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On stars of coverings and uniform spaces

By SANDOR GACSALY]I (Debrecen)

It is the aim of this note to elucidate some aspects of the interrelation existing
between coverings of a set and symmetrical perfect topogenous orders defined on
that set. In particular, we shall give a syntopogenous characterization of uniformities
based on their definition as systems of coverings. !)

§ 1. Coverings and symmetrical perfect topogenous orders

Let E be a nonvoid set. Coverings of E will be denoted by lower case Greek
letters. A cover the members of which are pairwise disjoint will be called a partition.
For =, f covers of E, we write

«Np={ANB|Aca, BEP},

and 2= f will mean that for any 4 €« there exists a B¢ f§ satisfying AS B. — We
still need the following

Definition 1. A symmetrical perfect topogenous order on E is a relation
< defined on the set of all subsets of E, satisfying the following axioms:

(01) 0<0,E<E;
(02) A=B=AC B;
(03) AS A" <=B'SB=A<B;
(P) A;<B (ie=>U{4icl}<B;
(S) A<B=E—B<E—-A.}?
Remark. (03) and (P’) together imply
(P) A;<B; (ieD=U{4)jicl}<U{B)icl}.

) Of course, the syntopogenous characterization of uniformities based on their definition as
systems of coverings can be inferred from two known results, (7.33) in [1] and ,,Koetkov’s theorem™
in [2]. Nevertheless, an explicit formulation of this result and its (nontrivial) direct proof might de-
serve some interest.

) As usual, the sign JJ indicates the end of a proof or of a statement.
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Again, (P) and (S) together imply
Q) A;<B; (ieD=N{Aicl} < N{Blici}. |}

Between covers and symmetrical perfect topogenous orders a close connection
is established by the following

Theorem 1. (1) If y is a cover of E, then the relation <, defined between subsets
of E by
A<,B<St(4, ) B

is a symmetrical perfect topogenous order ) on E.

(2) For any symmetrical perfect topogenous order < on a set E there exists
a cover y of E such that <= = =,.

(3) If = and <=, are symmetrical perfect topogenous orders on E satisfying
<,E <=, then there exist covers y and 6 of E, such that = =<, <,=-<; and
y=

=2

On the other hand, y =46 always implies <;< <,.

Proor. (1) Let y be a cover of E. Clearly,
xUy e (3GEy)x, yeG

is a reflexive and symmetrical relation. Put

A=<, B [XEA} B
e L ad ny -y €B,
or equivalently
A<,Be St(4, y)SB.

By [1], (5.41), the relation <, is a biperfect topogenous order. In view of the
implication
St(4, ))SB=>St(E—B,y)SE—-A

it is even symmetrical:
A<,B=E—B<,E—A.
(Of course, it is also possible to check the conditions of Definition 1. directly.)
(2) For x€E put
Ux)=N{V|x<V}={y|x<E—y).

Clearly, {U(x)|x€ E} is a cover of E, symmetrical in the sense that

yeU(x)yexeU(y).
Let
y={H |xe H=>=HZ U(x)}.

) Bchmrse, St(A4, y)=U}Gey|Gn A=0},
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For any x€E, x¢ U(x) implies {x} €y, so y is a cover of E. Moreover, {x, y}€y
for x€ E and y€ U(x). Indeed,

xe U(x)
y€eU(x)

yeU(x) = xe U(y)
yeu(y)
We see that y is a cover of E, and also that
St(x, )=Ux)
for any x¢ E. Now each of the following conditions is equivalent to the next one:
A<=B,
x=B (xcA),
U(x)S B (x€A),
U{UR)xe4)S B,
U{St (x, y)|x€ A} S B,
St (4, y)< B,
A<,B.
(3) Put U,(x)=N{V|ix<,V} and
d={H|xe H=>HS U (x)}.

One sees that =, = =;. Moreover, =,S < implies U(x)E U,(x) for x€E and
so He U(x) implies He U,(x). Hence we get ySd=y=4.

Again, if y=J, then St(4, y)SSt(4, ) for any AS E. Thus we have the
implication

} = {x, y} € U(x),
and

} = {x, y} & U(y).

y=o0=><;S=<,.}

Let us now supplement the results of the previous theorem by a characterization
of those orders *) <, which are generated by partitions y. One easily sees that the
many-to-one correspondence

}‘ — {}'
becomes one-to-one, if we restrict y to run through the partitions of E. More detailed
information about partition-generated orders <, is contained in the following

Theorem 2. (1) A symmetrical perfect topogenous order - is generated by
a partition iff

A<=B=[AS HE B for some H satisfying H < H].

4) Unless the contrary is explicitely stated, the words ,,order’and ,,relation” stand for ,,symmet-
rical perfect topogenous order™.
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(2) If arelation < is generated by a partition y, then this y is uniquely determined
as the class of minimal self-preceding subsets of E:

Hey iff H<H and 0%GcH=G<4G.

PrOOF. Part (2) is clear; so is the necessity of the condition in (1). The only
thing to prove is the sufficiency of that condition: Suppose it holds for an order
<, and for x€ E put U(x)= N{V|x<V}. Clearly x<U(x), and in view of the
condition and of the fact that U(x) is the smallest set H satisfying x < H, we also
have U(x) < U(x). By what has just been said, the implication

x=A=U(Xx)S A
also holds.
Let us now establish the implication
(%) Ux)NU(p) #0=U(x)=U(y).
First of all, ze U(x)= x€ U(z)

U(z) < U(z)} =x=<U(z)=>U(x)S U(z). By symmetry we

get U(z)S U(x) and finally ze U(x)=>U(z) = U(x).
Let now be z€U(x) and z€ U(y). Then
U@)=U(x)=U()
and () results proved.
Thus y={U(x)|x€ E} is a partition of E and in the same way as in the proof
of Theorem 1. we get A <Biff U{U(x)/x€A}< B, and this in turn iff St (4, y)S B.
(In establishing the second ,,iff”” we have to make use of the implication

acU(x)=U(a)=U(x).)1

§ 2. A characterization of uniformities defined as systems of coverings

We start with the following well-known (see e.g. [2] or [3])

Definition 2. A system X of coverings of a set E is a uniformity on E if the
following conditions are satisfied:

a€EX
(C1n ag/;}:’ﬁ”:
(C2) a, feZ =>alPeZ;
(C3) a€Z = (IPEX)[{St(x, Plx€E} = o].§

The uniformities of a given set are partially ordered in a natural way:
2, E3o(@eX, ~acl,).
Remark. 5) Condition (C3) can be replaced by the following one:
2 a€ Z=(IBEX)[{St (B, p)|BEp} =0a].

5) See e.g. [2], p. 563, bottom. For the readers convenience,we expose in detail the proof outlined
there.
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ProoF. (C3a) implies (C3), since from x & B there follows St (x, )< St (B, p).

On the other hand, (C3) implies (C3a). As a matter of fact, if to a given a€ X
a cover y€ X is chosen by (C3), and to this y a cover € X is chosen again by (C3),
then f satisfies the requirement of (C3a) with respect to a: If {St(x, y)|x€E}=a,
and {St(x, p)|x€ E} =7y, then for B¢f we have

St (B, p)= U{St (x, p)|x< B},
BC St (x, p)S Gy

and for any x€B,

Thus, for any fixed x, € B, we can infer from
xo € BS N{G,|x¢€ B}
St (B, p)S U{G,lxe B}S St (xo, 7). I
Definition 3. A nonvoid family & ={<|< €%} of symmetrical perfect

topogenous orders on a set E is a symmetrical perfect syntopogenous structure
on E, if it satisfies the following conditions:

that

(S <1, <€ =2([A<€F)(<1 & <b=E&<);

(S2) <e#=3<es)(=s<I

Remark. Condition (S2) is capable of the following more explicit formulation:
If =€, then there exists a <’¢.% such that

A< B=(3C)(A<"C<’'B).}

Definition 4. A symmetrical perfect syntopogenous structure % on a set
E is said to be descending, if the implication

34
) i SN

holds for any symmetrical perfect topogenous order <, over E. |
The symmetrical perfect syntopogenous structures on a given set E can be
partially ordered by the following convention:

L= 0[<€L=2(F<,€5)(<,& <))l

For a given order < over E and x€E, write now U_(x)= N{V|x< ¥V} and
put y. ={U.(x)|x€E}. Clearly, y. is a cover of E. (As a matter of fact, y_ will
be a cover of E, as soon as < has property (02).) With these notations, there results
the following useful

Lemma. St(x,y.)=U_.2x) for x€E, and consequently
{St (x’ ?<)|x€E} =Y

for any symmetrical perfect topogenous order < on E.
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Remark. =2 is a symmetrical perfect topogenous order on E, whenever
< is. (See [1], (2.16), (3.53) and (4.23).)

Proor.
U.(x)=N{V|x<V}={ylx<E-y},

and by the symmetry of =, x4 E—yey<E—x, ie.
yeUcdx)oxeUd(y).
Also, x<=U_(x) by the perfectness of <, and
x<=HoeU_(x)SH.
Now, each of the following conditions is equivalent to the next one:
x<?H;
x=K<=H forsome KCE;
x<U.(xX)SK<H forsome KCSE;
x<U.(x)<H;
U.(x)<H;
yv<H forany yeU._.(x);
U.(WEH forany yeU_(x);
U{U(»|yeU(x}E H;
U{U.O)Ixe UM} EH;

St(x, 7 )E H.
Thus we have proved

x<!*H e St(x,y) S H,

establishing thereby the lemma. ||
Now we are able to characterize ®) uniformities defined as systems of coverings
by the following

Theorem 3. (1) Let X be a uniformity on E. For yc X and A, BS E put A<,B=
=St (4, y)EB, and ¥ y={<,|y€Z}.

The set &5 is a descending, symmetrical and perfect syntopogenous structure
on E.

(2) Let & be a descending, symmetrical and perfect syntopogenous structure
on E. For <€% and x€E put U.(x)=N{V|x<V}, and let

7<={U<(x)|x€E}.

%) This characterization of uniformities differs slightly from that given in [1], Chapter 7.: We
need a ,,descending condition™ absent in [1]. This difference is due to the fact that here we are dealing
with ,,whole uniformities™ and not with (symmetrical) bases for them as is the case in [1].
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Let now X, be the set of covers of E with some y. inscribed:
Z,={y|y=y< Jforsome <¢c%}.

The set X, is a uniformity on E.

(3) The mappings £ ~%s and & —~ X, are one-to-one correspondences, inverse
to each other, between the sets of all uniformities and all descending symmetrical
and perfect syntopogenous structures on E, which preserve the respective partial
orders.

PrROOF. (1) By Theorem 1. part (1) each relation <, is a symmetrical perfect
topogenous order on E. Moreover, the set & is descending. As a matter of fact,
if y is a cover of E and <=, < <,, then there exists 7) a cover 6 such that <=, = <,
and y=0.

Let & be defined as in the proof of part (3) of Theorem 1. Then =, = <;, and
G ey implies G€4. Indeed, if x€G then GE U,(x), and this because in view of
G< St (x, y) we have the implications

YEG=2x& ,E-y=a>x§  E—yox{;E—y=>yec U (x).

Thus we have established yS 9, and thereby also y=4.

We still have to prove that &, satisfies the two conditions laid down in Defini-
tion 3.

(S1): Let y,0€Z. If y=4, then <=, <, by Theorem 1. part (3).

Now let <, , =, €%, Then y,, y,€Z, and this in turn implies y, Ny, €Z.
Put y=7y,Ny,. Then

YEN=<,E <

and

757’2:"‘:?,% "::y!

i.e. (S1) holds with —=,=<, ,.€%;.
(S2): Let =€y, ie. ===, for some y€Z. — Choose 6€ X so as to have
{St (K, 90)|Ked}=1.
Now let us show that
A<,B=A<;St (4, 0)<;B.
We clearly have 4 <;St (A4, §). At the same time, we also have St (A4, d)<;B,

i.e. we have
xeSt(4,90)

x,yEK€EO

Indeed, x€St (A4, d) implies the existence of a K, €4d such that x¢ K, and
K,NA#0.
Also, we have

}3yEB.

x, yEKSSt(K,0)SGey
and in view of x€KNK,, K, S St (X, 9).

7) This is a somewhat stronger result than the one contained in part (3) of Theorem 1. As a
matter of fact, here we have to find a d corresponding to a fixed y, whereas in the earlier result only the
relation < was fixed but not the cover y satisfying <= <. (The correspondence y - =<, is, of course,
many-to-one!)
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Now, if x, €K, N A, then x, €4 and x,, yeG€Yy.

From A<,B we now get y€B, and St (4, d)<;B results proved.
(2) We have to check the three conditions of Definition 2.

(C1): Clear.

(C2): We see that for =,, <,¢.% the implication

<, S <, 2[U(x)S U, (x) (XEE))

holds, and consequently =, S =,=y_,=y.,.
Let now be y,0¢€Z,. Then y., =y and y., =6 for some <,, <,€%. By
(S1) there is a < €% such that =, < and =,& <. Thus however

?( -=£ },<|
V< = V<,

This shows that yMNdeZ,.

(C3): Let y€Z,, ie. let y. =y for some <¢Z.

Choose now =€ in accordance with (S2), i.e. let <Z <3}. (Of course,
<3S <, €& implies <}¢ &, but we do not use this fact.) We see that

}=>?¢ = 7<,NMre, =700

o g{f:y<f =B P
and so, by the Lemma, we obtain
?-:} - {St (x: }’(I)IXEE} E?«'

(3 Let Z+Fsand & =X, If ¥ =5, then Z,=2Z. Indeed,

Zo={y|y=y. forsome <€},
i.e. in our case

Zo={yly=y., forsome =<,€Ls}={yly=y., forsome peZ}.
Now y.,={U_.(x)|x€E}, and by virtue of
Uco(x)=N{V[x<,V}=N{VISt(x, QS V}=St(x, 0)

Ty {St (x, @)lx€ E]'
We see that y € Z, for & = Fiff {St (x, )|x € E} =7y for some ¢ € Z. This, howe-
ver, means that Z,=2X. As a matter of fact, for any uniformity X we have
a€Ze(3IPED)[{St (x, p)|x€E}=a],

the implication = being simply condition (C3), and the reverse implication <«
being true because by (Cl) B={St(x, f)|x€E}=a implies x€ X for any peZ.

Again, let y'*z_gr and Z""‘ugpx.

If Z=2Z, then ¥5=&.

First of all,

Fs={=<,lreZ}={<,reZ}={<,ly=y. forsome <¢c¥}.
Consider now the subset
{<,ly=y< forsome < ¢}

we get
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of &5, and let <, be an arbitrary element of this subset, i.e. let there be a < €%
such that A< B iff St(4, y.)S B.
Now, each of the following statements is equivalent to the next one:

St(4, y<)E B,
St(a, y.)S B for acA,
U.:(a)S B for afcA,
a=>B (acA),
A<*B.
This shows that <=, =<2, and also that
{<lv=rd={<<€e5}
Now let y=y.. In view of a=f=<,S <, we have
Fe={<,ly=y. forsome <ecF}={<’|<’'S<? forsome <¢cF}=¢.

Indeed, if =’€¢% then =’C <? for some = €% by condition (S2) from
Definition 3. — On the other hand, <’C <?C <¢% implies <’€% by the
descending condition.

Let us still show that the mappings just considered are order-preserving:
The implications

Egzlﬁyrgyziﬂyréyxl
are evident.

On the other hand, ¥ =% ,=>2,52, . Indeed, let yeZ,, ie let y=y.
for some = €%,

By =%, we have <& <; for some <;€%;, and <& <=y, =y,
now yields

PEY Y, DV,
fora <,;€%;,i.e. y€Z,.}

References

[1] A. CsAszAr, Foundations of general topology, Oxford, 1963.
[2] Ju. M. SmirNov, O prostranstvah blizosti. Mat. Sbornik 31 (1952), 543—574.
[3] J. W. TukEy, Convergence and uniformity in topology. Princeton, 1940.

( Received August 14, 1967.)



