Note on Tauberian constants

By § P. VERMES (London)*

1. Introduction

We shall discuss the following problem: there is given

(i) an ultimately monotonic positive sequence τ_k / ∞ ;

(ii) a class $U(\tau_k)$ of series Σu_k of complex terms, and with partial sums $s_n = u_0 + u_1 + ... + u_n$, satisfying the Tauberian condition $|\tau_k u_k| = O(1)$;

(iii) a regular summability method $\{a_n(t)\}$ transforming s_k into $\sigma_t = \sum a_n(t)s_n$, where $\{a_n(t)\}$ may represent a matrix a_n when $a_n(t) = a_n([t])$:

where $\{a_n(t)\}$ may represent a matrix $a_{m,n}$ when $a_n(t) = a_n([t])$; (iv) a positive number q (not necessarily an integer); it is required to find the smallest constant A(q), finite or infinite such that the inequality

(1.1)
$$\lim_{t\to\infty,\ n/t\to q} |\sigma_t - s_n| \le A(q) \lim_{k\to\infty} \sup_{k\to\infty} |\tau_k u_k|$$

should be satisfied for every series in $U(\tau_k)$.

The constant A(q) is called a Tauberian constant, in short a T-constant.

Many results are known for the Tauberian condition $|ku_k| = O(1)$. We know that for this class finite *T*-constants exist for every *q* for the Abel, Cesàro, Hausdorff, Quasi-Hausdorff and other methods [2, 4, 8, 10, 11, 14, etc.], and that A(q) is unbounded as *q* tends to zero or to infinity.

Recent investigations of AGNEW, ANJANEYULU and MEIR [3, 5, 15] relate to the class $U(\sqrt{k})$. It has been found that with each method $a_n(t)$ a positive constant λ is associated such that A(q) is finite if and only if $q = \lambda$ and n/t tends to λ , "closely enough". For the Borel method Agnew found $\lambda = 1$, and for the Laurent method Anjaneyulu found $\lambda = x/(1-x)$. The "closeness' is measured by the coupling relation $\omega = (n-\lambda t)/\sqrt{t}$, and A(q) is found to be finite if and only if $\Omega = \limsup |\omega|$ is finite, and $A(\lambda)$ is then a function of Ω . Obviously $A(\lambda, \Omega)$ increases with Ω .

The object of this note is to show that there are only those two types of behaviour, depending on whether τ_k tends to infinity at the same rate as k or slower, this being true for any regular summability method which has a finite T-constant.

Added 27. 3. 1967. In two recent papers BIEGERT [27, 28] has studied the T-constants for the summability methods discussed in (4.1) of our paper. He obtained

^{*} Sent on 18. 12. 1965. but lost in the post.

P. Vermes

formulae when $\tau_k = k^p$ for all real p, and his values for the ratio λ agree with our values. (Biegert's formula (2.1) in [28] should be corrected to

$$(\gamma m/D_V - t)/(\gamma^{1-p} t^p) = \omega$$
 with $\limsup_{t \to \infty} |\omega| < \infty$,

as stated in recent letters. A similar correction should be made to his formula (16. 2) in [27]).

2. Notation and lemmas

We shall always assume that $n = n(\alpha)$ and $t = t(\alpha)$ are monotonic functions of a parameter $\alpha \ge 0$, both tending to infinity with α , n(0) = t(0) = 0, $n(\alpha)$ being an integer for all α .

A positive sequence x_k will be called *ultimately monotonic* if it is monotonic for $k > k_0$. The suffix k will denote an integer; s_n is a step-function of α and σ_t is a function of α .

If x_k is ultimately monotonic decreasing, tending to zero, we shall write $x_k \setminus 0$. When $1/x_k \setminus 0$, we shall write $x_k \neq \infty$.

When x_k and y_k are positive and $x_k/y_k \setminus 0$, we shall write $x_k \ll y_k$. $U(\tau_k)$ will denote the *class* of series with complex terms Σu_k satisfying $|\tau_k u_k| = O(1)$. $A_{\tau}(q)$ or A(q) will denote the constant in (1.1) for $U(\tau_k)$.

We shall also use the order notation ,, «" for positive functions of α : for example $r_t \ll r_t^*$ will mean that both $r_{t(\alpha)}$ and $r_{t(\alpha)}^*$ are ultimately monotonic functions of α , and that $r_t/r_t^* \searrow 0$.

When $r_t \ll t$ and $n/t \to \lambda$ so closely that $n/t = \lambda + O(r_t/t)$, then the function $\omega(\alpha)$ defined by $\omega = (n - \lambda t)/r_t$ is bounded as $\alpha \to \infty$. Hence the non-negative constant $\Omega = \limsup |\omega(\alpha)|$ and the order of smallness of r_t are both measures of the closeness of approach of the ratio n/t to the limit λ . The smaller is r_t and the smaller is Ω , the closer comes n/t to λ . In lemma 2 we shall show that r_t can be replaced by another function ϱ_n of α .

Lemma 1. If $t/t^* \to 1$ as $\alpha \to \infty$, and if for some $c \ge 0$, $t^{-c} \ll r_t \ll t^c$, then $r_t/r_t^* \to 1$.

PROOF. For $\alpha > \alpha_0$, $t-1 < t^* < t+1$, hence if r_t is ultimately increasing, $(t-1)^c \le r_{t-1}/r_t < r_{t^*}/r_t \le (t+1)^c/t^c$. If r_t is ultimately decreasing, then the same argument can be applied to $1/r_t$.

Lemma 2. If, for some positive c, $n^{-c} \ll \varrho_n \ll n$, and if for a positive q we define $r_t = \varrho_{[qt]}$, $\omega = (n-qt)/\varrho_n$, and $\omega^* = (n-qt)/r_t$, then as $\alpha \to \infty$, $\limsup |\omega| = \limsup |\omega^*|$.

PROOF. Let $p=p(\alpha)=(|n-qt|+n^{-c})/\varrho_n$, $p^*=(|n-qt|+n^{-c})/r_t$, then p and p^* are positive, and $p/p^*=r_t/\varrho_n=\varrho_{[qt]}/\varrho_n\to 1$ by lemma 1, since $qt/n=1-\omega\varrho_n/n\to 1$ when ω is bounded. Also $p=|\omega|+n^{-c}/\varrho_n$, hence $\limsup p=\limsup |\omega|$, and similarly $\limsup p^*=\limsup |\omega^*|$. Again when ω is unbounded, so is $\omega^*=\omega\varrho_n/r_t$.

Lemma 3. If $b_k > 0$, $c_k \not > \infty$, then for $n_0 < n < p$,

$$c_n \sum_{k=n}^p b_k \leq \sum_{k=n}^p b_k c_k \leq c_p \sum_{k=n}^p b_k.$$

This is trivial, but will be often used.

In what follows we shall define for a positive number q, and for a positive sequence x_n such that $x_n \ll n$,

(2. 1)
$$\omega = \omega(\alpha) = \frac{n(\alpha) - qt(\alpha)}{x_{n(\alpha)}}, \text{ and } \Omega = \limsup_{\alpha \to \infty} |\omega(\alpha)|.$$

When $\tau_k \ll k$, the smallest constant A, finite or infinite, for which the inequality

(2. 2)
$$\limsup_{\limsup |\omega| = \Omega} |\sigma_t - s_n| \le A \limsup_{k \to \infty} |\tau_k u_k|$$

is satisfied for a fixed Ω and for every series in $U(\tau_k)$ will be denoted by

$$(2.3) A(q, \Omega, x_n).$$

When $x_n = 1$ for $n > n_0$, we shall write $A(q, \Omega, 1_n)$.

3. Theorems and proofs

Theorem 3. I. If a regular summability method $\{a_n(t)\}$ has for the class U(k) a finite T-constant for some positive q, then the constant A(q) is finite for every positive q, and $A(q) \rightarrow \infty$ as $q \rightarrow 0$ and as $q \rightarrow \infty$.

Theorem 3. II. If $1_k \ll \tau_k \ll k$, $1_n \ll x_n \ll n$, and if for the class $U(\tau_k)$ and for the regular method $\{a_n(t)\}$ the T-constant $A(q, \Omega, x_n)$ is finite for one positive value λ of q, and for one non-negative value Ω_0 of Ω , then

- (i) $A(q, \Omega, x_n) = \infty$ when $q \neq \lambda$ for every Ω and for any $x_n (1_n \ll x_n \ll n)$;
- (ii) x_n/τ_n is bounded;

(iii) $A(\lambda, \Omega, y_n)$ is finite for every y_n such that y_n/τ_n is bounded and for every Ω , it has its minimum at $\Omega = 0$, and tends to infinity with Ω ;

(iv) if the same method is applied to another class $U(\tau_k^*)$, where $\tau_k \ll \tau_k^* \ll k$, then finite T-constants exist for the same λ , for all Ω and for all y_n such that y_n/τ_n^* is bounded.

Theorem 3. III. There are regular methods

- (i) which have no finite T-constants for U(k);
- (ii) which have finite T-constants for U(k) but none for any class $U(\tau_k)$ such that $\tau_k \ll k$.

PROOF OF 3. I. Let q and q_0 be distinct positive numbers, and let $A(q_0)$ be finite. Let $n/t \to q_0$, and $n/t' \to q$. For each t' we define n' as $n' = [q_0t']$ so that $n'/t' \to q_0$ and $n'/n \to q_0/q$. Let Σu_k be any series in U(k) so that $\limsup |ku_k| = L$ is finite. Here, and later we shall use the trivial inequalities:

$$|\sigma_{t'} - s_n| \le |s_{n'} - s_n| + |\sigma_{t'} - s_{n'}|,$$

$$|\sigma_{t'} - s_n| \ge |s_{n'} - s_n| - |\sigma_{t'} - s_{n'}|.$$

As $\alpha \to \infty$, $\limsup |\sigma_{t'} - s_{n'}| \le A(q_0)L$, and for $\alpha > \alpha_0$

$$|s_{n'}-s_n| \leq (L+\varepsilon) \left| \sum_{k=n}^{n'} 1/k \right| \leq (L+\varepsilon) |\log (q_0/q)|,$$

206 P. Vermes

so that, by (3.1) and (3.2),

$$|\log(q_0/q)| - A(q_0) \le A(q) \le |\log(q_0/q)| + A(q_0).$$

This proves the theorem.

PROOF OF 3. II. To prove (i), we first observe that

(3.3) if
$$\Omega < \Omega_0$$
 then $A(q, \Omega, x_n) \leq A(q, \Omega_0, x_n)$ for any q and any x_n ,

since the left term refers to a closer approach. Let $q \neq \lambda$. For each n we define first n' as $n' = [\lambda n/q]$ and the $t' = n'/\lambda$ so that for the series $\Sigma 1/\tau_k$ we obtain $\limsup |\sigma_{t'} - s_{n'}| \leq A(\lambda, 0, x_n)$, and this is finite by (3. 3). Again, for $n > n_0$, $n'/n = [\lambda n/q]/n > C > 0$, where C is a constant different from 1. Applying lemma 3 we obtain when n' > n

and when n' < n, the last term is replaced by $|\log C|n'/\tau_{n'}$. Hence (i) follows from (3. 2).

To prove (ii) and (iii) we consider any bounded function $\omega(\alpha)$, such that $\limsup |\omega| = \Omega$, and any given sequence such that $1_n \ll x_n \ll n$. For each n we define n' as $n' = [|n - \omega x_n|]$ and t' as $t' = n'/\lambda$, so that for any series in $U(\tau_k)$ again $\limsup |\sigma_{t'} - s_{n'}| \le A(\lambda, 0, x_n)L$. Let $\omega' = (n - \lambda t')/x_n = (n - n')/x_n$, then $\omega' = \omega + \eta_n/x_n$, where for $n > n_0$ $|\eta_n| < 1$, so that $\limsup |\omega'| = \limsup |\omega|$. Again, for $n > n_1$,

(3.5)
$$1 - (\Omega + 1)x_n/n < n'/n < 1 + (\Omega + 1)x_n/n,$$

hence, for $n > n_2$

(3.6)
$$(\Omega + 1)x_n/2n < |\log(n'/n)| < 2(\Omega + 1)x_n/n.$$

Taking $u_k = 1/\tau_k$, we obtain, as in (3.4), for $n > n_3$ and n' > n,

$$|s_{n'} - s_n| > |\log(n'/n)| n/\tau_n > (\Omega + 1)x_n/2\tau_n,$$

and (ii) follows from (3.2) and (3.7) when $\Omega = \Omega_0$.

For any u_k such that $\limsup |\tau_k u_k| = L$ is finite, using (3.6) and lemma 3, and with y_n replacing x_n , and assuming that n' > n, we obtain

(3. 8)
$$\limsup_{n'} |s_{n'} - s_n| < 2L(\Omega + 1)(y_n/n)(n'/\tau_{n'}) = 2L(\Omega + 1)(n'/n)(\tau_n/\tau_{n'})(y_n/\tau_n).$$

Now (3. 5) shows that $n'/n \to 1$, and by lemma 1, $\tau_n/\tau_n \to 1$ and y_n/τ_n is bounded, hence by (3.1) $A(\lambda, \Omega, y_n)$ is finite for any Ω . The same result holds when n' < n. The *T*-constant decreases with Ω , and exists at $\Omega = 0$, hence it attains its minimum there, and (3. 7) shows that it tends to infinity with Ω . This proves (iii).

To prove (iv) we observe that $U(\tau_k^*)$ is a subclass of $U(\tau_k)$ so that $A_{\tau^*}(\lambda, \Omega_0, x_n)$ is finite, hence by (iii) so is $A_{\tau^*}(\lambda, \Omega, y_n)$ for every Ω and for every y_n such that y_n/τ_n^* is bounded.

PROOF OF 3. III. (i) follows from the example:

Let $\{a_n(t)\}$ be defined by $\sigma_t = s_{[t^2]}$, then for the series $\Sigma 1/k$ and for q > 0 we have $\sigma_t - s_n = s_{[n^2/q^2]} - s_n = 0$ (log n) which is unbounded.

To prove (ii), let 0 < x < y < 1, and let L(x), L(y) be the corresponding Laurent matrices. Anjaneyulu ([5]) proved that for L(x) the value of λ is x/(1-x), hence for L(y) it is $\lambda' = y/(1-y)$. Let $\{a_{m,n}\}$ be the matrix formed by taking all rows in succession alternately from L(x) and L(y). Then for any $U(\tau_k)$ with $1_k \ll \tau_k \ll k$, theorem 3. II (i) would require that for odd m, (m+1)/2n should tend to λ , and for even m, m/2n should tend to λ' . This shows that no finite T-constant exists for such a class. But for U(k) both L(x) and L(y) have finite T-constants for any positive q, A(q) and A'(q) say. Hence for our "mixed" matrix the T-constant is the larger of A(q/2) and A'(q/2).

4. Examples

Theorem 3. II has shown how the existence of a finite T-constant depends for a given method on the class $U(\tau_k)$ to which the method is applied. If $\tau_k \ll k$, there is at most one value of q, $q = \lambda$, to which the ratio n/t must tend, and the smaller is the order of τ_k , the closer must be the approach. To find finite T-constants to any given regular method, the first problem is to find the (unique) number λ (if any) belonging to the method, the next problem is to find the best possible, hence the smallest, order of τ_k , and the last problem is to find the values of the T-constants for all admissible values of q, Ω and x_n . Here we shall show how λ can be found for a wide class of methods; we do not attempt to give general rules for solving the other two more difficult problems

(4.1) Sonnenschein methods [20, 21].

These are generated by a non-constant function $a(z) = \sum a_n z^n$ such that $a_n \ge 0$, and $\sum a_n = 1$. If, for $t \ge 0$, $(a(z))^t = \sum a_n(t)z^t$, then the sequence to function transformation $\sigma_t = \sum_n a_n(t)z^n$ is regular. A Sonnenschein *matrix* is given by $a_{m,n} = a_n(m)$ for $n, m = 0, 1, 2, \ldots$. For example:

 e^{z-1} generates the Borel method $\{e^{-t}t^n/n!\}$ [6, 12];

$$1 - p + pz$$
, $0 , the Euler matrix $\left\{ \binom{m}{n} (1 - p)^{m-n} p^n \right\}$ [1, 16, 22, 25];$

$$\frac{pz}{1-(1-p)z}, \ 0 also called Taylor matrix
$$\left\{ \binom{n-1}{m-1} p^m (1-p)^{n-m} \right\}$$$$

$$\frac{p}{1-(1-p)z}$$
, $0 , the Laurent matrix $\left\{ \left(\frac{m+n-1}{m-1} \right) p^m (1-p)^n \right\}$ [16, 25].$

When Σna_n converges so that its sum is a'(1) (as in all the above examples), then for $t \ge 1$ and $|z| \le 1$, $\Sigma na_n(t)z^n = zd(a(z))^t/dz = tz(a(z))^{t-1}a'(z)$ so that $\Sigma na_n(t) = ta'(1)$. Hence the method $\{a_n(t)\}$ transforms the sequence $s_n = n$ into the function

208 P. Vermes

a'(1)t. Hence if $n/t \to q$, then $\limsup |\sigma_t - s_n| = \limsup |a'(1)t - qt|$ is finite for this particular sequence if and only if q = a'(1), so that a'(1) is the value of λ . Hence for the: Borel method $\lambda = 1$, Euler matrix $\lambda = p$, Taylor matrix $\lambda = 1/p$, Laurent matrix $\lambda = (1-p)/p$, the same as given by Anjaneyulu ([5]), his parameter x being our parameter 1-p.

(4.2) Hausdorff and allied matrices.

The *Hausdorff matrices* are generated by a mass-function $\mu(x)$ of bounded variation in the closed interval [0, 1], and such that $\mu(x)$ is continuous at 0+, and $\mu(0)=0$, $\mu(1)=1$. The matrix is defined by the integral

$$a_{m,n} = \int_{0}^{1} {m \choose n} (1-x)^{m-n} x^{n} d\mu(x), \quad [6, 12],$$

and the integrand is analogue to the Euler matrix.

The Quasi-Hausdorff matrix is generated by the same type of mass function, and

$$a_{m,n} = \int_{0}^{1} {n-1 \choose m-1} x^{m} (1-x)^{n-m} d\mu(x) \quad [12, 17, 18],$$

the integrand being analogue to the Taylor matrix.

The Laurent-Hausdorff matrix is generated by the same mass function

$$a_{m,n} = \int_0^1 {m+n-1 \choose m-1} x^m (1-x)^n d\mu(x)$$
 [19] analogue to the Laurent matrix.

Hence by an argument similar to that in (4.1) we obtain:

for the Hausdorff matrix
$$\lambda=\int\limits_0^1x\,d\mu(x),$$
 Quasi-Hausdorff matrix $\lambda=\int\limits_0^1\frac{d\mu(x)}{x},$ Laurent—Hausdorff matrix $\lambda=\int\limits_0^1\frac{(1-x)\,d\mu(x)}{x}.$

(4.3) Abel method.

This is a series to function transformation, defined by $\sigma_x = \Sigma u_k x^k$, 0 < x < 1, and $x \nearrow 1$. Putting $x = e^{-1/t}$, we obtain $\sigma_t = \Sigma u_k e^{-n/t}$, $t \to \infty$. When $s_n = n + 1$, so that $u_k = 1$, we have $\sigma_t = 1/(1 - e^{-1/t})$, hence $|\sigma_{n/q} - s_n|$ is bounded as $n \to \infty$ only if q = 1. Thus the only possible value for λ is 1.

References

[1] R. P. AGNEW, Euler transformations, Amer. J. Math., 66 (1944), 313-338.

[2] R. P. Agnew, Abel transforms and partial sums of Tauberian series, Ann. of Math., 50 (1949), 110—117.

[3] R. P. Agnew, Borel transforms of Tauberian series, Math. Z., 67 (1957), 51-62.

- [4] K. ANJANEYULU, Tauberian constants and Quasi-Hausdorff seires to series transformations, J. Indian Math. Soc., 28 (1964), 69—82.
- [4] K. Anjaneyulu, Tauberian constants for Laurent series continuation matrix transforms, Annals Univ. Sci. Budapest, Sectio Math., 7 (1964), 157—168.

[6] R. G. COOKE, Infinite matrices and sequence spaces, Macinillan (1950).

- [7] V. F. Cowling, Summability and analytic continuation, Proc. Amer. Math. Soc., 1 (1950), 536—542.
- [8] H. Delange, Sur les théorèmes inverses des procédés de sommation, Ann. Sci. École Norm. Sup., (3) 67 (1950), 99—160.

[9] M. FEKETE, New methods of summability, J. London Math. Soc., 33 (1958), 466-470.

- [10] V. GARTEN, Über Taubersche Konstanten bei Cesaroschen Mittelbildungen, Comm. Math. Helvetici, 25 (1951), 311—355.
- [11] H. HADWIGER, Über ein Distanztheorem bei der A-Limitierung, Comm. Math. Helv., 16 (1944), 209—214.

[12] G. H. HARDY, Divergent series, Oxford (1949).

- [13] G. H. HARDY and J. E. LITTLEWOOD, Theorems concerning the summability of series by Borel's exponential method, *Rend. Circ. Math. Palermo*, **41** (1916), 36—53.
- [14] A. Jakimovski, Tauberian constants for Hausdorff transformations, Bull. Res. Council Israel, 9F (1961), 175—184.
- [15] A. Meir, Tauberian constants for a family of transformations, Ann. of Math., 78 (1963), 594—599.
- [16] W. MEYER—KŐNIG, Untersuchungen über einige verwandte Limitierungsverfahren, Math. Z., 52 (1949), 257—304.
- [17] M. S. RAMANUJAN, Series to series Quasi-Hausdorff transformations, J. Indian Math. Soc., 17 (1953), 47—54.
- [18] M. S. RAMANUJAN, A note on Quasi-Hausdorff series to series transformations, J. London Math. Soc., 32 (1957), 27—32.
- [19] M. S. RAMANUJAN, On Hausdorff and Quasi-Hausdorff methods of summability, Quart. J. Math. Oxford Ser., 8 (1957), 197—213.

[20] J. Sonnenschein, Sur les séries divergentes, Thèse, Bruxelles (1946).

- [21] J. SONNENSCHEIN, Sur les séries divergentes, Bull. Acad. Royale de Belgique, 35 (1949), 594-601.
- [22] J. TEGHEM, Sur des procédès de sommations issues de la transfromation d'Euler, Thèse, Bruxelles, (1946).
- [23] J. TEGHEM, Sur des transformations des séries, Acad. Roy. Belgique. Bull. Cl. Sci. (5) 36 (1950), 730—741, and 37 (1951), 21—33.
- [24] J. TEGHEM, Sur des procédès de sommation dérivés d'une méthode de Hardy-Littlewood—Fekete, Extrait du 70 Congres de l'A. F. A. S., Tunis (1951).
- [25] P. Vermes, Series to series transformations and analytic continuation by matrix methods, Amer. J. Math., 71 (1949), 541—552.

[26] R. Wais, Das Taylorsche Summierungsverfahren, Dissertation, Tübingen (1935).

- [27] W. Biegert, Über Tauber-Konstanten beim Borel-Verfahren, Math. Z., 92 (1966), 331-339.
- [28] W. BIEGERT, Tauber-Konstanten f
 ür verschiedene Tauber-Bedingungen bei den Kreisverfahren der Limitierungstheorie, Israel Journal of Math., 4 (1966), 97—112.

(Received June 26, 1967.)