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Note on Tauberian constants
By § P. VERMES (London)*

1. Introduction

We shall discuss the following problem: there is given

(i) an ultimately monotonic positive sequence 1, " <=:

(ii) a class U(t,) of series Zu, of complex terms, and with partial sums
S, =Ug+ Uy + ... +u,, satisfying the Tauberian condition |tz =0(1);

(iii) a regular summability method {a,(r)} transforming s, into 6, = Za,(1)s,,
where {a,(7)} may represent a matrix a,, when a,(t)=a,[t]):

(iv) a positive number ¢ (not necessarily an integer);
it is required to find the smallest constant A(q), finite or infinite such that the inequality

(1. 1) limsup |o,—s,| = A(q) lim sup |t 1]

t—+oo, nit—+q k—=

should be satisfied for every series in U(t).

The constant A(q) is called a Tauberian constant, in short a 7-constant.

Many results are known for the Tauberian condition |ku,|=0(1). We know
that for this class finite 7-constants exist for every ¢ for the Abel, Cesaro, Hausdorff,
Quasi-Hausdorff and other methods [2, 4, 8, 10, 11, 14, etc.], and that 4(g) is unboun-
ded as ¢ tends to zero or to infinity.

Recent investigations of AGNEw, ANJANEYULU and MER [3, 5, 15] relate
to the class U(Vk). It has been found that with each method a,(¢) a positive constant
/A is associated such that A(g) is finite if and only if ¢ =4 and n/t tends to 4 ,.closely
enough”. For the Borel method Agnew found Z =1, and for the Laurent method
Anjaneyulu found A=x/(1—x). The ,closeness’ is measured by the coupling
relation w =(n— Ait)/)'t, and A(q) is found to be finite if and only if Q =lim sup ||
is finite, and A(A) is then a function of Q. Obviously A(4, ) increases with Q.

The object of this note is to show that there are only those two types of behaviour,
depending on whether 7, tends to infinity at the same rate as k or slower, this being
true for any regular summability method which has a finite 7-constant.

Added 27.3.1967. In two recent papers BIEGERT [27, 28] has studied the 7-
constants for the summability methods discussed in (4.1) of our paper. He obtained
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formulae when 1, =k? for all real p, and his values for the ratio 4 agree with our
values. (Biegert’s formula (2.1) in [28] should be corrected to

(ym/Dy—1)[(y'~7t?) = @ with limsup |@|< e,
=+

as stated in recent letters. A similar correction should be made to his formula (16. 2)
in [27]).

2. Notation and lemmas

We shall always assume that n=n(x) and 7=1(x) are monotonic functions
of a parameter x=0, both tending to infinity with &, 7(0)=1(0)=0, n(x) being
an integer for all a.

A positive sequence x; will be called witimately monotonic if it is monotonic
for k =k,. The suffix k& will denote an integer; s, is a step-function of « and g, is
a function of .

If x; is ultimately monotonic decreasing, tending to zero, we shall write x, 0.
When 1/x,,0, we shall write x; /e,

When x, and y, are positive and x;/3.\0, we shall write x,<y,. U(r,) will
denote the class of series with complex terms Zu, satisfying [tu|=0(1). A(q)
or A(g) will denote the constant in (1.1) for U(zy).

We shall also use the order notation ,,<<"" for positive functions of «: for example
re=<r; will mean that both r,,, and r,, are ultimately monotonic functions of a,
and that r,/r;\0.

When r,<<t and n/t -1 so closely that n/t=A4+ O(r,/t), then the function
() defined by @ =(n — At)/r, is bounded as - ==, Hence the non-negative constant
Q =lim sup|w(x)| and the order of smallness of r, are both measures of the closeness
of approach of the ratio n/t to the limit 4. The smaller is r, and the smaller is €,
the closer comes n/t to 4. In lemma 2 we shall show that r, can be replaced by another
function g, of «.

Lemma 1. If 1/t* —~1 as o ==, and if for some ¢ =0, t ~“<<r,<t, then rjr] - 1.

PrROOF. For a=wy, 1—1<t*<141, hence if r, is ultimately increasing,
(=1 =r_ /r,<rslre=(+1)tc. If r,is ultimately decreasing, then the same argu-
ment can be applied to 1/r,.

Lemma 2. If, for some positive ¢, n~“<g,<<n, and if for a positive g we define
=0y @=n—gqt)lo,, and w*=(n—gqt)/r, then as a—co, lim sup |w|=
=lim sup |w*|.

ProoF. Let p=p(a) = (jn—qt|+n~°)/0,, p*=(n—qt|+n=°)/r,, then p and
p* are positive, and p/p* =r,/0, = 0(sn/0,—~1 by lemma 1, since gt/n=1—wg,/n—~1
when o is bounded. Also p=|w|+n~¢/g,, hence limsup p=Ilimsup @/, and
similarly lim sup p* =lim sup |®*|. Again when @ is unbounded, so is w*=wg,/r,.

Lemma 3. If b, =0, ¢, =, then for no<n-<p,
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This is trivial, but will be often used.
In what follows we shall define for a positive number ¢, and for a positive
sequence x, such that x,-=n,
—qt
2.1) PR UL . e 1L SR L O e /1)

“*n(x) a—+oo

When 7, <<k, the smallest constant A, finite or infinite, for which the inequality

(2.2) limsup [o,—s,| = 4 limsup |t 1
limsuplew =0 k=00

is satisfied for a fixed Q and for every series in U(z,) will be denoted by
(2.3) A(g, 2, x,).

When x, =1 for n=un,, we shall write A(qg, 2, 1,).

3. Theorems and proofs

Theorem 3. 1. If a regular summability method {a,(t)} has for the class U(k)
a finite T-constant for some positive q, then the constant A(q) is finite for every
positive q,"and A(g) —~-= as q—~0 and as q .

Theorem 3. II. If l,<t,<<k, |,<<x,<<n, and if for the class U(t,) and for the
regular method {a(t)} the T-constant A(q, Q, x,) is finite for one positive value 2
of q, and for one non-negative value Q, of Q, then

(i) A(q, Q, x,) == when q = for every Q and for any x, (1,<x,<<n);

(ii) x,/t, is bounded;

(iii) A(4, Q, y,) is finite for every y, such that y,[t, is bounded and for every Q,
it has its minimum at Q =0, and tends to infinity with Q;

(iv) if the same method is applied to another class U(ty), where t,<1}<k,
then finite T-constants exist for the same 2, for all Q and for all y, such that y,/T;
is bounded.

Theorem 3. IIl. There are regular methods

(i) which have no finite T-constants for U(k):

(ii) which have finite T-constants for U(k) but none for any class U(t,) such
that v <k.

PRrROOF OF 3. I. Let ¢ and g, be distinct positive numbers, and let A4(g,) be finite.
Let n/t -q,, and n/t’—q. For each 1" we define n” as n" =[g,t’] so that n’/t’ +q,
and n’/n—~qo/q. Let Zu, be any series in U(k) so that lim sup |ku| =L is finite.
Here, and later we shall use the trivial inequalities:
(3- ]) I‘O',-‘“S,,| = irsn'_snr-’- [Ul"_jn'|!
(3.2 o =8|, —a]— |0y —S"-|.

As o oo, limsup |o, —s,.|=A4(q,)L, and for a=>a,

2 1k = (L+2) [log (g0/g),

Isu' —S,,[ = (L T 8) lk
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so that, by (3.1) and (3. 2),
llog (90/q)| — A(go) = A(q) = |log (g0/9)| + A(qo)-
This proves the theorem.
ProOF OF 3. 11. To prove (i), we first observe that
(3.3) if Q<Q, then A(q, @, x,)=A(q, 2, x,) forany q and any x,,

since the left term refers to a closer approach. Let ¢ = A. For each n we define first
n" as n’ = [in/q] and the (" = n’/A so that for the series XI/r, we obtain
lim sup |o,. —s,| = A(4, 0, x,,), and this is finite by (3. 3). Again, for n>n,, n’/n=
=[An/g]/n = C=0, where C is a constant different from 1. Applying lemma 3 we
obtain when n’=n
o1 k| n | on n

.4 IS, —S,| = — —| > |log—| — = |l —_,
(3.4) Isw—sal = | 2 £ 2=| > [log | 7 > llog €l
and when n” <n, the last term is replaced by |log C|n’[t, . Hence (i) follows from (3. 2).

To prove (i1) and (iii) we consider any bounded function w(x), such that

lim sup |w|=Q, and any given sequence such that 1,<<x,<<n. For each n we define
n as n"=[ln—wx,] and t" as t"=n’/A, so that for any series in U(r;) again
lim sup |6, —s,/|=A4(4,0,x,)L. Let &' =(n—At")[x,=(n—n")/x,, then o' =w+
+Na/x,, where for n=n, |n,/]<1, so that lim sup |®’/=1lim sup |@|. Again, for
n=ng,

(3. 5) 1 —(Q+Dx/n<=n"n<1+(2+ 1)x,/n,
hence, for n=n,
(3.6) (Q+1)x,/2n< |log (n'[n)| <2(Q2 + 1)x,/n.
Taking u,=1/r,, we obtain, as in (3.4), for n=n; and " >n,
37 s, —8,| = |log (n’/m)|n/t, >=(2 + 1)x,/21..

and (ii) follows from (3. 2) and (3. 7) when Q=Q,.
For any u, such that lim sup |t |=L is finite, using (3. 6) and lemma 3,
and with y, replacing x,, and assuming that n” >n, we obtain

(3.8) lim sup |5, —s,| < 2L(Q+ D) (y,/n)(7'[1,) =
= 2L(2+ 1)('[n) (/14 ) (Va/TH)-

Now (3. 5) shows that n’/n—~1, and by lemma 1, t,/7,,~1 and y,/t, is bounded,
hence by (3.1) 4A(4, Q, y,) is finite for any Q. The same result holds when »" <n.
The T-constant decreases with €, and exists at =0, hence it attains its minimum
there, and (3. 7) shows that it tends to infinity with . This proves (iii).

To prove (iv) we observe that U(zy) is a subclass of U(t,) so that A..(4, Q,, x,)
is finite, hence by (iii) so is 4..(4, Q, y,) for every Q and for every y, such that y,/t}
is bounded.

Proor oF 3. III. (i) follows from the example:
Let {a,(1)} be defined by o, =s5;2;, then for the series X1/k and for ¢=0 we
have o, —s, =52/, —5,=0(logn) which is unbounded.



Note on Tauberian constants 207

To prove (ii), let 0<=x<y<1, and let L(x), L(») be the corresponding Laurent
matrices. Anjaneyulu ([5]) proved that for L(x) the value of 2 is x/(1 —x), hence
for L(y) it is A’=y/(1—y). Let {a,,} be the matrix formed by taking all rows
in succession alternately from L(x) and L(y). Then for any U(t;) with 1<=rt,<k,
theorem 3. II (i) would require that for odd m, (m+1)/2n should tend to 4, and
for even m, m/2n should tend to 42’. This shows that no finite 7-constant exists
for such a class. But for U(k) both L(x) and L(y) have finite T-constants for any
positive g, A(q) and A’(q) say. Hence for our ,,mixed” matrix the 7-constant is the
larger of A(g/2) and A’(q/2).

4. Examples

Theorem 3. 11 has shown how the existence of a finite 7-constant depends for a given
method on the class U(r;) to which the method is applied. If 7,<<k, there is at most
one value of g, ¢ =4, to which the ratio »/t must tend, and the smaller is the order
of 1, the closer must be the approach. To find finite 7-constants to any given regular
method, the first problem is to find the (unique) number 4 (if any) belonging to the
method, the next problem is to find the best possible, hence the smallest, order
of 7;, and the last problem is to find the values of the 7T-constants for all admissible
values of ¢, 2 and x,. Here we shall show how 4 can be found for a wide class of
methods: we do not attempt to give general rules for solving the other two more
difficult problems

(4. 1) Sonnenschein methods [20, 21].

These are generated by a non-constant function a(z) = Xq,z" such that a,=0,
and Za,=1. If, for 1=0, (a(z]]’:Za,(r)z’, then the sequence to function trans-
formation ¢, = Z, a,(t)z" is regular. A Sonnenschein matrix is given by a,, ,=a,(m)
for n,m=0,1,2,.... For example:

e~ generates the Borel method {e~"t"/n!} [6,12];

l—p+pz, 0 < p < 1, the Euler matrix {[r:] (1 —p)’""'_p"} [1, 16, 22, 25];

ﬁ, 0 < p < 1, the Hardy—Littlewood—Fekete ( circle) matrix,
also called Taylor matrix {[:1__ ll] (- p)“"'"}
[7,9,12, 13, 16, 23, 24, 235, 26];
PR (0 e A=) e
T 0 <= p < 1, the Laurent matrix {[ o ]p (1 p)} [16, 25].

When Zna, converges so that its sum is @’(1) (as in all the above examples),
then for r=1and |z| =1, Zna,(t)z"=zd(a(2))/dz=1z(a(z))~'a’(z) so that Zna,(t)=
=ta’(1). Hence the method {a,(7)} transforms the sequence s, =n into the function
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a’(1)t. Hence if n/t —g, then lim sup |o,—s,| =lim sup |a’(1)t —qt| is finite for
this particular sequence if and only if g =a’(l), so that a’(1) is the value of .. Hence
for the: Borel method Z=1, Euler matrix A=p, Taylor matrix A=1/p, Laurent
matrix A=(1-p)/p, the same as given by Anjaneyulu ([5]), his parameter x being
our parameter 1 —p.

(4.2) Hausdorff and allied matrices.

The Hausdorff matrices are generated by a mass-function pu(x) of bounded
variation in the closed interval [0, 1], and such that u(x) is continuous at 04 ,
and u(0) =0, u(1)=1. The matrix is defined by the integral

Gy = Of [’:] (1= xym=nx" du(x), [6, 12],

and the integrand is analogue to the Euler matrix.
The Quasi-Hausdorff matrix is generated by the same type of mass function, and

Ay n = Of [::;:11] Im(l ——x)"""d}l(x) [12, b 18],

the integrand being analogue to the Taylor matrix.
The Laurent— Hausdorfi’ matrix is generated by the same mass function

1
s = f [m;—n; l]x”’(l —x)"du(x) [19] analogue to the Laurent matrix.
; =

Hence by an argument similar to that in (4.1) we obtain:

1

for the Hausdorff matrix /2 = f x du(x),

0

du(x)
x : ]

1
Quasi-Hausdorff matrix 4 = f
0

Laurent—HausdorflT matrix /. =

fl (1—x) du(x)
3 x ;

(4. 3) Abel method.

This is a series to function transformation, defined by o, =Zux* 0<x<I1,
and x_ 1. Putting x=e~ ", we obtain o, =Zue "', t +-. When s,=n+1,
so that u,=1, we have o,=1/(1—e~'/), hence |g,,—s,| is bounded as n-—<o
only if g=1. Thus the only possible value for 4 is 1.
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