On the total curvature of closed curves in Riemannian manifolds

By J. SZENTHE (Budapest)

Several proofs are known for the following theorem of W. FENCHEL: If $\varkappa(G)$ is the total curvature of a closed curve G in a euclidean space, then $\varkappa(G) \ge 2\pi$, and the equality holds if and only if G is a convex plane curve. ¹) In this paper we show that shat the basic idea of one of the proofs of the above theorem 2) can be applied to solve the corresponding problem for curves in Riemannian manifolds. The following theorem is proved: If M is a complete simply connected Riemannian manifold with everywhere nonpositive sectional curvature, and $\varkappa(G)$ is the total curvature of a closed curve G in M, then $\varkappa(G) \ge 2\pi$; the equality holds if and only if G is the boundary of a 2-dimensional totally geodesic submanifold isometric with a convex domain of the euclidean plane. Dropping either of the assumptions that M is simply connected and that it has everywhere nonpositive sectional curvature would not leave the lower bound 2π valid, as a closed geodesic of a cylinder and a sufficiently small geodesic triangle in case of positive sectional curvature show. For convenience M is assumed to be of class C^{∞} throughout the whole paper.

1. Riemannian manifolds with everywhere nonpositive sectional curvature

Let M be a complete simply connected Riemannian manifold with everywhere nonpositive sectional curvature. The following facts are wellknown:

1. If $m \in M$, then $\exp_m: M_m \to M$ is a diffeomorphism of the tangent space M_m onto M.

2. If p, $q \in M$, then there is exactly one geodesic σ_{pq} : $[0, \alpha] \rightarrow M$ with $\sigma_{pq}(0) = p$, $\sigma_{pq}(\alpha) = q.$

3. If $\sigma: [0, \alpha] \to M$ is a geodesic and $v \in M_{\sigma(\alpha)}$, then there is exactly one Jacobi field V: $[0, \alpha] \rightarrow TM$ along σ with V(0) = 0 and $V(\alpha) = v$.

The following lemma is a special case of Rauch's comparison theorem.³)

Lemma 1.1. Let M be a complete Riemannian manifold with everywhere nonpopositive sectional curvature, $\sigma: [0, \alpha] \rightarrow M$ a geodesic, $\sigma(0) = m, v \in M_{\sigma(\alpha)}, x \in T(M_m)$

 ²) BORSUK [2], MILNOR [4].
 ³) BISHOP—CRITTENDEN [1], 177—179. Conditions as to the equality are not explicitly stated there, but they are implicitely contained in the proof.

¹) FENCHEL [3].

J. Szenthe

and $v = d \exp_m x$. Let further $V: [0, \alpha] \to TM$ be the Jacobi field along σ with V(0) = 0and $V(\alpha) = v$ and $X: [0, \alpha] \to T(M_m)$ the field defined by $V(t) = d \exp_m X(t)$, $t \in [0, \alpha]$. Then $||v|| \ge ||x||$, and in order the equality ||v|| = ||x|| to be valid the following conditions are necessary if $v \ne 0$:

- a) $||V(t)|| = ||X(t)||, t \in [0, \alpha].$
- b) $\frac{V(t)}{\|V(t)\|}$, $t \in (0, \alpha]$ is a parallel field along σ .

c) The Riemannian curvature of the plane section spanned by the tangent vector $\sigma_*(t)$ and V(t) is zero for $t \in (0, \alpha]$.

The length of a curve φ is denoted by $L(\varphi)$ and the set of its points by $|\varphi|$. Let p, q, r be points of a complete simply connected Riemannian manifold with everywhere nonpositive sectional curvature and $\sigma_{pq}, \sigma_{qr}, \sigma_{rp}$ the geodesics joining them. The set $T_{pqr} = |\sigma_{pq}| \cup |\sigma_{qr}| \cup |\sigma_{rp}|$ is called a *geodesic triangle* and the set $\Delta_{qr}^p = \{x: x \in |\sigma_{pz}|, z \in |\sigma_{qr}|\}$ a geodesic triangular cell. In general $\Delta_{pr}^q, \Delta_{qr}^p, \Delta_{pq}^r$ are different. By a *euclidean representation* of T_{pqr} a point triple $\{P, Q, R\}$ of a euclidean plane is meant for which $\overline{PQ} = L(\sigma_{pq}), \overline{QR} = L(\sigma_{qr}), \overline{RP} = L(\sigma_{rp})$ hold.

The following lemma is a special case of one of A. D. Alexandrov's comparison theorems.

Lemma 1. 2. Let M be a complete simply connected Riemannian manifold with everywhere nonpositive sectional curvature. If p, q, $r \in M$ are different and $\{P, Q, R\}$ is a euclidean representation of T_{pqr} , then the angle of the geodesics σ_{pq} , σ_{pr} is not greater than $QPR \triangleleft ;$ the two angles are equal if and only if $\Delta_{qr}^p = \Delta_{pq}^q = \Delta_{pq}^r$ and this geodesic triangular cell is totally geodesic and isometric with the triangular domain $PQR \perp$.

A proof of this lemma can evidently be given by the method of Y. Tsukamoto⁴) on the basis of Lemma 1.1.

2. Concepts for the total curvature of curves in Riemannian manifolds

Let $a_0, a_1, ..., a_m, m \ge 2$ be such points of a Riemannian manifold M that a_i, a_{i+1} are different and can be joined by a unique minimal geodesic $\sigma_i, i=0, 1, ..., m-1$; then the ordered set $P = \{a_0, a_1, ..., a_m\}$ is called a *geodesic polygon*. The points a_i are called the *vertices* of P and the geodesics σ_i its *sides*. The polygon is said to be *closed* or *open* according to whether $a_m = a_0$, or $a_m \ne a_0$. In case of a closed polygon $a_{-1} = a_{m-1}, a_{m+1} = a_1$ are defined too. The angle γ_i of the geodesics σ_{i-1}, σ_i is called the *angle* of P at a_i , where i = 1, ..., m-1 if P is open, and i=1, ..., m when it is closed. By the *total curvature* $\varkappa(P)$ of P the sum of its angles is meant.

Let $\varphi: [0, \alpha] \to M$ be a representation of a continuous curve G of M and $0 = \tau_0 < \tau_1 < ... < \tau_m = \alpha$, $m \ge 2$ such a subdivision of $[0, \alpha]$ that $\{\varphi(\tau_0), \varphi(\tau_1), ..., ..., \varphi(\tau_m)\}$ is a geodesic polygon P, then P is said to be *inscribed* in G. If $\{P_l\}_{l=1,2,...}$ is such a sequence of geodesic polygons inscribed in G that the maximal length

4) TSUKAMOTO [5].

of the sides of P_l tends to zero as $l \to \infty$, then it is called an *approximating sequence*. If for any approximating sequence $\{P_l\}_{l=1,2,\ldots}$ of geodesic polygons inscribed in G the corresponding sequence $\{\varkappa(P_l)\}_{l=1,2,\ldots}$ is convergent, then G is said to have a total curvature, and $\lim_{l\to\infty} \varkappa(P_l)$, which is then the same value for all approximat-

ing sequences, is called the *total curvature* $\varkappa(G)$ of G. The total curvature of curves is usually defined as follows: Let G be a curve

of class C^2 in M, $\varphi: [0, \alpha] \to M$ the representation of G in terms of arc length and

 $\varkappa(s)$ the first curvature of G in the point $\varphi(s)$, $0 \le s \le \alpha$, then $\bar{\varkappa}(G) = \int \varkappa(s) ds$ is called

the total curvature of G. A proof is required therefore that if G is of class C^2 then $\varkappa(G)$ exists and is equal to $\bar{\varkappa}(G)$.

Let G be a curve of class C^1 in M and $\varphi: [0, \alpha] \to M$ the representation of G in terms of arc length. Denote by $\varphi_*(t', t'')$ the vector obtained by parallel translation of the tangent vector $\varphi_*(t')$ along φ to the point $\varphi(t'')$ for $t', t'' \in [0, \alpha]$. Let $\gamma(t', t'')$ be the angle of the vectors $\varphi_*(t', t''), \varphi_*(t'')$, then $\gamma(t', t''), 0 \leq t' \leq t'' \leq \alpha$ defines

an interval function; if it is integrable, then $\int_{0}^{1} \gamma(t', t'')$ is denoted by $\varkappa^{0}(G)$.

Lemma 2.1. Let G be a curve of class C^2 in a Riemannian manifold, then $\varkappa^0(G) = = \bar{\varkappa}(G)$.

Since

$$\lim_{t',t'' \to t} \frac{\gamma(t',t'')}{t''-t'} = \lim_{t',t'' \to t} \frac{\|\varphi_*(t',t'') - \varphi_*(t'')\|}{t''-t'} = \|\nabla_{\varphi^*(t)}\varphi_{*(t)}\| = \varkappa(t)$$

holds, the interval function $\gamma(t', t'')$ is differentiable and $\varkappa(t)$, $0 \le t \le \alpha$ is its derivative. Consequently the integrability of $\gamma(t', t'')$ and $\varkappa^0(G) = \overline{\varkappa}(G)$ are implied by standard theorems.

Lemma 2. 2. If G is a curve of class C^2 in a Riemannian manifold M, then $\varkappa(G)$ exists and it is equal to $\varkappa^0(G)$.

Let $\varphi: [0, \alpha] \to M$ be the representation of G in terms of arc length, and $\delta > 0$, then $0 = \tau_0 < \tau_1 < ... < \tau_m = \alpha$ is called a δ -subdivision of $[0, \alpha]$, if $\tau_k - \tau_{k-1} \leq \delta$ for k = 1, ..., m. To prove the lemma it suffices to show that to any $\varepsilon > 0$ there is such a $\delta > 0$, that for any δ -subdivision $0 = \tau_0 < \tau_1 < ... < \tau_m = \alpha, m \geq 2$ of $[0, \alpha]$ the geodesic polygon $P = \{\varphi(\tau_0), \varphi(\tau_1), ..., \varphi(\tau_m)\}$ exists and

$$|\varkappa(P) - \sum_{k=1}^{m-1} \gamma(\tau_{k-1}^{0}, \tau_{k}^{0})| < \varepsilon$$

holds, where $\tau_k^0 = \frac{\tau_k + \tau_{k+1}}{2}$, k = 0, 1, ..., m-1.

It is enough to consider the case when G has no multiple points. A coordinate system $v: U \rightarrow R^n$ of class C^2 exists therefore, which is defined on a compact neighborhood U of $|\varphi|$ and such that the coefficients of the Riemannian connexion of M all vanish when calculated in v for points of G. Let $g_{ij}(x)$, $i, j = 1, ..., n, x \in U$ be the components of the fundamental tensor in v and $S = \sup \{|g_{ij}(x)|: i, j = 1, ..., n, x \in U\}$

J. Szenthe

=1, ..., $n, x \in U$ }. Let $\varphi^i(t)$ $i=1, ..., n, t \in [0, \alpha]$ denote the coordinates of $\varphi(t)$ in v. Since G is of class C^2 , to any $\varepsilon > 0$ there is such a $\delta_1 > 0$, that

$$\left|\frac{\phi^{i}(t'')-\phi^{i}(t')}{t''-t'}-\dot{\phi}^{i}(t^{0})\right| < \frac{\varepsilon}{8\alpha n\sqrt{S}} |t''-t'|,$$

$$0 \leq t', t'' \leq \alpha, \ 0 < |t''-t'| \leq \delta_1, \ t^0 = \frac{t'+t''}{2}.$$

A map $\psi: [0, \xi] \to U$ is called a *v*-coordinate segment if $v \circ \psi$ is linear. The sequence $\psi_k: [0, \xi_k] \to U, k = 0, 1, ..., m-1, m \ge 2$ of *v*-coordinate segments is called a *v*-coordinate polygon if $\psi_{k-1}(\xi_{k-1}) = \psi_k(0)$ for k = 1, ..., m-1. The *v*-coordinate segments $\psi_k, k = 0, 1, ..., m-1$ are called sides and their endpoints vertices of the polygon. There exists such a $\delta_2 > 0$, that for any δ_2 -subdivision $0 = \tau_0 < \tau_1 < ... < < \tau_m = \alpha, m \ge 2$ the *v*-coordinate polygon with the consecutive vertices $\varphi(\tau_0), \varphi(\tau_1), ..., \varphi(\tau_m)$ exists. Consider a ζ -subdivision $0 = \tau_0 < \tau_1 < ... < \tau_m = \alpha, m \ge 2$ with $0 < \zeta < \delta_1, \delta_2$ and the corresponding *v*-coordinate polygon $\psi_k: [0, 1] \to U, k = 0, 1, ..., m-1$ with the consecutive vertices $\varphi(\tau_0), \varphi(\tau_1), ..., \varphi(\tau_m)$. Let $\overline{\gamma}_k$ be the angle of the sides ψ_{k-1}, ψ_k , as well as γ'_k the angle of the vectors $\psi_{k-1*}(1), \varphi_*(\tau_{k-1}^0, \tau_k)$ and γ''_k the angle of the vectors $\psi_{k*}(0), \varphi_*(\tau_k^0, \tau_k)$ for k = 1, ..., m-1.

$$\begin{split} \sum_{k=1}^{m-1} (\sin \gamma'_{k} + \sin \gamma''_{k}) &\leq \sum_{k=1}^{m-1} \left(\left| \sqrt{\sum_{i, j=1}^{n} g_{ij}(\varphi(\tau_{k})) (\lambda_{k}^{i} - \dot{\varphi}^{i}(\tau_{k-1}^{0})) (\lambda_{k}^{j} - \dot{\varphi}^{j}(\tau_{k-1}^{0})) + \right. \\ &+ \left| \sqrt{\sum_{i, j=1}^{n} g_{ij}(\varphi(\tau_{k})) (\lambda_{k+1}^{i} - \dot{\varphi}^{i}(\tau_{k}^{0})) (\lambda_{k+1}^{j} - \dot{\varphi}^{j}(\tau_{k}^{0}))} \right) \\ &\leq \sum_{k=1}^{m-1} \left(\left| \sqrt{\sum_{i, j=1}^{n} |S| \left(\frac{\varepsilon}{8\alpha n \sqrt{S}} (\tau_{k} - \tau_{k-1}) \right)^{2} + \left| \sqrt{\sum_{i, j=1}^{n} |S| \left(\frac{\varepsilon}{8\alpha n \sqrt{S}} (\tau_{k+1} - \tau_{k}) \right)^{2} \right) \right| \\ &\leq \frac{\varepsilon}{4} \,. \end{split}$$

By the assumptions of the lemma there is such a $\delta_3 > 0$, that for any δ_3 -subdivision of $[0, \alpha]$ the inequalities $\gamma'_k, \gamma''_k < \pi/2, k = 1, ..., m-1$ hold. Therefore

$$\begin{vmatrix} \sum_{k=1}^{m-1} \bar{\gamma}_k - \sum_{k=1}^{m-1} \gamma(\tau_{k-1}^0, \tau_k^0) \end{vmatrix} \leq \sum_{k=1}^{m-1} |\bar{\gamma}_k - \gamma(\tau_{k-1}^0, \tau_k^0)| \leq \sum_{k=1}^{m-1} (\gamma'_k + \gamma''_k) \leq \\ \leq 2\sum_{k=1}^{m-1} (\sin \gamma'_k + \sin \gamma''_k) < \frac{\varepsilon}{2} \end{vmatrix}$$

for any ζ -subdivision of $[0, \alpha]$ with $0 < \zeta < \delta_1, \delta_2, \delta_3$.

Let ϱ be the distance function of M. There is a neighbourhood $V \subset U$ of $|\varphi|$ and an $\eta > 0$ such that if $x, y \in V$ and $\varrho(x, y) = \beta < \eta$, then a unique minimal geodesic $\sigma: [0, \beta] \to U$ and the v-coordinate segment $\psi: [0, \beta] \to U$ both joining x, y exist. ⁵)

102

if

⁵) BISHOP-CRITTENDEN [1], 246-250.

Let $\dot{\sigma}^i(t)$ and $\dot{\psi}^i(t)$ denote for $i=1, ..., n, t \in [0, \beta]$ the coordinates of the vectors $\sigma_*(t), \psi_*(t)$ respectively, then

$$\left|\dot{\sigma}^{i}(z) - \dot{\psi}^{i}(z) - \left[\dot{\sigma}^{i}(t) - \dot{\psi}^{i}(t)\right]\right| \leq \int_{0}^{p} \sum_{k,l=1}^{n} \left|\Gamma_{kl}^{i} \dot{\sigma}^{k}(\tau) \dot{\sigma}^{l}(\tau)\right| d\tau$$

for $0 \le t \le \beta$, z = 0, β . There is a t_i with $0 \le t_i \le \beta$ for every i = 1, ..., n, such that $\dot{\sigma}^i(t_i) - \dot{\psi}^i(t_i) = 0$. The lengths of the geodesic polygons inscribed in G have an upper bound $L < \infty$. The absolute values of coordinates of tangent vectors to geodesics in points of U have an upper bound $N < \infty$. There is a neighbourhood $W \subset V$ of $|\varphi|$ such that for points in W the inequalities $|\Gamma_{kl}^i| \leq \frac{\varepsilon}{8n^3\sqrt{S}LN^2}$, i, k, l=1, ..., nhold. Let $x, y \in |\varphi|$ be such points that $\varrho(x, y) = \beta < \eta$, and $|\sigma| \subset W$, then by the preceding assertions $|\dot{\sigma}^i(z) - \dot{\psi}(z^i)| \leq \frac{\varepsilon}{8n\sqrt{SL}}\beta$, i = 1, ..., n. There is a $\delta_4 > 0$ such that for any δ_4 -subdivision of $[0, \alpha]$ the corresponding geodesic and v-coordinate polygons lie in W and the distances of the consecutive vertices are less than η . Denote $\sigma_k: [0, \beta_k] \to W, \psi_k: [0, \beta_k] \to W, k = 0, 1, ..., m-1$ the sides of these polygons. Let $\bar{\gamma}'_k$ be the angle of the vectors $\sigma_{k-1*}(\beta_{k-1}), \psi_{k-1*}(\beta_{k-1})$ and $\bar{\gamma}''_k$ that of $\sigma_{k*}(0)$, $\psi_{k*}(0)$ for k=1, ..., m-1. By the assertions above

$$\sum_{k=1}^{m-1} (\sin \bar{\gamma}'_k + \sin \bar{\gamma}''_k) \leq$$

$$\leq \sum_{k=1}^{m-1} \left(\left| \sqrt{\sum_{i,j=1}^{n} g_{ij}(\varphi(\tau_{k}))(\dot{\sigma}_{k-1}^{i}(\beta_{k-1}) - \dot{\psi}_{k-1}^{i}(\beta_{k-1}))(\dot{\sigma}_{k-1}^{j}(\beta_{k-1}) - \dot{\psi}_{k-1}^{j}(\beta_{k-1})) + \right. \\ \left. + \sqrt{\sum_{i,j=1}^{n} g_{ij}(\varphi(\tau_{k}))(\dot{\sigma}_{k}^{i}(0) - \dot{\psi}_{k}^{i}(0))(\dot{\sigma}_{k}^{j}(0) - \dot{\psi}_{k}^{j}(0))} \right) \leq \\ \left. \leq \sum_{k=1}^{m-1} \left(\left| \sqrt{\sum_{i,j=1}^{n} |S| \left(\frac{\varepsilon}{8n\sqrt{SL}} \varrho(\varphi(\tau_{k-1}), \varphi(\tau_{k})) \right)^{2} + \right. \right. \\ \left. + \sqrt{\sum_{i,j=1}^{n} |S| \left(\frac{\varepsilon}{8n\sqrt{SL}} \varrho(\varphi(\tau_{k}), \varphi(\tau_{k+1})) \right)^{2} \right) < \frac{\varepsilon}{4} \, .$$

By the assumptions of the lemma there is a $\delta_5 > 0$ such that for any δ_5 -subdivision of $[0, \alpha]$ the inequalities $\bar{\gamma}'_k, \bar{\gamma}''_k < \frac{\pi}{2}, k = 1, ..., m-1$ hold. Consequently for any ζ -subdivision, with $0 < \zeta < \delta_4, \delta_5$ the inequalities

$$\left|\sum_{k=1}^{m-1} \left(\bar{\gamma}_k - \gamma_k\right)\right| \leq \sum_{k=1}^{m-1} \left|\bar{\gamma}_k - \gamma_k\right| \leq \sum_{k=1}^{m-1} \left(\bar{\gamma}'_k + \bar{\gamma}''_k\right) \leq 2\sum_{k=1}^{m-1} \left(\sin \bar{\gamma}'_k + \sin \bar{\gamma}''_k\right) < \frac{\varepsilon}{2}$$

are valid. Let $0 < \delta < \delta_j$ be for j = 1, ..., 5, then

$$\left|\varkappa(P)-\sum_{k=1}^{m-1}\gamma(\tau_{k-1}^0,\tau_k^0)\right| \leq \left|\sum_{k=1}^{m-1}\gamma_k-\bar{\gamma}_k\right|+\left|\sum_{k=1}^{m-1}\bar{\gamma}_k-\sum_{k=1}^{m-1}\gamma(\tau_{k-1}^0,\tau_k^0)\right|<\varepsilon$$

for any δ -subdivision of $[0, \alpha]$.

3. The total curvature of closed curves in Riemannian manifolds with everywhere nonpositive sectional curvature

In what follows M is assumed to be a complete simply connected Riemannian manifold with everywhere nonpositive sectional curvature.

Lemma 3.1. Let $P = \{a_0, ..., a_{i-1}, a_i, ..., a_m\}$ and $P' = \{a_0, ..., a_{i-1}, a, a_i, ..., a_m\}$ $m \ge 2$ be closed geodesic polygons of M with sides $\sigma_k : [0, \alpha_k] \to M, \ k = 0, 1, ..., m-1$ and $\sigma_k : [0, \alpha_k] \to M, \ k = 0, 1, ..., i-2, \sigma'_{i-1} : [0, \alpha'_{i-1}] \to M, \ \sigma : [0, \alpha] \to M, \sigma_k :$ $[0, \alpha_k] \to M, \ k = i, ..., m-1, \ then \ \varkappa(P) \le \varkappa(P'); \ the \ equality \ holds \ if \ and \ only \ if$ $\Delta^a_{a_{i-1}a_i} \ is \ a \ totally \ geodesic \ triangular \ cell \ isometric \ with \ one \ in \ the \ euclidean \ plane, \ and \ \sigma'_{i-1*}(0) = u\sigma_{i-2*}(\alpha_{i-2}) + v\sigma_{i-1*}(0), \ \sigma_*(\alpha) = u'\sigma_{i-1*}(\alpha_{i-1}) + v'\sigma_{i*}(0) \ with \ 0 \le u, v, u'v'.$

Let $\gamma_0, \gamma_1, ..., \gamma_{i-1}, \gamma_i, ..., \gamma_{m-1}$ denote the angles of P and $\gamma_0, \gamma_1, ..., \gamma'_{i-1}, \gamma, \gamma'_i, ..., \gamma_{m-1}$ those of P'. Let ξ be the angle of the vectors $\sigma'_{i-1*}(0), \sigma_{i-1*}(0)$ and η that of the vectors $\sigma_*(\alpha), \sigma_{i-1*}(\alpha_{i-1})$, then $\varkappa(P') = \varkappa(P) + \gamma'_{i-1} - \gamma_{i-1} + \gamma + \gamma'_i - \gamma_i \ge \varkappa(P) + \xi + \gamma'_{i-1} - \gamma'_{i-1} + \eta + \gamma'_i - \gamma_i \ge \varkappa(P)$ by Lemma. 1.2. It can be verified by the same lemma that the above condition of equality is necessary and sufficient.

Lemma 3.2. Let $P = \{a_0, a_1, ..., a_m\}, m \ge 2$ be a closed geodesic polygon of M, then $\varkappa(P) \ge 2\pi$; the equality holds if and only if P is the boundary of a totally geodesic submanifold isometric with a convex polygonal domain of the euclidean plane.

Consider the closed geodesic polygons $P_1 = \{a_0, a_{m-2}, a_{m-1}, a_m\}$, $P_2 = \{a_0, a_{m-3}, a_{m-2}, a_{m-1}, a_m\}$, ..., $P_m = P$, then by Lemmas 1. 2 and 3.1 $2\pi \leq \varkappa(P_1) \leq \varkappa(P_2) \leq \ldots \leq \ldots \leq \varkappa(P)$. Assume that $\varkappa(P) = 2\pi$, then by an obvious mathematical induction and by the same lemmas it can be shown that

$$[P] = \Delta_{a_0 a_{m-1}}^{a_{m-2}} \cup \Delta_{a_0 a_{m-2}}^{a_{m-3}} \cup \dots \cup \Delta_{a_0 a_2}^{a_1}$$

is a totally geodesic 2-dimensional submanifold with boundary P and mapped isometrically by $\exp_{a_0}^{-1}$ onto a convex polygonal domain in M_{a_0} . The submanifold [P] is unique.

Theorem. Let G be a closed curve of class C^2 in a complete simply connected Riemannian manifold M with everywhere nonpositive sectional curvature, and $\varkappa(G)$ the total curvature of G, then $\varkappa(G) \ge 2\pi$; equality holds if and only if G is the boundary of a totally geodesic submanifold of M isometric with a convex domain of the euclidean plane.

There is an approximating sequence $\{P_l\}_{l=1,2,...}$ of closed geodesic polygons inscribed in G, such that P_l , P_{l+1} l=1, 2, ... are in the same relation as P, P' of Lemma 3. 1, and $a \in |\varphi|$ is a common vertex of all of them. Consequently $2\pi \leq \varkappa(P_l) \leq$ $\leq \varkappa(P_{l+1})$, and $\varkappa(G) = \lim_{l\to\infty} \varkappa(P_l) \geq 2\pi$. Assume that $\varkappa(K) = 2\pi$, then $\varkappa(P_l) = 2\pi$, l=1, 2, ... Let $[P_l]$ denote the totally geodesic submanifold bounded by P_l . By Lemmas 1. 2, 3. 1, 3. 2 one can show that $\exp_a^{-1}(\bigcup_{l=1} [P_l])$ is a convex plane domain mapped isometrically by \exp_a onto a totally geodesic submanifold bounded by G.

References

- [1] R. L. BISHOP-R. J. CRITTENDEN, Geometry of manifolds, New York, 1964.
- [2] K. BORSUK, Sur la courbure total des courbes fermées. Ann. Soc. Polon. Math., 20 (1947), 251-265.
- [3] W. FENCHEL, Über Krümmung und Windung geschlossener Raumkurven, Math. Ann. 101 (1929), 238-252.
- [4] J. W. MILNOR, On the total curvature of knots, Ann. of Math., 52 (1950), 248-257.
 [5] Y. TSUKAMOTO, On a theorem of A. D. Alexandrov, Mem. Fac. Sci. Kyushu Univ. Ser. A., 15 (1962), 83-89.

(Received June 6, 1967.)