On a theorem of G. Birkhoff

By B. IMREH (Szeged)

In this note we are going to give a short proof of the following classical theorem of G. Birkhoff [1].

Theorem. A class $\mathfrak U$ of Ω -algebras forms a variety if and only if it is closed under forming

- (1) subalgebras,
- (2) homomorphic images,
- (3) direct products.

Our terminology is that of [2]. However, we mention that in the following by law we mean an arbitrary fully invariant congruence \varkappa of the countably generated Ω -word algebra F. Moreover we say the law \varkappa to hold in the Ω -algebra A if for any congruence φ corresponding to an arbitrary homomorphism of F into A, we have $\varphi \ge \varkappa$.

Since the necessity is obvious, we prove only the sufficiency.

If $\mathfrak U$ consists only of the one-element algebra, then $\mathfrak U$ is the class of all algebras satisfying the law F^2 . If $\mathfrak U$ contains an algebra A having more than one element, then A has a subalgebra generated by at most countably many elements of it which also belongs to $\mathfrak U$ by (1). Hence there exists a congruence θ in such that $F/\theta \in \mathfrak U$. If \varkappa denotes the intersection of all such congruences θ , we shall show that \varkappa is a law.

In fact, if ε is an arbitrary endomorphism of F, then $F\varepsilon$ is a subalgebra of F. Now consider the union F', of all classes of the congruence \varkappa which have non-empty intersection with $F\varepsilon$. Then F' is obviously a subalgebra of F, moreover, making use of the second isomorphism theorem, we have

$$(i) F'/\varkappa_{F'} \cong F\varepsilon/\varkappa_{F\varepsilon}$$

where the set in the subscript indicates the restriction of \varkappa to this set. Now we define the following relation ϱ in F:

aob if and only if αεκbε;

it is easily seen that ϱ is a congruence in F and

(ii)
$$F\varepsilon |_{\varkappa_{F_{\varepsilon}}} \cong F |_{\varrho}.$$

By (1) and (3) we have $F/\varkappa \in \mathfrak{U}$. Moreover (1) implies $F'/\varkappa_{F'} \in \mathfrak{U}$ and thus using (i) and (ii) we obtain $F/\varrho \in \mathfrak{U}$. In view of the definition of \varkappa we have $\varkappa \leq \varrho$, hence for any two elements $a, b \in F$ the relation $a\varkappa b$ implies $a\varrho b$ i. e. $a\varepsilon \varkappa b\varepsilon$ (recall the definition of ϱ). This fact shows that \varkappa is fully invariant, i. e. it is a law.

148 B. Imreh

Now we shall prove that an arbitrary Ω -algebra A belongs to $\mathfrak U$ if and only if the law \varkappa holds in it.

Indeed, first assume $A \in \mathcal{U}$. Let B be an arbitrary subalgebra of A such that $B \cong F/\theta$ holds with a suitable θ . (1) implies $B \in \mathcal{U}$, so that we have $\theta \cong \varkappa$.

Conversely, assume that the law \varkappa holds in A. First, assuming that A is finitely generated, we have $A \cong F/\theta$. By the assumption $\theta \cong \varkappa$, hence it follows from the third isomorphism theorem that A is a homomorphic image of F/\varkappa and so (2) implies $A \in \mathfrak{U}$.

In the general case \varkappa holds obviously for any finitely generated subalgebra of A, thus, as it was proved in the preceding paragraph, any such algebra belongs to $\mathfrak U$. The finitely generated subalgebras of A form a local system in A, so, making use of a theorem of P. M. Cohn [2] (p. 101.), asserting that any class of algebras closed with respect to forming subdirect products and homomorphic images is local, we are led to $A \in \mathfrak U$, which completes the proof.

References

[1] G. BIRKHOFF, On the structure of abstract algebras, *Proc. Cambridge Philos. Soc.* 31 (1935), 433—454.

[2] P. M. Cohn, Universal algebra, New York, 1965.

(Received June 17, 1967.)