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On the total curvature of closed curves in Riemannian 
manifolds

By J. SZENTHE (Budapest)

Several proofs are known for the following theorem of W. FENCHEL: If x(G) 
is the total curvature of a closed curve G in a euclidean space, then x(G)^2n,  and 
the equality holds if and only if G is a convex plane curve. *) In this paper we show 
that shat the basic idea of one of the proofs of the above theorem 2) can be applied 
to solve the corresponding problem for curves in Riemannian manifolds. The 
following theorem is proved : If M  is a complete simply connected Riemannian 
manifold with everywhere nonpositive sectional curvature, and x(G) is the total 
curvature o f a closed curve G in M , then x(G)^2n;  the equality holds if  and only 
if G is the boundary of a 2-dimensional totally geodesic submanifold isometric with 
a convex domain of the euclidean plane. Dropping either of the assumptions that 
M  is simply connected and that it has everywhere nonpositive sectional curvature 
would not leave the lower bound 27i valid, as a closed geodesic of a cylinder and 
a sufficiently small geodesic triangle in case of positive sectional curvature show. 
For convenience M  is assumed to be of class C00 throughout the whole paper.

1. Riemannian manifolds with everywhere nonpositive sectional curvature

Let M  be a complete simply connected Riemannian manifold with everywhere 
nonpositive sectional curvature. The following facts are wellknown:

1. If m£ M,  then expm: M m^ M  is a diffeomorphism of the tangent space 
Mm onto M.

2. If p , q£M,  then there is exactly one geodesic opq: [0, a\ ^ M  with apq(0) = p ,
apq(v-)=q-

3. If 0 : [0, a ] ^ M  is а geodesic and r ( M ff(a), then there is exactly one Jacobi 
field V : [0, a] ^ T M  along 0  with F(O)=O and V(d) =  v.

The following lemma is a special case of Rauch’s comparison theorem. 3)

Lemma 1. 1. Let M  be a complete Riemannian manifold with everywhere nonpo- 
positive sectional curvature, cr: [0, a\^ M  a geodesic, o(O) =  m, v ^ M a^ ,  x £ T ( M m)

f i FEN CHEL [3].
2) BO RSU K  [2], M lL N O R  [4].
3)  B iS H O P — C R iT T E N D E N  [1], 177—179. Conditions as totheequality arenot explicitely stated 

there, but they are implicitely contained in the proof.
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and v =  d  exp/n x. Let further V : [0, a] ^ T M  be the Jacobi field along a with F (0 )= 0  
and V(a) =  v and X : [0, a ]^ T (M w) the field defined by V(t) =  dzxpmX(t )9 t£[  0, a]. 
Then Il̂ ll =  ||*||, and in order the equality ||u|| =\\x\\ to be valid the following condi
tions are necessary if  v ^ 0 :

a) WV(t)W=WX(t)W,tt[0,OL].
V(t)

b) , /€ ( 0 , a] is a parallel field along a.
Il  ̂ XJ)W

c) The Riemannian curvature of the plane section spanned by the tangent vector 
cJ f )  and V(t) is zero for  i6(0, a].

The length of а curve cp is denoted by L(v)  and the set of its points by |^|. Let 
p , q, r be points of a complete simply connected Riemannian manifold with every
where nonpositive sectional curvature and Gpq9 Gqn Grp the geodesics joining them. 
The set Tpqr =  \Gpq\ U \oqr \ U \arp\ is called a geodesic triangle and the set Apqr =  
=  {x: X £ \Gp z \, z Ç \Gq r \}  a geodesic triangular cell. In general Aqpr, Apr , Apq are diiferent. 
By a euclidean representation of Tpqr a point triple {P9 Q , R} of a euclidean plane 
is meant for which P Q = L ( G pq)9QR =  L(Gqr)9RP =  L(Grp) hold.

The following lemma is a special case of one of A. D. Alexandrov’s comparison 
theorems.

Lemma 1. 2. Let M  be a complete simply connected Riemannian manifold with 
everywhere nonpositive sectional curvature. If  p , q, r Ç M  are different and {P, Q , R} 
is a euclidean representation of Tpqn then the angle of the geodesicS Gp q , Gpr is not 
greater than QPR<$ ; the twoangles are equal if and only i f  Â r =  Aqpr =  Apq and this 
geodesic triangular cell is totally geodesic and isometric with the triangular domain 
PQRA.

A proof of this lemma can evidently be given by the method of Y. Tsukamoto 4) 
on the basis of Lemma L 1.

2. Concepts for the total curvature of curves in Riemannian manifolds

Let a0, a i , . . . , a tn, m ^ 2  be such points of a Riemannian manifold M  that 
<üi9 ai+l are different and can bejoined by a unique minimal geodesic Gi9 i =  0 , 1 , ..., 
m — 1; then the orderedset P =  {a09al9 . .. ,tfw} is called a geodesic polygon. The 
points at are called the vertices of P and the geodesics G i its sides. The polygon is 
said to be closed or open according to whether am =  a09 or am^ a 0. In case of a 
closed polygon а - г = а т- І9 am+1 =  at are defined too. The angle yt- of the 
geodesics Gi ^ l 9  G i is called the angle of P at a i9 where i =  X9 ..., m —  1 ifP is  open, and 
i =  X9 ...9m w henitis closed. By the total curvature x(P) of P the sum of its angles 
is meant.

Let q>: [0,oc]^M be a representation of a continuous curve G of M  and 
0  =  T o < ^ < ...< T ro  =  a , r a ^ 2  such a subdivision of [0 ,a ]  that {V(T0)9V(T1)9 ..., 
..., ç>(rw)} is a geodesic polygon P9 then P is said to be inscribed in G. If {Л}*= 1,2, ... 
is such a sequence of geodesic polygons inscribed in G that the maximal length

4) TSUKAMOTO [5].
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of the sides of Pi tends to zero as /^ o o j then it is called an approximating sequence. 
If for any approximating sequence {P^i=1,2,... ° f  geodesic polygons inscribed 
in G the corresponding sequence {x(Pi)}l = 1>2,... is convergent, then G is said to 
have a total curvature, and hm X(Pi), which is then the same value for all approximat
ing sequences, is called the total curvature x(G) of G.

The total curvature of curves is usually defined as follows: Let G be a curve 
of class C2 in M 9 q>\ [0, a\ ^ M  the representation of G in terms of arc length and

a

x(s) thefirst curvature of G in the point q)(s), O^s^oc,  then x(G) =  J x(s)ds is called
0

the total curvature of G. A proof is required therefore that if G is of class C 2 then 
x(G) exists and is equal to x(G).

Let G be a curve of class C 1 in M  and cp: [0, a] ^ M  the representation of G 
in terms of arc length. Denote by q>ft', t ") the vector obtained by parallel translation 
of the tangent vector q>ft') along q> to the point q>(t") for t'9 t"£[0, a]. Let y ( t\  t") 
be the angle of the vectors q>Jd',t"),q>Jj"), then y ( t ' , t " ) , O^t ' ^t "^oc  defines

OC

an interval function; if it is integrable, then f y ( t ' , t") is denoted by x°(G).
0

Lemma 2. 1. Let G be a curve of class C 2 in a Riemannian manifold, then x°(G) =
=  x(G).

Since
y(t', t") _  [Iq>+(f, t")-q)^(t" ) [I _  _

t' fP+t t " - t '  t']r̂ >t t" - t '  ll%*(r)*P*(r)ll — Kv )

holds, the interval function y(t'91 ") is differentiable and x(t), 0  ^  t ^  a is its derivative. 
Consequently the integrability of y ( t\  t") and x°(G)=x(G)  are implied by standard 
theorems.

Lemma 2. 2. I f G is a curve o f class C2 in a Riemannian manifold M, then 
x(G) exists and it is equal to x°(G).

Let cp: [0, a\ ^ M  be the representation of G in terms of arc length, and ^ > 0 , 
then 0  =  i o < ^ < . . .< T ^ ,  =  a is called a ô-subdivision of [0 ,a], if тк — тк_ 1^ 5  
for k — 1, ...,m . To prove the lemma it suifices to show that to any e > 0  there is 
such a £ > 0 , that for any ^-subdivision 0  =  T o< T j< ...< T ,n  =  a , r a ^ 2  of [0 ,a ]  
the geodesic polygon P =  {cp(т0) ,ф (т Д .. . ,ф (т ш)} exists and

m — 1\'4P) - Zv(*k-i > T?)|<6k= 1
holds, where тк —Тк ~̂̂ к+1 , k =  0 , l , . . . , m - l .

It is enough to consider the case when G has no multiple points. A coordinate 
system v: U ^ R n of class C 2 exists therefore, which is defined on a compact neigh
borhood U of \q>\ and such that the coefficients of the Riemannian connexion of 
M  all vanish when calculated in v for points of G. Let gy(x), i , j =  1, ... ,« , x £ U  
be the components of the fundamental tensor in v and S =  su p{ |g^(jt) |:/,y  =
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=  19 ...9n , x £ U} .  Let q>*(t) / = l , . . . ,w , ig [ 0 ,a ]  denote the coordinates of cp{t) 
in v. Since G is of class C 2, to any e > 0  there is such a ^1 > 0 , that

if

(pHt") -  (p4t')
-t' -ViCt0)

8anl>S
■n

0  s  t', t"S  a, 0  <  =  <5j, =

A map ф : [0, £j ^- U is called a v-coordinate segment if v o ф is linear. The sequence 
Л : № И ^ ^ )  ^ = 0 , 1 , . . . , m - l ,  m ^ 2  of v-coordinate segments is called a 
v-coordinate polygon if ^ _ i ( ^ _ i )  =  ^ (0 )  for fc =  l , . . . , r a - l .  The v-coordinate 
segments фк, k =  0 , 1 , ..., m — 1 are called sides and their endpoints vertices of the 
polygon. There exists such a ô2 >0,  that for any ^2-Subdivision O =  T0 -CT1< . . . <  
<Tm =  a,w^2 the v-coordinate polygon with the consecutive vertices v(T0), 
<p(Tj),...,<p(T*,) exists. Consider a Ç-subdivision 0 =  T o< T i< ...< T ,,j =  a, m ^ 2 
with 0 < C < 0 i , 0 2  and the corresponding v-coordinate polygon ^ : [ 0 , 1]^ L ^  
Ä: =  0, 1, ..., m — 1 with the consecutive vertices ¢ ) ( ^ ) ,^ ( ^ ) , . . . ,^ ( ^ ) .  Let yk 
be the angle of the sides фк- І9 фк, as well as yk the angle of the vectors фк_ ы (1), 
<pJ?k-i,?k) and yl the angle of the vectors t^*(0 ), (pJtf,  for

Vi(Tk) - V i(Tk-I)  r • i ; i Tfor i — 1, ..., n, к — 1, ..., m. InconsequencetoassertionsPut A1 =  

above
Tk ~ Tk- 1

772 — 1 771 -  1

2  (sin y'k + sin 2 g i j ( < p ( * k ) ) ( 4  -  Ф Ч тк - i ) ) ( H  -  < p ' ( T k - 1)) + 
UJ = 1

+ J/ Z 1 gij(<p(4))(4+ 1 -Ф Ъ кЖ Н +i J s

772 - 1

s  2
k= 1 2  |S|

i,j= 1 Socn^S
- ( T t - Ч )

s
4

By the assumptions of the lemma there is such a á3 > 0 , that for an y á3-sub- 
division of [0,a] the inequalities у*,у*<я/2, k =  l , . . . , m - l  hold. Therefore

772 — 1  772 — 1

2  r .  -  2  T(tF-i,T,0) 
k= 1 k= 1

772 — 1  772 — 1

^  2  íz* — TO*-!, xj?)| s  2  (y'k+ y'k) s
fe=l k= 1

S  2  2  (sin y'k + sin y'k) <  -
fc=l ^

for any ^-subdivision of [0,a] with 0 < C < ^ , ^ 2 >^3 -
Let Q be the distance function of M. There is a neighbourhood V d U  of \q>\ 

and an rj > 0  such that if x, y  € V and @(x, y) =  ß <  t\, then a unique minimal geodesic 
<?: [O5 ß ] ^ U  and the v-coordinate segment ф: [0, ß] ^ U  both joining v, y  exist. 5)

5) BlSHOP— CRITTENDEN [1], 246— 250.
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Let a'(t) and ^ 1(Z) denote for i — 1, ... ,я , Z£[0,ß] the coordinates of the vectors 
oJt ) ,  >pJt) respectively, then

W ' ( z ) - ÿ l ( z ) - [ o ‘( t ) - ÿ ‘( t ) ] \ s  2  in ,f f * (T )< T '(r ) | <fr 
0̂  M=I

for 0 ^ Z ^ ß, z =  0, ß. There is a Zi with O ^ t ^ ß  for every i =  1, . .. ,я , such that 
Cr1(Zi) — ^ri(Zi) — 0. The lengths of the geodesic polygons inscribed in G have an upper 
bound 1 < °° . The absolute values of coordinates of tangent vectors to geodesics 
in points of U have an upper bound fV<oo. There is a neighbourhood W a V

8
of \q>\ such that for points in W  the inequalities |Tj^|^  - *ÿ~SLN2 ? U k, I =  1 ,. ..я

hold. Let X, y  Ç |^| be such points that £>(%, y ) = ß <  rç, and |<x| c  fF, then by the preceeding
8

assertions|ö^(z) — ^(z l) | = -----^ r - ß , i = l , . . . , n .  There is a £4 > 0  such that for
SnySL

any ^4-Subdivision of [0, a] the corresponding geodesic and v-coordinate polygons 
lie in W  and the distances of the consecutive vertices are less than rj. Denote 
°h: [0, ßkl ^  fL, ^ fc: [0, ßk] ^  W, k =  0, 1, ..., m — 1 the sides of these polygons. 
Let yk be the angle of the vectors o*-!*08*_i), ^*-i*G8* -i) and yk that of ff**(0), 
^t*(0) for k =  1, . . . , m - l .  By the assertions above

Mi — i
2 1 (sin ^  + sin ÿt) S

f c = l

w — 1

s  2
f c = l

2  gij(^(4)){^k- i (ßk- i ) - ^k- i ( ßk - i ) ) ( H- i ( ßk - i ) - H- i ( ßk - i +
i , j =  1

2  ^ ( i > M ^ ( 0 ) - ^ ( 0 ) ) ( ^ { O ) - ^ ( 0 ) )  s  
u = i  J

=  Д  ( y  2 ^  |S| [ „ J 7^  e(<p(4 - 1  )> <K**))] +  

+ /  2 |5|r i ,  j = 1 -e(<p(**), ))
ß n \ S L

By the assumptions of the lemma there is a ^ 5 > 0  such that for any ő5-sub-
Л

division of [0,a] the inequalities yk, y k < —, k  =  \ , . . . , m  — \ hold. Consequently 

for any ^-subdivision, with 0 < C < ^ 4 >c>5 the inequalities
m — 1

2  (r*-y*)
k = l

m — 1

are valid. Let 0 <  ô -

w-l
y

k^i fc=i
:^j- be fo ry =  l, ..., 5, then

— ^  Iyfc-Tfcl s  2  (fk +  Ук)S  2  2  (sin +  sin ÿfc) <  yfc= 1 Z

m — 1

X-(P) -  2  y(T*-i,T?)
k =  1

w - l

2  7ft-?»
k = l

+
w — 1 w — 1

2  ? * -  2  y(T*_i,T?) 
f c = l  fc =  l

for any ^-subdivision of [0 , a].
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3. The total curvature of closed curves in Riemannian manifolds with everywhere 
nonpositive sectional curvature

In what follows M  is assumed to be a complete simply connected Riemannian 
manifold with everywhere nonpositive sectional curvature.

Lemma 3 .1 . Let P =  {a0, ..., Oi^l9 Cii , ..., am} andP' =  {a0, ..., at- i9 a9 ai9...9atv\  
m ^ 2  be closed geodesic polygons o f M  with sides ok: [0, afc] ^ M 9 Ic=O9 I9 ..., m — 1
and crfc: [0 ,a fc] ^ M , A: =  0 , l , . . . , / - 2 , 0- -_ j:[0 , a - _ J  ^A f, tf : [0 ,a ]^ M ,c r fe:
[0 ,a* ]^M ,fc  =  / , . . . , m - l ,  йея x(P)^x(P' );  the equality holds if  and only if  
Aaa._ia, is a totally geodesic triangular cell isometric with one in the euclidean plane, 
and vi-i*(0) =  M i - 2 M i - 2) +  i><r,-i*(0), <T*(a) =

0 ^  U9 V, w7 гЛ

Let y0, yl9 ..., y,--!, yi5 ..., ym_! denote the angles of P and y09 yl9 ..., yt'_ l5 
y, y-, ..., Ут-х those of P'. Let £ be the angle of the vectors cr-_^(0), ^ _ ^ (0 )  and 
rj that of the vectors c7*(a),tf;_^(a;_^, then ^ ^ 0  =  хС^) +  У і- і~ У /- і  +  У +  
+  y - - 7 i^ x (P )  +  ^ +  y i _ ! - y i _ ! + ^ H - y - - y ^ x ( P )  by Lemma. 1.2. It can be 
verified by the same lemma that the above condition of equality is necessary and 
sufficient.

Lem m a3.2. Let P =  {a09al 9 ...9am}9m ^ 2  be a closed geodesic polygon 
of M 9 then x(P) ^2n; the equality holds if  and only if P is the boundary of a totally 
geodesic submanifold isometric with a convex polygonal domain of the euclidean 
plane.

Consider the closed geodesic polygons _ 2, _ , ,  =  _ 3,
am_ 2 , am- i 9 am}> •••> Pm- P i  Ihen by Lemmas 1. 2 and 3 .1 2n ^ x(P{) =  X(P2) =  • • • =  
. . .^x(P) .  Assume that x(P) =  2n, then by an obvious mathematical induction 
and by the same lemmas it can be shown that

fPl =  / m"2 l J / m' 3 IJ N d "1MJ zj ôaw-I ĵ  aOarn-Z ĵ  ••• u  ^a0a2

is а totally geodesic 2-dimensional submanifold with boundary P and mapped iso- 
metrically by exp^1 onto a convex polygonal domain in M ao. The submanifold 
[P] is unique.

Theorem. Let G be a closed curve o f class C2 in a complete simply connected 
Riemannian manifold M  with everywhere nonpositive sectional curvature, and x(G) 
the total curvature of G9 then x(G) ^2n;  equality holds if  and only if  G is the boundary 
of a totally geodesic submanifold of M  isometric with a convex domain o f the euclidean 
plane.

There is an approximating sequence {Л}*= 1,2 .... 0  ̂ closed geodesic polygons 
inscribed in G9 such that Ph Pt+1 I =  I9 2, ... are in the same relation as P9 P '  of 
Lemma 3. l,an d  a € \q> \ is a common vertex of all of them. Consequently 2n ^  x(Pt) ^  
^ x ( P l+1)9 and x(G)=Jimx(Pi )^2n.  Assume that x(K)=2n,  then x(Pi) =  2n,
I =  1,2, ... . Let [P1] denote the totally geodesic submanifold bounded by Ph By
Lemmas 1. 2, 3.1, 3. 2 one can show that e x p j1( U [Л]) *s a convex plane domain

1 = 1

mapped isometrically by expa onto a totally geodesic submanifold bounded by G.
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