929

On the total curvature of closed curves in Riemannian
manifolds

By J. SZENTHE (Budapest)

Several proofs are known for the following theorem of W. FENCHEL: If x(G)
is the total curvature of a closed curve G in a euclidean space, then x(G)*2n, and
the equality holds if and only if G is a convex plane curve. *) In this paper we show
that shat the basic idea of one of the proofs of the above theorem 2) can be applied
to solve the corresponding problem for curves in Riemannian manifolds. The
following theorem is proved: If M is a complete simply connected Riemannian
manifold with everywhere nonpositive sectional curvature, and x(G) is the total
curvature of a closed curve G in M, then x(G)"2n; the equality holds if and only
if G is the boundary of a 2-dimensional totally geodesic submanifold isometric with
a convex domain of the euclidean plane. Dropping either of the assumptions that
M is simply connected and that it has everywhere nonpositive sectional curvature
would not leave the lower bound 27 valid, as a closed geodesic of a cylinder and
a sufficiently small geodesic triangle in case of positive sectional curvature show.
For convenience M is assumed to be of class Cw throughout the whole paper.

1. Riemannian manifolds with everywhere nonpositive sectional curvature

Let M be a complete simply connected Riemannian manifold with everywhere
nonpositive sectional curvature. The following facts are wellknown:

L If m£éM, then expm:Mm”~M is a diffeomorphism of the tangent space
Mm onto M.

2. If p, q£M, then there is exactly one geodesic opq: [0, al * M with apg(0)=p,
apq(v)=4- , 4 . ,

3. If v : [0, a]*M 1is a geodesic and r(M ff{a), then there is exactly one Jacobi
field V: [0, aJ*TM along » with F(O)=0 and Wd) =w

The following lemma is a special case of Rauch’s comparison theorem. 3)

Lemma 1. 1. Let M be a complete Riemannian manifold with everywhere nonpo-
positive sectional curvature, cr: [0, a\"M a geodesic, o(0O)=m,v"*Ma", x£T(Mn

fi FENCHEL [3].

2) BORSUK [2], MILNOR [4].

3) BiSHOP— CRIiTTENDEN [1], 177—179. Conditions as totheequality arenot explicitely stated
there, but they are implicitely contained in the proof.
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and v=d exphx. Letfurther V: [0, a] "TM be the Jacobifield along a with F(0)=0
and V(a) =v and X: [0, a]*T (M W the field defined by V(t) = dzxpmX(t)9t£]0, a].
Then TNl = ||*||, and in order the equality ||| =\\x\\ to be valid the following condi-
tions are necessary if v"0:

a)  WV(t) W=WX(t) W, t[0,0L].

Vit
b) @ , /€(0,a] is a parallel field along a.

1 XpW
c) The Riemannian curvature of the plane section spanned by the tangent vector
cJf) and V(t) is zero for 16(0, a].

The length of a curve ¢ is denoted by L(v) and the set of its points by |*|. Let
P, q, r be points of a complete simply connected Riemannian manifold with every-
where nonpositive sectional curvature and Gy Ggn Gp the geodesics joining them.
The set Tpgr= \Gpq\ U logr\U larp is called a geodesic triangle and the set Ag=
= {x: X£ 6pz), 2 Cigqry a geodesic triangular cell. In general Agr, Ay, Apgare diiferent.
By a euclidean representation of Tpg a point triple {P90Q, R} of a euclidean plane
is meant for which PQ=L(Gpg90R = L(G@g)9RP = L(Grp hold.

The following lemma is a special case of one of A. D. Alexandrov’s comparison
theorems.

Lemma 1. 2. Let M be a complete simply connected Riemannian manifold with
everywhere nonpositive sectional curvature. Ifp, q, r CM are different and {P, Q, R}
is a euclidean representation of Tpgn then the angle of the geodesicS Gyvq, Gpr is not
greater than QPR<S$ ; the twoangles are equal if and only if A"r= Agr= Apq and this
geodesic triangular cell is totally geodesic and isometric with the triangular domain
PORA.

A proof of this lemma can evidently be given by the method of Y. Tsukamoto 4)
on the basis of Lemma L 1.

2. Concepts for the total curvature of curves in Riemannian manifolds

Let a0,ai,...,atm m ~2 be such points of a Riemannian manifold M that
<19 ai+l are different and can bejoined by a unique minimal geodesic G9i=o, 1, ...,
m —1; then the orderedset P = {a09al9 ...,tfw} is called a geodesic polygon. The
points at are called the verfices of P and the geodesics ¢ its sides. The polygon is
said to be closed or open according to whether am= a9 or am™a0. In case of a
closed polygon a-z=am 19 amtl = at are defined too. The angle yt of the
geodesics Gi~ 19 ¢iis called the angle of P at siowherei= X9..., m — 1ifPis open, and
i= X...9m whenitis closed. By the total curvature x(P) of P the sum of its angles
is meant.

Let ¢» [0,0c]"M be a representation of a continuous curve G of M and
0=To<"<...<Tro =a,ra~2 such a subdivision of [0,a] that {M(TOIVTDI...,
..., S(tw)} is a geodesic polygon P9then P is said to be inscribed in G. If {JI}*=1,2, ..
is such a sequence of geodesic polygons inscribed in G that the maximal length

4) TSUKAMOTO [5].
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of the sides of Pi tends to zero as /*ooj then it is called an approximating sequence.
If for any approximating sequence {P”"i=1,2,.. °f geodesic polygons inscribed
in G the corresponding sequence {x(Pi)}l=I>2... is convergent, then G is said to
have a total curvature, and hm X(Pi), which is then the same value for all approximat-

ing sequences, is called the fotal curvature x(G) of G
The total curvature of curves is usually defined as follows: Let G be a curve
of class C2 in M9 [0, al * M the representation of G in terms of arc length and

a

x(s) thefirst curvature of G in the point g)(s), O*s oc, then x(G) = J x(s)ds is called

0
the total curvature of Gi A proof is required therefore that if G is of class C2 then
x(G) exists and is equal to x(G).

Let G be a curve of class C1 in M and ¢ [0, aJ * M the representation of G
in terms of arc length. Denote by ¢>ft', t ") the vector obtained by parallel translation
of the tangent vector g>ft’) along ¢>to the point g>") for ¢'9t" £/0, a]. Let y(t\ t")
be the angle of the vectors ¢>Jd',t"),q>Jj"), then y(t',t"),0"t'*t" "oc defines

@

an interval function; if it is integrable, then fy (¢', ¢") is denoted by x°(G).
0

Lemma 2. 1. Let G be a curve of class C2 in a Riemannian manifold, then x°(G)=
= x(G).
Since
', t") lg>+(f, t")-q) * (1)1 _ _
P t"-t' t'fr>t t"-t' 11%*(r)*P*(n)ll — Kv)

holds, the interval function y(¢'91") is differentiable and x(z), o » ¢ a is its derivative.
Consequently the integrability of y(¢#| ¢#") and x°(G)=x(G) are implied by standard
theorems.

Lemma 2. 2. If G is a curve of class C2 in a Riemannian manifold M, then
x(G) exists and it is equal to x°(G).

Let ¢ [0, al * M be the representation of G in terms of arc length, and >0,
then o0=i0<"<...<T",=a is called a &-subdivision of [o,a], if mk—m_I"5
for k—1, ....m. To prove the lemma it suifices to show that to any e>0 there is
such a £>o0, that for any “-subdivision 0 = To<Tj<...<T,n=a,ra~2 of [0,a]
the geodesic polygon P = {¢p(ro),p (T ...,0 (Tm)} exists and

B3 T%i>T)

holds, where mk—Tk™~+l , k=0,1,...,m-1.

It is enough to consider the case when G has no multiple points. A coordinate
system v: U”Rnof class C2 exists therefore, which is defined on a compact neigh-
borhood U of @2 and such that the coefficients of the Riemannian connexion of
M all vanish when calculated in v for points of G Let gy(x), i,j= 1, ....«, x£U
be the components of the fundamental tensor in v and S=sup{|g"(t)|:/.y=

<6
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=19...9n,x£U}. Let ¢&%® /=1,...,w,ig[0,a] denote the coordinates of ¢pf?)
in v. Since G is of class C2, to any e>0 there is such a ~1>0, that

H ") - 4t7
(PHt") (‘,D ) -ViG0) un
-t 8anl>S

os ¢, S a o< =<, =

A map ¢: [0, £ - U is called a v-coordinate segment if vo ¢ is linear. The sequence

J:NeUU"*) "=0,1,....,m -1, m~2 of v-coordinate segments 1is called a
v-coordinate polygon if ~ i(~_1) =7(0) for fc=1,...,ra-1. The v-coordinate
segments ¢k, k=0, 1, ..., m—1 are called sides and their endpoints vertices of the

polygon. There exists such a 62>0, that for any "2-Subdivision O= To -CT1<...<

<I'm- a,w”"2 the v-coordinate polygon with the consecutive vertices v('W),
<p(T)),...,.<p(T*,) exists. Consider a C-subdivision 0= To<Ti<...<T,,j=a, m "2
with 0 <C<oi,0o2 and the corresponding v-coordinate polygon ~ :[o, 1]"L"
A&=0,1,.., m—1 with the consecutive vertices ¢)(*),"(*),...,~(*). Let yk
be the angle of the sides ¢hk- I9 ¢k, as well as ykthe angle of the vectors ¢k i (1),

<pJ?k-i,?k) and Jhe angle of the vectors t"*(0), (pJtf, for
Put Al= Vi(1y - V (Tk-1) for t’—il, U 3 k—il, e, ML irnconsequencetoassertions
Tk~ Tk- 1

above

m—1 m- 1

2 (sin ykt sin 2 EUPCR) (4 - @mici)) (H - <p "(Tk-1)) +

+ Z 1 gij(<p(4)) 4+ D b kK H+i
S22 (Tt ’
s 2 - ]
k=1 i,j=1 Socn”S v 4

By the assumptions of the lemma there is such a 43>0, that for anya3-sub-
division of [0,a] the inequalities y*,y*<s/2, k=1,...,m-l hold. Therefore

m—1 m—1 m—1 m— 1
2 r.- 2 T@EF-i,T,00 » 2 i7*—TO*-!, x? 2 G+ vk
2.5 W2 (tF-i,T,0) P XJ)Isk:l(v yB s

S 22 (sin yk+sinyh) < -

fe=l "

for any ~-subdivision of [0,a] with 0 <C <" "2>"3-
Let Qbe the distance function of M. There is a neighbourhood VdU of \¢t
and an >0 such that ifx, y € Vand @kx, y) = < 4, then a unique minimal geodesic
<2 [ f]"U and the v-coordinate segment ¢h: [0, fif ~ U both joining v, y exist. 5)

5) BISHOP— CRITTENDEN [1], 246—250.
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Let a'(t) and "1(Z) denote for i—1, ...,s, Z£[0,8] the coordinates of the vectors
oJt), >pJt) respectively, then

Wi(z)-§1(z)-[o*( ‘ ) - y (1)]Vs2  in,ff*(T)<T'(r)| <fr
o M=I
for 0"Z " p, z=0, . There is a 4 with O ¢t~ f for every i= 1, ...,s, such that
G(Z) —r(Z) —0. The lengths of the geodesic polygons inscribed in G have an upper
bound 1 <°°. The absolute values of coordinates of tangent vectors to geodesics
in points of U have an upper bound fV<oo. There is a neighbourhood WaV

8
of \@ such that for points in W the inequalities |Tj™N" - *y~SLN2?Uk, I=1,...5

hold. Let Xy C|*| be such points that £%y)=# < rg,and |[{ ¢ {F, then by the preceeding

assertions|0™(z) —(z]) |= ----- i ~Nr-p,i=l,...,n. There is a £4>0 such that for
SnySL

any ~4-Subdivision of [0, a] the corresponding geodesic and v-coordinate polygons

lie in W and the distances of the consecutive vertices are less than n. Denote

°h: [0, pkd ~ fL, " [0, fF~ W, k=0, 1, ..., m—1 the sides of these polygons.

Let yk be the angle of the vectors o*-!*08*_ i), ~*-i*Gs*-i) and yk that of ff**(0),

~*(0) for k=1,...,m -1. By the assertions above

N
21 (sin ™ + sin yt) S
fe=1

s 2 2 Sij (M) ki (Bk-i)-"k-i(Bk-i)) (H-i(Bk-i)-H-i(Bk-i+

2 "M A(0)”(0))(“{0)”(0))J s

u=

=0 (y 27 IS| [, J7" e(<p(4-1)<K*)] +

+ -e(<p(**
2 [_SIMn\SL e(<p(**), )
By the assumptions of the lemma there is a ~5>0 such that for any &s-sub-
Ja
division of [0,a] the inequalities ykyk< —,k =\,...,m —| hold. Consequently

for any “-subdivision, with o <C<"4>cs the inequalities
m—1 w-1 m—1
kgl (r*-y*) _k.i{i Iyfe-Tfel s f%:l =1 (fk+ ¥ 2 2 %in + sin jfc) < y
are valid. Let 0< é-:"j-be fory=1, ..., 5, then
m—1 w -1 w—1 w—I1
X@P - 2 y(T*-1,T?) 2 M=t 2 ?7*- 2 y(T*_i,T?)
k=1 f 1

k=1 c=1 fo=

for any *-subdivision of [o, a].
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3. The total curvature of closed curves in Riemannian manifolds with everywhere
nonpositive sectional curvature

In what follows M is assumed to be a complete simply connected Riemannian
manifold with everywhere nonpositive sectional curvature.

Lemma 3.1. LetP = {a0, ..., G"I9 G, ..., an} andP'= {a0, ..., at- i9 a9aif.. 4t
m 2 be closed geodesic polygons of M with sides ok: [0, ad *M 91c=0919..., m —1
and af:[0,ad "M, A=o,l,...,/-2,0-- j:lo,a-_TJ ~Af, tf:[0,a]"M,crfe
[0,a*]*"M ,fc =/,...,m -1, ites x(P)"x(P'); the equality holds if and only if
Aa._ia, is a totally geodesic triangular cell isometric with one in the euclidean plane,
and vi-i*(0)=  Mi--Mi->)+t ><¢,-*%0), <T¥a) =
0~ BBV, witll

Let y0,yl9 ..., y,--!, yi5 ..., ym ! denote the angles of P and y® yl9 ..., yt 15
Y, Y-, ..., ¥mx those of P'. Let £ be the angle of the vectors cr-_"~(0), ~_"(0) and
y that of the vectors c7*(a),tf; “(a; ~, then ~"0 =xC"+ Vi-i~V¥V/-i + ¥+
+y--71"x(P)+*+yi_!-yi !+"H-y--y*x(P) by Lemma. 1.2. It can be
verified by the same lemma that the above condition of equality is necessary and
sufficient.

Lemma3.2. Let P= {a09%al9...9am9m "2 be a closed geodesic polygon
of M9then x(P) “2n; the equality holds if and only if P is the boundary of a totally
geodesic submanifold isometric with a convex polygonal domain of the euclidean
plane.

Consider the closed geodesic polygons 2, ., = 3,
am 2, ant i 9ang> > Pm-Pi Then by Lemmas 1. 2 and 3.1 21" X(P{) = X(P2) = oeo=

x(P) Assume that x(P) =2n, then by an obvious mathematical induction
and by the same lemmas it can be shown that

M = Grehe1 Y i zY o Wdada

is a totally geodesic 2-dimensional submanifold with boundary P and mapped iso-
metrically by exp”1 onto a convex polygonal domain in Mao. The submanifold
[P] is unique.

Theorem. Let G be a closed curve of class C2 in a complete simply connected
Riemannian manifold M with everywhere nonpositive sectional curvature, and x(G)
the total curvature of G9then x(G) “2n; equality holds if and only if G is the boundary
of a totally geodesic submanifold of M isometric with a convex domain of the euclidean
plane.

There is an approximating sequence {JI}*=1,2.... 0" closed geodesic polygons
inscribed in G9such that Ph Pt+l I= 192, ... are in the same relation as P9P' of
Lemma 3. l,and a € \(¢plis a common vertex of all of them. Consequently 2n " x(Py *
Ax(Pl+1)9 and x(G)=Jimx(Pi)"*2n. Assume that x(K)=2n, then x(Pi)= 2n,

I=1,2, ... . Let [P]J denote the totally geodesic submanifold bounded by Ph By
Lemmas 1.2, 3.1, 3. 2 one can show that expjl( U [JI]) * a convex plane domain
1=1

mapped isometrically by expa onto a totally geodesic submanifold bounded by G
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