a suitable constant ¢ we have

M. (y) 1
li x _¢(y)+0[(loglogx)”3]
uniformly in y as x tends to infinity.

The proof of Theorem 1 goes with the application of the limit distribution
theory for the sums of independent random variables.

For the proof of Theorem 2 we need a lemma concerning the distribution of
prime numbers in small intervals.

2. Formulation and proof of Lemma 1.

In the sequel p denotes prime numbers, ¢ a positive constant, not the same
at every place.

Let A(n) be Mangoldt’s function i.e. A(n)=logp, if n is a power of p and
A(n)=0 if » has two different prime divisors. Let

(2. 1)—2.2) Y(x) = %‘ Am); nlx)= 1,
n=x p=x
i.e. n(x) denotes the number of primes not exceeding x.
Let further
2.3) 4y(x) = 4(x) = y()—yY(x—(U+ D)= (U+1),
(2.4 ey(x) = n(x+ U)—n(x)—

log x’
where U is a positive number.
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Let i(x) be a monotonous non-decreasing function of x, which tends to infinity
as x - + o and which satisfies the relation

(2.5) 1 =h(x)<clog x.
Lemma 1. If

(2. 6) N(o,T) < ¢cT*1-9]og?’ T in % so=1,
and
(2.7 U = [(log x)7% h(x)],
then

U2x
(2.8) gx ) < ¢ o
and

U2x

2 £ Tyed - VS

2.9 2 ebm < e

We remark that a similar, stronger result was discovered by H. CRAMER [4]
and improved by A. SELBERG [5] on the basis of the Riemann conjecture.

Proor. First we prove that (2. 9) follows from (2. 8). We have
eu(m) = (logx)~*{ 23 logx—U}=(logx)~'{ 2> AM)—Up+

n=p<n+l n=v<n+l

+(logx)-t 3 log = +(logx)-* > logp, k=2
n=p<n+l P n=pk<n+ U
and so

: g = U
lev(n)| = l—|Au( R e ax {(’u( )| B _J+2 2 E R ER

n<pk<n+ U

holds. Assuming that n=x%, i.e. Iog%{-l- log x, we have

2
PP R A 2
7 lew®@l = 00 +|0g;x+2mk;:w, k= 2.
Hence
@10 > | < 24()+”“ fe ) ' F R

x'/isSn<x X n=x n=x n<plk<n+U
follows. Using the evident mequalny

¥ RPeedl R ]
n=pk<n+U nﬁp"<n+ll

we obtain that the last sum on the right hand side of (2. 10) is smaller than
U2 5 Y= 21Ut D) 4x(x"*) 4 ) kw2
p<x

nsxnsph<n+lU
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because of (2.5). Further using the inequalities

xU? xU? 2 T xU?
log*x ~ h(x)log?x ’ ..g%:z Bt h(x)log? x

we obtain that

2
- I, Ty st |- 3 Ux
“_:Z; |QU(")| logz x,.%‘ jAU(n)i +c ;l(x) logz x

and hence it follows that (2. 9) is a consequence of (2. 8).
For the proof of the inequality (2.9) let

(2.11) Az) = E'A(n)e""; z=u+iy, 0<u<I1,—-n=us=smn
Let &
@.12) T(z) = 3 27T ().

e

where the sum is extended over all the non-trivial zeros of {(s). Let further

l -7
(2:13) 4 = [log F] >
2. 14) S ED + e+ +e V)~ (U+D) 5.
From (2. 14) it follows that
(2.135) g(z) = ..2 dy(me=,

and by the Parseval formula we have

240 =5 [k0ra.

Let now assume that uU tends to zero for u—+0. Then

l1+e*+...+e =0 i] = O[l], —e::- = O[l],
|z] i) 1—e™* y
if [y| = 4. Hence

[ls@rdy =2 [If@PR1+e+ . +et:Pdy+cU? [y-2dy =

Irl=4 l¥i=4 lv|=4

O U?
=5 [Iardr e



On the distribution of digits 61

follows. Using the prime number theorem we have

3 § 2. o
o =
f f2)*dy < c—-log -,

and so
S tand sl
(2.16) flg(Z)I a9 <p=log=te=
lvl=4
holds.
We shall investigate the integral f lg(z)|%dy. Ju. V. LiNNIK proved [6] that
lyl=4 '
2.17) (@) = ——T(z)-l—O[log l]
and that under the assumptions of Lemma 1
-y -1
YA [
2.18) _!Jr(z)[ dy <= []og u]
holds [7].
From (2. 17) we obtain
£1 —Uz e=? |2
] |
[ls@Pay =3 f[ et v

|J'|"'
+3 fJT(z)| [1+4...+e V= zdv—l—O[log —-] f|l+ . +e~Uz|2 dy,

The first integral on the right hand side has the order K*4, because we have

T{}T‘—“z B 'zl‘+0(1), 1+...+e-Us = U+1+0(U?[2)).

-1
The second term is smaller than U? 5 [log %] (see 2. 18)) and finally

[+ .. +evPdy = (U+1)2n.
—A

Hence

d U? e | 1 s Ul]
2 4 = e ol -
_! lg(2)|*dy < c{U 4+ = [log “] +Ulog A2 5 [log ] + ik

u

Let now -tl_r = x, U=(log x)"*A(x), | =h(x)=log x, then the right hand side
2x
TN

Now our inequality (2. 8) rapidly follows from the relation

is smaller then ¢

ZA (n) < 2 > A2 (n)e=2nix,
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3. The proof of Theorem 1.

Let &,;,...,&,, ... be independent random variables assuming the values
v=0,1,2, ..., K—1 with probability

1
3. 1) PE=v=p, i=12..

Let M(¢) and D(&) denote the mean-value and the variance of a random variable
¢ respectively, further let for the sake of brevity

21

12

K—1

L =D ==

3.2) M= M¢)= (i=1,2..)

Let n,=¢,+...+¢&,, so M(n,) =nM, D*(n,)=nD?. Let F,(y) be a distribution
function defined by :

(3.3) F,(») = P(y, = nM +yYnD).
In the theory of probability the following assertion is well known.

Lemma 2.
(3.4) IE,(y)— ®(y)| < —
Vn

uniformly in — oo =y = oo,
For the proof see the book of B.V. GNEDENKO—A. N. KOLMOGOROV [8]
(Theorem 1, p. 201).
Let B,(x) denote the number of those n-s, for which n < x, a(n) =m is satisfied.
It is evident, that for an integer /=1

3.5 B, (K")= K'P(n; = m).
Further, if 1 =4=K-— 1, then

B I14.44 5 A¥ o4 S 1=

n<K! (i- 1)K =n<iK' (A= 1K =n<AK!
= B, (K")+ Bp_ 1 (K")+ ... + B,,_4(K"), a(n) = m.

Now we assume:
xX=A,K"+..+4,Km", ng >n; >..>n=0,

A, w1 A=k

Then
A1=-1
(3. 6) B.(X) = 2, Bu_i(K™)+B,(x—A,K™) =
i=0
Ai—1 Ay+A2-1 Ay 4.+ Ae
= 2 Bu i(K™)+ Buo iK™+ ...+ 2 B (K™
i=0 i=Ay i=Ay1+...4+4¢-
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Let now suppose that
3.7 n,—n,>cloglogx=L

with a sufficiently large constant c.
Let for the sake of brevity

i _ logx log.x
(3.8) Ty_Mx.*-ny_E-g—K. [IO K
Using the relations (3. 5), (3. 6) we have
A—-1 Ay +A2~1
(3.9) Nu(y) = MZ’ = Km 2 P(n,, < T,—i)+K™ t; P(n,, < T,—i)+
i Ay +...+ A

+..+K* 2> P@, <T,—i.
i=A 4. 44 -
Using the inequality (3. 4) we have that for every pair of real numbers y,, v,
the inequality

(3.10) |F(y))—Fu(y2)| = [F(y) =2 (3| +|D(y) — P(y2)| + |P(y2) — Fu(y2)| =
|
2c -5 2c
= -—+ 2 zdu{—_‘{'ly_

Vn I.!- Vn 1=/

is satisfied.
Let i be an arbitrary integer value in the interval 0=i=A4,+... + A4, =Kt <

<cKloglog x and let @ be defined by

(3.11) T,—i = Mn+(y+0)Vn, D
/ is an arbitrary integer in 1 =/=1.

Using the inequalities n, = IIOEK =n,+1 and (3.7) we have that

log x = log x ]”2
e —m|+3D |Vn— |2

0| = lo ogK = “logk) | &
1

Wyl
1/2
= c(log x)~ "2 log log x [l +(Iog 07

Hence for every term on the right hand side of (3. 9)

POl < Ty=) = F, ()] < c(logx)~"/? loglog x [1 +$]

and so from (3. 4)

(3.12) |P(Ny, < Ty—i)—@(y)| < c(log x)~12log log r[l+( Dj)m]

follows.



64 I. Kdtai and J. Mogyorodi

So from (3. 9) we have
(3.13) N(y)=x®(y)+ O(x(log x)~* log log x(1 + | y|(log x)~%)).
Let now x* be an arbitrary integer, the K-adical representation of which is
X*=A,KM+..+AK"v. Let nj=m=...2n=L,L>n,>..>n,,

x=AK"+.. .+ AK* x=x*+tx,.

So we have

(3.14) X, < K®+141 = KmK-L = x*e-Llgk = x*/(log x),

further from (3. 14)

(3.15) [N (3) = @ (p)x*| = [No(p)—xD(y)| +2|x* —x| =
= c(log x*)~ 12 log log x* [l + (I0g|3‘c‘|')”2]

follows.

So the relation (1.7) is satisfied uniformly on the interval |y =c (log x)*.
Further, if y >¢ (log x)¥, or y = — ¢ (log x)*, then N, (») = x or N,(y) =0, respectively,
and in these cases the inequalities

0=1-d(y)=c ’.e'“’” du < (logx)-12, y = c(logx)"'?
P,

¥

0=0() < [e*2du<(logx)1?, y<—cllogx)
hold. il
So Theorem 1 is proved.

4. Proof of Theorem 2.

Let
@.1) U=[(log x)"3h(x)],

where h(x) is a function of x tending monotonically to infinity as x — + ==, and
satisfying the relation /(x)=0(log x). Let / be a natural number satisfying the
inequality

(4.2) U=K'<KU.
Hence

follows.
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Let further 4; denote the set of integers in the interval

4.4 [KY, K'(j+1)] for j=0,1, ..., Jjo,
where

4 b '+
(4. 5) _}0 — [F] .

It is evident that these sets are disjoint and their union contains any natural
number smaller than x.
Further, if n€A4;, then

(4. 6) a(j) =a(n) =ao(j) +(K—1)L.
Let A(n, y) be defined as follows:

i p {.1, if a) <T,,
&0 D=0, it am)=7,.
From the definition of M,(y)
(4.8) M (y) = 2 Mp, ),
p=x
further from (4. 4)
Jjo
M) = 2 2 Mp,y)— 2 Xp,y)
j=0pEA; x<p
PGAJO
follows.
Using the inequality
1) — - y r— =
4.9) n(x+y)—mn(x) clogy x=1,y=1),
which can be obtained by the sieve-method of Selberg [9], we have
: U
4, A(p, — e e .
(4.10) ;25",, (r y)-=:c10g U {cloglogx pEAj
Further
AMp. y)=40,y)
if
4.11) T,-IK=j<T,.
So

Jo
4.12) M (y) = Zo A (r(K'G+ 1) = r(K' )+ O(Z ) + O(Z,),

(4.13) Zy =j%’(ﬂ(K'(j+1))—ﬂ(K'j)),
@.14) P £

2| = log log x’

and the dash in (4. 13) means that we sum over those j-s for which (4. 11) is satisfied.

D5
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Let now
4.15) V=231 T,—IK<a(j)=<T,
Then rare
(4.16) I =V lo{g}‘x +0(Z,),
where
@,17) 2% 3 lew(K'j).

Further we have

@18 3G NEEGH)-K) = o S 30,0+ 0(ES)

and so from (4. 12) we obtain

U S (o -
—|+0 i
logx <% y)+0[ I gx]+0[loglog.\']+ (23)

First we shall estimate X.
Let 4 be a natural number = K'. For the integers v in 1 =u=A we have

(4.19) My =

loxi(n+u)—ox(n)| = n(n+ K'+ A)—n(n+K)+n(n+ A)—n(n) = ¢ l_(;‘;A_

if n=x (see (4.9)).
Hence the inequality

A
A
| U i ! 1 <
loxK'))| = g 2 lexKY+u)] +e

__1_
+

follows, and so

(4. 20) Iy =—

holds.

Since A <K', any natural number n can be represented in the form n=K'j+u
(j=0,...,jo: u=0, ..., 4) at most once, and the number of the represented numbers
equals (A+l}(;0+l) Using the Holder-inequality and Lemma 1 we have that
the double sum is smaller than

412 2 12
1/2 j211/2 = € M ﬁ_ =
u=KZJ, 1 n; ey = 3 [K'] [h(.r)log2 x] -~

X - 2 e
= “logx [Ah(.T)] :

5 N
logAd”

e

M

o

¥ -

A
, Ur ' P
+1 lox(K'j+u)| + cjo =y

L
]
o
]
[=]

Further

L ey
(4.22) Jol._A__.,U
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2/3

Let us now choose /A(x)=Ilogx, 4 =!J -(!9?;;%{)—— , 80 the right hand sides

of the inequalities (4. 21), (4. 22) are smaller than
. S
log x (log log x)'/3’
and so
cx

(5.23) Ry log x (log log x)'/3
holds.

We shall now estimate V.

Let

Y ‘_ 1,1'2
log — log —;
E B o ¥, 5 =1
log K log K :
112
log —; log
e K' del' *
Ty—.’K—M logk—+yzD _f(;g_,{_(_- —Tn.
Hence
! log log x

(4‘ 24) |yI HyZI éc(logx)”z = c(logx)l.{z
follows.

Further using Theorem 1 we have
(4.25) V= 2 Nyx(y2))—Nygp(yy) =

Tylgll(D{Tyz

o

= _K’% I‘I’(J’J—‘p(hﬂ * inK'(}’i)_%Q(yl)i'i" Nx!K'(yZ)_Kj 4}(}’2)' =

= c—%(log log x)(log x)=12, j = j,.

Further
¥ X 1/2
log — log KT
T,=M -+(y+O0)D|—-| ,
e log K log x
o — loglogx Iyl
O1= fog )7 [' Flog 0’

So, using similar argumentation as in the estimation of V, we have

x R
2 1= Nuxi(y+0) = 4 {9(3)+0((log x) 12 loglog )}, j = Jo
a(f)<Ty
uniformly in |y/=c (log x)%.

To deal with the case [y|=c¢ (log x)'/2 one has to repeat the argument used for
the proof of Theorem 1.

Taking into account the relations (4. 19), (4. 23), (4. 25) the proof is completed.
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5. Remarks

Let f,(n) denote the number of v-s among the digits of the K-adical represen-
tation of n, i.e. when
KV=n<KU*', n= DemK), (5m)=0,1,..,K-1),
then i i

By(n) = J_Zo L g =v.
Let further U/(x, y) be the number of those n-s for which
logx  (K—1)"2 (logx)"?

Klog K K log K )
is satisfied, and similarly let V (x, y) be the number of those primes p for which
log x _{_E{'—l)”2 (logx )'/2
Klog K K | log X }

n=x, ﬁv(”) o

}l

pr=x, B,p)=< y

holds.

Using the same methods as used for the proof of Theorems 1, 2 we can prove
the following assertions.

Theorem 3. For every v=0,1, ..., K—1

1 ] log log x
3 Ut(x!y.) e ¢(y)+0 [logx)”z}

uniformly in y as x tends to infinity.

Theorem 4. Assuming the conditions of Theorem 2 we have

1 1
ﬁ-}V‘.(x,))— ¢(y)+O[EEYW]’ ¥V —-0,],...,K—l

uniformly in y as x tends to infinity.
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