On lattice-ordered algebras with infinitary operations

By O. STEINFELD (Budapest)

Dedicated to Professor A. G. Kuroš on his 60-th birthday

§ 1. Introduction

In the papers [3], [4] L. Fuchs began the systematical investigation on partially ordered (universal) algebras with finitary operations. The purpose of this paper is to introduce a class of lattice-ordered algebras with infinitary operations which play an important rôle in the theory of algebras with infinitary operations.

Let C denote a closure system on a set A. An operation g on A is called C-admissible if every $X \in C$ is closed under it. In Proposition 2. 2 it is proved that every C-admissible v-ary operation on A induces a v-ary operation \bar{g} on C such that \bar{g} is *isotone* in its variables. Furthermore \bar{g} is *contractive* in C, i.e. for every $X \in C$

$$\bar{g}(X, X, ..., X, ...) \subseteq X$$

holds. (The definitions of the fundamental notions are given in § 2.)

Let $\mathfrak{A} = \langle A; F \rangle$ be an algebra (with infinitary or finitary operations). We assume that the meet of all subalgebras of \mathfrak{A} is not void. It is known that the set $S(\mathfrak{A})$ of all subalgebras of \mathfrak{A} forms a closure system on A.

Let $\langle V; G \rangle$ denote an algebra with the following properties:

(i) V is a lattice under a partial order \leq ;

(ii) every fundamental operation $g(\in G)$ is isotone in its variables;

(iii) every $g(\in G)$ is contractive in V.

By an algebra-lattice $\mathfrak{B} = \langle V; G; \leq \rangle$ we mean an algebra $\langle V; G \rangle$ with the properties (i), (ii), (iii). $\mathfrak{B} = \langle V; G; \leq \rangle$ is called a *complete algebra-lattice*, if V is a *complete* lattice under the partial order \leq . Making use of the Dedekind—MacNeille completion method we prove that every algebra-lattice is isomorphic to some subalgebra-lattice of a complete algebra-lattice. (See Theorem 5.1.)

In Theorem 2. 3 it is proved that every closure system C on a set A forms a complete algebra-lattice under the set inclusion and under the operations $\bar{g}_0, \bar{g}_1, ..., \bar{g}_n, ...$ induced by the C-admissible operations $g_0, g_1, ..., g_n, ...$ on A. This theorem implies that the set $S(\mathfrak{A})$ of all subalgebras of an algebra \mathfrak{A} forms a complete algebra-lattice under suitable operations. (See Corollary 2. 4.)

Conversely, for every complete algebra-lattice $\mathfrak{B} = \langle V; G; \leq \rangle$ one can construct an algebra $\mathfrak{A} = \mathfrak{A}(\mathfrak{B})$ uniquely determined by \mathfrak{B} such that the complete algebra-lattice $S(\mathfrak{A})$ of all subalgebras of \mathfrak{A} is isomorphic to \mathfrak{B} . (See Theorem 3. 2.) The

proof of this representation theorem is based on Lemma 3.1, in which we show

that $S(\mathfrak{A})$ coincides with the set of all closed intervals [0, a] $(a \in V)$.

A subalgebra \mathfrak{B} of a complete algebra-lattice $\mathfrak{B} = \langle V; G; \leq \rangle$ is called a complete subalgebra-ideal of B, if B is a complete ideal of the complete lattice $\langle V; \leq \rangle$. In Lemma 3.1 it is proved that the set $I(\mathfrak{B})$ of all complete subalgebraideals of $\mathfrak B$ coincides with the set of all closed intervals [0, a] $(a \in V)$ too. Thus one can show that \mathfrak{B} and $I(\mathfrak{B})$ are isomorphic complete algebra-lattices by the mapping

 $a \rightarrow [0, a]$ $(a \in V)$.

(See Theorem 3. 3.)

For algebraic closure systems on a set and for finitary algebras we can sharpen the mentioned results. E.g. the set of all subalgebras of a finitary algebra forms a compactly generated algebra-lattice and conversely, for a compactly generated algebra-lattice B there exists a finitary algebra, whose subalgebras form a compactly generated algebra-lattice isomorphic to \mathfrak{V} . (See Corollary 4. 3 and Theorem 4. 5. In these results the known lattice-theoretical theorems of BIRKHOFF and FRINK [1] are extended for algebra-lattices.)

In § 6 we define the complete grupoid-lattice which is a special complete algebralattice. Example 6. 2 (6. 4) shows that the set of all subgroups of a group (the set of all subrings of a ring) forms a complete grupoid-lattice under suitable operations. Examples 6. 8 and 6. 9 are applications of Corollary 2. 4 and Theorem 3. 2.

§ 2. On algebras and complete algebra-lattices

Let A be a non-void set and let v be an ordinal number. A v-ary operation on A is a function $f(x_0, x_1, ..., x_\eta, ...)$ $(\eta < v)$ which associates with every sequence $a_0, a_1, ..., a_{\eta}, ... (\in A; \eta < v)$ an element $f(a_0, a_1, ..., a_{\eta}, ...)(\eta < v)$ of A. If f is a (v-ary) operation on the set A, then we say that A is closed under the operation f. In the case $v = n < \omega_0$, a n-ary operation is called *finitary*. A 0-ary (nullary) operation picks out a certain distinguished element in A. The v-ary operations, where $v \ge \omega_0$ are called *infinitary*.

Let τ be an ordinal number. A sequence $\mathfrak{A} = \langle A; f_0, f_1, ..., f_{\xi}, ... \rangle$ $(\xi < \tau)$ in which A is a non-void set and f_{ξ} is a v_{ξ} -ary operation on A is called an algebra of type $A = \langle v_0, v_1, ..., v_{\xi}, ... \rangle$ ($\xi < \tau \rangle$. τ is called the order of A. In the algebra $\mathfrak{A} = \langle A; f_0, f_1, ..., f_{\xi}, ... \rangle$ A denotes the underlying set and $f_0, f_1, ..., f_{\xi}, ...$ are the fundamental operations on A. Two algebras of the same type are called similar.

(We use mostly the notions and the terminology of J. SLOMINSKY [9]).

Let $\mathfrak{A} = \langle A; f_0, f_1, ..., f_{\xi}, ... \rangle$ be an algebra of type $\Lambda = \langle v_0, v_1, ..., v_{\xi}, ... \rangle$ $(\xi < \tau)$ of order τ and B a non-void subset of A. If the fundamental operations $f_0, f_1, ..., f_{\xi}, ... (\xi < \tau)$ are also operations on B, that is if B is closed under each of the operations $f_0, f_1, ..., f_{\xi}, ...$ ($\xi < \tau$), then the sequence $\mathfrak{B} = \langle B; f_0, f_1, ..., f_{\xi}, ... \rangle$ ($\xi < \tau$) is also an algebra of type Λ . \mathfrak{B} is called a *subalgebra of algebra* \mathfrak{A} . We also write $\langle A; F \rangle$ for $\mathfrak{A} = \langle A; f_0, f_1, ..., f_{\xi}, ... \rangle$ and $\langle B; F \rangle$ for the subalgebra $\langle B; f_0, f_1, ..., f_{\xi}, ... \rangle$ of \mathfrak{A} .

Let $S(\mathfrak{A})$ denote the set of all subalgebras $\mathfrak{B}_{\gamma} = \langle B_{\gamma}; F \rangle$ $(\gamma \in \Gamma)$ of an algebra $\mathfrak{A} = \langle A; F \rangle$. If $\mathfrak{B}_{\delta} = \langle B_{\delta}; F \rangle$ ($\delta \in A \subseteq \Gamma$) is a family of subalgebras of \mathfrak{A} , then the set-theoretical intersection $\bigcap_{\delta \in A} \mathfrak{B}_{\delta} = \langle \bigcap_{\delta \in A} B_{\delta}; F \rangle$ of the subalgebras \mathfrak{B}_{δ} is either the void set or a subalgebra of $\mathfrak A$. In this paper we assume that the intersection of all subalgebras of an algebra $\mathfrak A$ is always a subalgebra of $\mathfrak A$. Thus the set $S(\mathfrak A)$ of all subalgebras of an algebra $\mathfrak A$ forms a complete lattice under the set-theoretical inclusion.

If X is a non-void subset of the underlying set A of an algebra $\mathfrak{A} = \langle A; F \rangle$ and $\mathfrak{B}_{\delta}(\delta \in \Delta)$ is the family of all subalgebras of \mathfrak{A} which contain X, then the intersection $\bigcap_{\delta \in \Delta} \mathfrak{B}_{\delta}$ is the *subalgebra of* \mathfrak{A} *generated by* X. This subalgebra will be denoted by $\{X\}$.

Let A be an arbitrary set and B(A) the set of all its subsets. A subset C of B(A) is said to be a *closure system* if C is closed under intersections, i.e. for any subsystem

 $D \subseteq C$, we have $\cap D \in C$.

Note that $A \in C$, by the definition of the intersection of a void family of subsets. Since a closure system C admits arbitrary intersections, it is easy to prove that C forms a complete lattice (with respect to the set-theoretical inclusion). However, it need not be a sublattice of B(A). (See P. M. COHN [2] Ch. II. 1.)

Let $\mathfrak{A} = \langle A; F \rangle$ be an algebra. The complete lattice $S(\mathfrak{A})$ of all subalgebras

of A is e.g. a closure system of A.

A closure operator on a partially ordered set $\langle P; \leq \rangle$ is a mapping Φ of P into itself with the properties:

(2.1) if
$$x \le y$$
, then $\Phi(x) \le \Phi(y)$,

$$(2.2) x \le \Phi(x),$$

$$(2.3) \Phi(\Phi(x)) = \Phi(x)$$

for all $x, y \in P$.

For a closure operator Φ the element $\Phi(x)$ is called the Φ -closure of x; if an element x coincides with its Φ -closure, it is said to be Φ -closed.

The following theorem is proved in COHN [2].

Theorem 2. 1. (See [2] Ch. II. Theorem 1. 1). Every closure system C on a set A defines a closure operator Φ on the complete lattice B(A) of all subsets of A by the rule

$$\Phi(X) = \bigcap_{X \subseteq Y \in C} Y$$
 $(X \in B(A)).$

Conversely, every closure operator Φ on B(A) defines a closure system C on A by

$$C = the set of all X \in B(A)$$
 with $\Phi(X) = X$,

and the correspondence $C \leftrightarrow \Phi$ between closure systems and closure operators thus defined is bijective.

Let us consider a closure system C of a set A. We call an operation g on A

C-admissible if every set $X \in C$ is closed under the operation g.

Let g be an arbitrary v-ary operation on the set A which is C-admissible with respect to the closure system C on A. For a sequence $A_0, A_1, ..., A_{\eta}, ... \in C(\eta < v)$ the set of all elements $g(a_0, a_1, ..., a_{\eta}, ...)$ where a_{η} is an arbitrary element of A_{η} ($\eta < v$) is denoted by $g(A_0, A_1, ..., A_{\eta}, ...)$. Let Φ denote the closure operator

on B(A) corresponding to C, determined by Theorem 2.1. We define the operation \bar{g} on the set C by the equality

$$(2.4) \bar{g}(A_0, A_1, ..., A_n, ...) = \Phi(g(A_0, A_1, ..., A_n, ...)) (\eta < \nu).$$

We call \bar{g} the operation on C induced by g. (Cf. L. Fuchs [4]).

Let $S = S(\mathfrak{A})$ denote the closure system of all subalgebras of an algebra $\mathfrak{A} = \langle A; F \rangle$. In view of Theorem 2.1 the closure operator Φ determined by $S = S(\mathfrak{A})$ has the form

$$\Phi(X) = \bigcap_{X \subseteq Y \in S(\mathfrak{A})} Y = \{X\} \qquad (X \in S(\mathfrak{A})).$$

Let g be an arbitrary S-admissible v-ary operation on A. For a sequence \mathfrak{B}_0 , \mathfrak{B}_1 , ..., ..., \mathfrak{B}_{η} , ... $(\eta < v)$ of subalgebras of \mathfrak{A} the operation \bar{g} on $S(\mathfrak{A})$ induced by g is defined by

$$(2.4') \qquad \bar{g}(\mathfrak{B}_0,\mathfrak{B}_1,\ldots,\mathfrak{B}_n,\ldots) = \{g(\mathfrak{B}_0,\mathfrak{B}_1,\ldots,\mathfrak{B}_n,\ldots)\} \qquad (\eta < \nu).$$

Let $\langle P; \leq \rangle$ be a partially ordered set. A v-ary operation f on P is isotone in its variables $x_0, x_1, ..., x_\eta, ...(\eta < v)$ if the inequalities $a_\eta \leq b_\eta$ $(a_\eta, b_\eta \in P; 0 \leq \eta < v)$ imply the inequality

$$f(a_0, a_1, ..., a_n, ...) \le f(b_0, b_1, ..., b_n, ...)$$
 $(\eta < v)$

for each sequence $a_0, a_1, ..., a_n, ... \in P$.

A μ -ary operation g on P is called contractive in P if

$$(2.5) g(\overset{0}{a},\overset{1}{a},\ldots,\overset{\xi}{a},\ldots) \leq a (\xi < \mu)$$

holds for every element a of P.

Proposition 2. 2. Let C be a closure system on a set A and g a C-admissible v-ary operation on A. Then the v-ary operation \bar{g} on C induced by g has the following properties:

- (a) \bar{g} is isotone in its variables,
- (b) \(\bar{g}\) is contractive in C.

PROOF. Because of (2.1) and (2.4) the operation g has evidently the property (a). As g is a C-admissible operation on A, for every $B \in C$

$$\bar{g}(\overset{0}{B},\overset{1}{B},\ldots,\overset{\eta}{B},\ldots)=\Phi\big(g(\overset{0}{B},\overset{1}{B},\ldots,\overset{\eta}{B},\ldots)\big)\subseteq\Phi(B)=B.$$

holds, where Φ denotes the closure operator on B(A) corresponding to C. Thus \bar{q} is contractive in C.

We can now define a class of partially ordered algebraic systems which plays an important rôle in this paper.

Let $\langle V; f_0, f_1, ..., f_{\xi}, ... \rangle$ be an algebra of type $\Lambda = \langle v_0, v_1, ..., v_{\xi}, ... \rangle$ ($\xi < \tau$) of order τ with the following properties:

(i) in V a partial order \leq is defined such that V forms a lattice under it. (The lattice operations are denoted by \wedge and \vee);

(ii) every fundamental operation $f_0, f_1, ..., f_{\xi}, ...(\xi < \tau)$ is isotone in its variables;

(iii) every $f_0, f_1, ..., f_{\xi}, ...(\xi < \tau)$ is contractive in V. By an algebra-lattice $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ we mean an algebra $\langle V; f_0, f_1, ..., f_{\xi}, ... \rangle$ of type $\Lambda = \langle v_0, v_1, ..., v_{\xi}, ... \rangle$ ($\xi < \tau$) of order τ , satisfying the properties (i), (ii), (iii). (An algebra-lattice is a special lattice-ordered algebra with infinitary operations; for the definition of lattice-ordered algebras with finitary operations see in Fuchs [3] p. 117.)

If we assume instead of (i) the condition

(i') in V a partial order \leq is defined such that V forms a complete lattice under it. (The lattice operations are denoted by ∧ and ∨), then the algebra-lattice $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ is called *complete*.

Naturally a complete algebra-lattice $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ has a least element $0 = \bigwedge_{x \in V} x$ and a greatest element $e = \bigvee_{x \in V} x$.

With the help of Proposition 2. 2 we can prove

Theorem 2.3. Let C be a closure system on a set A, σ an ordinal number and $G = \langle g_0, g_1, ..., g_{\eta}, ... \rangle$ $(\eta < \sigma)$ a sequence of C-admissible operations on A. If \bar{g}_{η} is the operation on C induced by g_{η} $(\eta < \sigma)$, then C forms a complete algebra-lattice under the operations $\bar{g}_0, \bar{g}_1, ..., \bar{g}_{\eta}, ...(\eta < \sigma)$ and under the set inclusion \subseteq .

PROOF. If $g_0, g_1, ..., g_{\eta}, ...(\eta < \sigma)$ are μ_0 -ary, μ_1 -ary, ..., μ_{η} -ary, ... $(\eta < \sigma)$ operations on A, then in view of Proposition 2. 2 $\bar{g}_0, \bar{g}_1, ..., \bar{g}_{\eta}, ...(\eta < \sigma)$ are μ_0 -ary, μ_1 -ary, ..., μ_{η} -ary, ... operations on C. Thus $\mathfrak{C} = \langle C; \bar{g}_0, \bar{g}_1, ..., \bar{g}_{\eta}, ... \rangle$ $(\eta < \sigma)$ is an algebra of type $\langle \mu_0, \mu_1, ..., \mu_{\eta}, ... \rangle$ of order σ . We have to show that the algebra C satisfies the condition (i'), (ii), (iii). Evidently C is a complete lattice under the set-theoretical inclusion. As every operation $\bar{g}_0, \bar{g}_1, ..., \bar{g}_{\eta}, ... (\eta < \sigma)$ has the properties (a) and (b), therefore conditions (ii) and (iii) are fulfilled.

Since the set $S(\mathfrak{A})$ of all subalgebras of an algebra $\mathfrak{A} = \langle A; F \rangle$ is a closure system on A, Theorem 2. 3 implies the following

Corollary 2.4. Let $\mathfrak{A} = \langle A; F \rangle$ be an algebra and $S = S(\mathfrak{A})$ the closure system of all subalgebras of \mathfrak{A} . If σ is an ordinal number and $G = \langle g_0, g_1, ..., g_{\eta}, ... \rangle$ $(\eta < \sigma)$ a sequence of S-admissible operations on A, then S forms a complete algebra-lattice under the operations $\bar{g}_0, \bar{g}_1, ..., \bar{g}_{\eta}, ...$ and under the set inclusion, where \bar{g}_{η} is the operation on S induced by $g_{\eta}(\eta < \sigma)$.

Remark 1. It is possible that two S-admissible operations f, g of an algebra $\mathfrak A$ are different but the operations $\bar f$, $\bar g$ on the set $S(\mathfrak A)$ induced by f and g are identical. E.g. let R be an associative ring and let

$$f(a, b) = a + b,$$
 $g(a, b) = a + b - ab$ $(a, b \in R)$

be two admissible binary operations on R. If A and B are two arbitrary subrings of R, then in view of (2.4')

$$\bar{f}(A, B) = \{a+b; a \in A, b \in B\}$$
 and $\bar{g}(A, B) = \{a+b-ab; a \in A, b \in B\}$

are two operations on the set S(R) of all subrings of R. The elements f(a, b)

and g(a, b) of R are generally not equal, but $\bar{f}(A, B)$ and $\bar{g}(A, B)$ both are the subring of R generated by A and B.

Remark 2. Evidently not all the identities of the algebra $\mathfrak{A} = \langle A; f_0, f_1, ..., f_n \rangle$..., f_{ξ} , ... \rangle ($\xi < \tau$) retain their validity in the algebra $\langle S(\mathfrak{A}); \bar{f}_0, \bar{f}_1, ..., \bar{f}_{\xi}, ... \rangle$ where $\bar{f}_{\xi}(\xi < \tau)$ is the operation on $S(\mathfrak{A})$ induced by f_{ξ} . (See Example 6.3).

§ 3. A representation theorem on complete algebra-lattices

Let $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ $(\xi < \tau)$ be a complete algebra-lattice. $\mathfrak{B} = \langle W; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ $(\xi < \tau)$ is a *complete subalgebra-lattice* of \mathfrak{B} , if W is a subalgebra and a complete sublattice of \(\mathbb{B} \).

We call a (non-void) subset A of a complete lattice $\mathfrak{L} = \langle L; \wedge, \vee \rangle$ a complete

ideal of Ω , if the following two conditions hold:

(1) if $a_i(a_i \in A; \lambda \in A)$ denotes an arbitrary system of elements of A, then $\forall a_{\lambda} \in A;$ $\lambda \in \Lambda$

(2) if $a \in A$ and $x \in L$, then $a \land x \in A$.

Evidently every complete ideal of a complete lattice Ω is a complete sublattice

A complete subalgebra-lattice $\mathfrak{B} = \langle W; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ of a complete algebra-lattice $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\eta}, ...; \wedge, \vee \rangle$ is called a *complete subalgebra-ideal* of \mathfrak{B} , if $\langle W; \wedge, \vee \rangle$ is a complete ideal of the complete lattice $\langle V; \wedge, \vee \rangle$.

In Corollary 2. 4 we give a method how one can obtain complete algebralattices from a given algebra. Now we shall define to every complete algebra-lattice B a uniquely determined algebra which plays an important rôle in the representation

Let $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ be an arbitrary complete algebra-lattice. We define for every element a of V the following unary operation g_a on V:

(3.1)
$$g_a(x) = \begin{cases} a, & \text{if } a \lor x = x, \\ 0, & \text{if } a \lor x \neq x \end{cases} \quad (x \in V).$$

Let $g_a, g_b, ...(a, b, ... \in V)$ be a sequence of all unary operations defined by (3.1). We call the algebra $\mathfrak{A} = \mathfrak{A}(\mathfrak{B}) = \langle V; f_0, f_1, ..., f_{\xi}, ...; \land, \lor; g_a, g_b, ... \rangle$ the algebra belonging to the complete algebra-lattice \mathfrak{B} . (If α is the cardinality of Vand $\alpha \ge \aleph_0$, then we consider the meet \wedge and join \vee as infinitary operations on V.)

Lemma 3.1. Let $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ be a complete algebra-lattice. For a non-void subset W of V the following conditions are equivalent: (a) $\mathfrak{W} = \langle W; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ is a complete subalgebra-ideal of \mathfrak{B} ; (b) $0 \in W$ and $\mathfrak{W} = \langle W; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ is a convex 1) complete subalgebra lattice of \mathfrak{R} :

- subalgebra-lattice of B;
 - (c) W has the form W = [0, w], where $w = \bigvee x$;

(d) $\mathfrak{B} = \langle W; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee; g_a, g_b, ... \rangle$ is a subalgebra of the algebra $\mathfrak{A} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee; g_a, g_b, ... \rangle$ belonging to \mathfrak{B} .

¹⁾ A subset of a partially ordered set is called convex if it contains the whole interval [a, b] whenever it contains the endpoints a, b.

PROOF. The implication (a) \Rightarrow (b) follows immediately from the property (2). (b) \Rightarrow (c). As W is closed under the operation \vee , the element $w = \bigvee_{x \in W} x$ belongs

to W. Thus $0, w \in W$ and the convexity of W imply (c).

(c) \Rightarrow (d). Let us assume that W=[0, w] $(w=\bigvee x)$ holds. We have to prove that W is closed under every fundamental operation $f_0, f_1, ..., f_{\xi}, ..., \land, \lor, g_a, g_b, ... (a, b, ... \in V)$ on V. Evidently W=[0, w] is closed under the operations \land and \lor . By the conditions (ii) and (iii) the operations $f_0, f_1, ..., f_{\xi}, ...$ are isotone in their variables and they are contractive in V, therefore [0, w] $(w \in V)$ is closed under these operations too. Let us consider an arbitrary unary operation g_k $(k \in V)$. If for the element y of the closed interval [0, w] the relation $k \lor y = y$ holds, then $0 \le k \le y \le w$ and so because of (3.1)

$$g_k(y) = k \in [0, w].$$

If z is an element of [0, w] with the property $k \lor z \neq z$, then in view of (3.1)

$$g_k(z) = 0 \in [0, w]$$

holds. Thus the interval W = [0, w] is closed under each operation $g_k \in V$.

(d) \Rightarrow (a). Let $\mathfrak{B} = \langle W; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee; g_a, g_b, ... \rangle$ be a subalgebra of the algebra $\mathfrak{A} = \mathfrak{A}(\mathfrak{B}) = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee; g_a, g_b, ... \rangle$ belonging to \mathfrak{B} . As the underlying set W is closed under the operations $f_0, f_1, ..., f_{\xi}, ..., \wedge$ and \vee , therefore $\mathfrak{B} = \langle W; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ is a complete subalgebra-lattice of \mathfrak{B} . We have only to show that $\langle W; \wedge, \vee \rangle$ is a complete ideal of the complete lattice $\langle V; \wedge, \vee \rangle$. By the definition of \mathfrak{B} the property (1) holds evidently. If $a \in W$ and $x \in V$, then for the element $b = a \wedge x$

$$g_b(a) = b = a \wedge x$$
 $(b \vee a = a)$

holds. As W is closed under the unary operation g_b , therefore $a \land x = b = g_b(a) \in W$. Thus the property (2) holds too.

With the help of Lemma 3.1 we can prove our main result. First we must

define some fundamental notions.

Let $\mathfrak{A} = \langle A; f_0, f_1, ..., f_{\xi}, ... \rangle$ and $\mathfrak{B} = \langle B; f'_0, f'_1, ..., f'_{\xi}... \rangle$ be two similar algebras of type $A = \langle v_0, v_1, ..., v_{\xi}, ... \rangle$ ($\xi < \tau$) of order τ . Let us assume that φ is a one-to-one mapping of A onto B such that

$$\varphi(f_{\xi}(a_0, a_1, ..., a_{\eta}, ...)) = f'_{\xi}(\varphi(a_0), \varphi(a_1), ..., \varphi(a_{\eta}), ...) \quad (\xi < \tau; \eta < v_{\xi})$$

holds for each pair of fundamental operations f_{ξ} , f'_{ξ} and for all sequences a_0 , a_1 , ..., ..., a_{η} , ... $(\in A; \eta < v_{\xi})$, then we say that the algebras $\mathfrak A$ and $\mathfrak B$ are isomorphic by the isomorphism φ .

We call the (complete) algebra-lattices $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ and $\mathfrak{B} = \langle W; f'_0, f'_1, ..., f'_{\xi}, ...; \wedge', \vee' \rangle$ isomorphic, if the similar algebras $\langle V; f_0, f_1, ..., f_{\xi}, ... \rangle$ and $\langle W; f'_0, f'_1, ..., f'_{\xi}, ... \rangle$ furthermore the (complete) lattices $\langle V; \wedge, \vee \rangle$ and $\langle W; \wedge', \vee' \rangle$ are isomorphic by the same isomorphism φ .

Theorem 3. 2. Let $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ $(\xi < \tau)$ be a complete algebra-lattice and let $\mathfrak{A} = \mathfrak{A}(\mathfrak{B}) = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee; g_a, g_b, ... \rangle = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee; g_a, g_b, ... \rangle$ be the algebra belonging to \mathfrak{B} . Let

 $\langle S = S(\mathfrak{A}); \cap, \cup \rangle$ denote the complete lattice of all subalgebras of \mathfrak{A} . Then \mathfrak{B} is isomorphic to the complete algebra-lattice $\mathfrak{S} = \langle S; \overline{f}_0, \overline{f}_1, ..., \overline{f}_{\xi} ...; \cap, \cup \rangle$, where \overline{f}_{ξ} is the operation on $S = S(\mathfrak{A})$ induced by f_{ξ} ($\xi < \tau$).

PROOF. From the equivalence of the conditions (c) and (d) in Lemma 3.1 we obtain that the set $S = S(\mathfrak{A})$ of all subalgebras of the algebra $\mathfrak{A} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee; g_a, g_b, ... \rangle$ is exactly the set of all closed intervals [0, a] $(a \in V)$. If $f_0, f_1, ..., ..., f_{\xi}, ... (\xi < \tau)$ are v_0 -ary, v_1 -ary, ..., v_{ξ} -ary, ... operations on V, then the induced operations $f_0, f_1, ..., f_{\xi}, ... (\xi < \tau)$ are v_0 -ary, v_1 -ary, ..., v_{ξ} -ary, ... operations on $S(\mathfrak{A})$. Namely, for an arbitrary sequence $[0, a_0], [0, a_1], ..., [0, a_{\eta}], ... (a_0, a_1, ..., ..., a_{\eta}, ... \in V; \eta < v_{\xi})$ of subalgebras of \mathfrak{A}

(3. 2)
$$\vec{f}_{\xi}([0, a_0], [0, a_1], ..., [0, a_{\eta}], ...) = \{f_{\xi}([0, a_0], [0, a_1], ..., [0, a_{\eta}], ...)\}$$

 $(\eta < v_{\xi})$

holds, according to (2. 4'). In view of Corollary 2. 4 $\mathfrak{S} = \langle S; \bar{f}_0, \bar{f}_1, ..., \bar{f}_{\xi}, ...; \cap, \cup \rangle$

is a complete algebra-lattice.

Now we will show that the given complete algebra-lattice $\mathfrak{B} = \langle V; f_0, f_1, ..., ..., f_{\xi}, ...; \wedge, \vee \rangle$ ($\xi < \tau$) is isomorphic to \mathfrak{S} . First we remark that the algebras $\langle V; f_0, f_1, ..., f_{\xi}, ... \rangle$ and $\langle S; \overline{f}_0, \overline{f}_1, ..., \overline{f}_{\xi} ... \rangle$ both are of the same type $\Delta = \langle v_0, v_1, ..., v_{\xi}, ... \rangle$ ($\xi < \tau$) of order τ . It is enough to prove that the mapping

$$(3.3) \varphi: a \to [0, a] (a \in V; [0, a] \in S(\mathfrak{A}))$$

of V onto $S(\mathfrak{A})$ is an isomorphism between the algebras $\langle V; f_0, f_1, ..., f_{\xi}, ... \rangle$, $\langle S(\mathfrak{A}); \overline{f}_0, \overline{f}_1, ..., \overline{f}_{\xi}, ... \rangle$ and between the complete lattices $\langle V; \wedge, \vee \rangle, \langle S(\mathfrak{A}); \cap, \cup \rangle$. Naturally φ is a one-to-one mapping of V onto $S(\mathfrak{A})$. Thus we have to show only the following properties of homomorphism:

(3.4) for every sequence $a_0, a_1, ..., a_n ... (\in V; \eta < v_{\xi})$

$$f_{\xi}(a_0, a_1, ..., a_n, ...) \rightarrow [0, f_{\xi}(a_0, a_1, ..., a_n, ...)] = \bar{f}_{\xi}([0, a_0], [0, a_1], ..., [0, a_n], ...);$$

(3. 5) for every system of elements $a_{\lambda} (\in V; \lambda \in \Lambda)$ the relations

$$\bigwedge_{\lambda \in A} a_{\lambda} \to [0, \bigwedge_{\lambda \in A} a_{\lambda}] = \bigcap_{\lambda \in A} [0, a_{\lambda}] \quad \text{and} \quad \bigvee_{\lambda \in A} a_{\lambda} \to [0, \bigvee_{\lambda \in A} a_{\lambda}] = \bigcup_{\lambda \in A} [0, a_{\lambda}]$$
hold.

Because of the definition of the operation $\bar{f}_{\bar{z}}$

$$(3. 6) f_{\xi}(a_0, a_1, \dots, a_{\eta}, \dots) \in \overline{f_{\xi}}([0, a_0], [0, a_1], \dots, [0, a_{\eta}], \dots) (\eta < v_{\xi}).$$

As $\bar{f}_{\xi}([0, a_0], [0, a_1], ..., [0, a_{\eta}], ...)$ is a subalgebra of \mathfrak{A} , therefore it must have the form

$$\bar{f}_{\varepsilon}([0, a_0], [0, a_1], ..., [0, a_n], ...) = [0, b] \quad (b \in V)$$

Thus (3. 6) implies $[0, f_{\xi}(a_0, a_1, ..., a_{\eta}, ...) \subseteq \bar{f}_{\xi}([0, a_0], [0, a_1], ..., [0, a_{\eta}], ...)$. Conversely, according to (3. 2) the subalgebra $\bar{f}_{\xi}([0, a_0], [0, a_1], ..., [0, a_{\eta}], ...)$ is generated by all the elements $f_{\xi}(x_0, x_1, ..., x_{\eta}, ...)(x_0 \in [0, a_0], x_1 \in [0, a_1], ..., ..., x_{\eta} \in [0, a_{\eta}], ...(\eta < v_{\xi})$. Since f_{ξ} is isotone in its variables, we have

$$0 \le f_{\xi}(x_0, x_1, ..., x_n, ...) \le f_{\xi}(a_0, a_1, ..., a_n, ...) \quad (0 \le x_n \le a_n; \eta < v_{\xi}),$$

whence $\bar{f}_{\xi}([0, a_0], [0, a_1], ..., [0, a_n], ...) \subseteq [0, f_{\xi}(a_0, a_1, ..., a_n, ...)]$ $(\eta < v_{\xi})$ follows.

Thus (3. 4) is proved.

Let us show that the relation (3. 5) is true. Namely, if x is an element of the subalgebra $[0, \bigwedge_{\lambda \in \Lambda} a_{\lambda}]$ then $0 \le x \le \bigwedge_{\lambda \in \Lambda} a_{\lambda} \le a_{\lambda}$ $(\lambda \in \Lambda)$ holds, whence $x \in \bigcap_{\lambda \in \Lambda} [0, a_{\lambda}]$. On the other hand, if the element y is contained in every subalgebra $[0, a_{\lambda}]$ $(\lambda \in \Lambda)$, then $y \leq \bigwedge_{\lambda \in A} a_{\lambda}$. Hence $y \in [0, \bigwedge_{\lambda \in A} a_{\lambda}]$.

Because $\bigcup_{\lambda \in A} [0, a_{\lambda}]$ denotes the subalgebra of $\mathfrak A$ generated by the subalgebras $[0, a_{\lambda}]$ $(\lambda \in \Lambda)$, therefore $\bigvee_{\lambda \in \Lambda} a_{\lambda} \in \bigcup_{\lambda \in \Lambda} [0, a_{\lambda}]$. On the other hand the subalgebra $\bigcup_{\lambda \in \Lambda} [0, a_{\lambda}]$ of \mathfrak{A} has the form $\bigcup_{\lambda \in \Lambda} [0, a_{\lambda}] = [0, u]$ with a suitable element $u \in V$, whence $[0, \bigvee_{\lambda \in \Lambda} a_{\lambda}] \subseteq \bigcup_{\lambda \in \Lambda} [0, a_{\lambda}] = [0, u]$ $\subseteq \bigcup_{\lambda \in \Lambda} [0, a_{\lambda}]$. Conversely, every subalgebra $[0, a_{\lambda}]$ $(\lambda \in \Lambda)$ of \mathfrak{A} is contained in the subalgebra $[0, \bigvee_{\lambda \in \Lambda} a_{\lambda}]$, therefore $\bigcup_{\lambda \in \Lambda} [0, a_{\lambda}] \subseteq [0, \bigvee_{\lambda \in \Lambda} a_{\lambda}]$ must hold. Thus (3.5_2) is proved and the proof of Theorem 3. 2 is finished.

Let us consider a complete algebra-lattice $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$. It follows from Lemma 3.1 that the set $I(\mathfrak{B})$ of all complete subalgebra-ideals of \mathfrak{B} coincides with the set of all closed intervals [0, a] $(a \in V)$. Hence $I(\mathfrak{B})$ is a closure system on V such that the operations $f_0, f_1, ..., f_{\xi}, ...$ are $I(\mathfrak{B})$ -admissible. If f_{ξ} is a v_{ξ} -ary operation and $[0, a_0], [0, a_1], ..., [0, a_{\eta}], ..., (\eta < v_{\xi}; a_0, a_1, ..., a_{\eta}, ... \in V)$ is an arbitrary sequence of complete subalgebra-ideals of B, then because of (2.4) and the properties of f_{ξ} the operation \bar{f}_{ξ} on $I(\mathfrak{B})$ induced by f_{ξ} satisfies the relation

(3.7)
$$\vec{f}_{\xi}([0, a_0], (0, a_1], ..., [0, a_n], ...) = [0, f_{\xi}(a_0, a_1, ..., a_n, ...)] \quad (\eta < v_{\xi}).$$

In view of Theorem 2. 3 $\mathfrak{T} = \langle I(\mathfrak{B}); f_0, f_1, ..., f_{\xi}, ...; \cap, \cup \rangle$ is a complete algebra-lattice. Lemma 3. 1 and Theorem 3. 2 imply that \mathfrak{B} is isomorphic to \mathfrak{T} by the mapping

(3.8)
$$a \to [0, a] \quad (a \in V).$$

So we have obtained:

Theorem 3. 3. Let $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ $(\xi < \tau)$ be a complete algebra-lattice and $I(\mathfrak{B})$ the set of all complete subalgebra-ideals of \mathfrak{B} . By the mapping (3.8) \mathfrak{B} is isomorphic to the complete algebra-lattice $\mathfrak{T} = \langle I(\mathfrak{B}); f_0, f_1, ..., f_{\xi}, ...$ \cap , \cup , where \bar{f}_{ξ} is the operation on $I(\mathfrak{B})$ induced by f_{ξ} ($\xi < \tau$).

We mention the following special case of Theorem 3.3.

Corollary 3. 4. Let L be a complete lattice. The set of all complete ideals of L forms under the set theoretical inclusion a complete lattice such that is isomorphic to L by the mapping (3.8).

§ 4. On finitary algebras and compactly generated algebra-lattices

An algebra $\mathfrak{A} = \langle A; f_0, f_1, ..., f_{\xi}, ... \rangle$ of type $\Delta = \langle n_0, n_1, ..., n_{\xi}, ... \rangle$ $(\xi < \tau)$ of order τ is called *finitary*, if n_0 , n_1 , n_ξ , ... are non-negative integers. For finitary algebras we can sharpen Theorems 2. 3 and 3. 2 and Corollary 2. 4.

An element a of a complete lattice $\langle L; \wedge, \vee \rangle$ is called *compact* if the following condition is satisfied: if $a \leq \bigvee_{\gamma \in \Gamma} x_{\gamma}(x_{\gamma} \in L)$, then there exists a finite subset $\Gamma'(\subseteq \Gamma)$ such that $a \leq \bigvee_{\gamma \in \Gamma} x_{\gamma}$.

By a compactly generated algebra-lattice $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ we mean a finitary algebra $\langle V; f_0, f_1, ..., f_{\xi}, ... \rangle$ of type $\Delta = \langle n_0, n_1, ..., n_{\xi} ... \rangle$ $(\xi < \tau)$ of order τ satisfying the properties (i'), (ii), (iii) and

(iv) every element b of the complete lattice $\langle V; \wedge, \vee \rangle$ can be written as $b = \bigvee_{\mu} a_{\mu}$, where all the a_{μ} are compact elements of V, i.e. $\langle V; \wedge, \vee \rangle$ is a compactly generated lattice.

A closure system C on a set A is called *algebraic* (or inductive) if every chain in C has a supremum in C.

The following result is known. (See G. GRÄTZER [6] Chapter 0, § 6, Theorem 4.)

Theorem 4.1. Every algebraic closure system C on a set A forms a compactly generated lattice with respect to the set inclusion.

Theorems 2.3 and 4.1 imply

Theorem 4. 2. Let C be an algebraic closure system on a set A, σ an ordinal number and $G = \langle g_0, g_1, ..., g_{\eta}, ... \rangle$ $(\eta < \sigma)$ a sequence of C-admissible finitary operations on A. If \bar{g}_{η} is the operation on C induced by g_{η} $(\eta < \sigma)$, then C forms a compactly generated algebra-lattice under the operations $\bar{g}_0, \bar{g}_1, ..., \bar{g}_{\eta}, ... (\eta < \sigma)$ and under the set inclusion.

In P. M. Cohn [2] it is proved that the set $S(\mathfrak{A})$ of all subalgebras of a finitary algebra \mathfrak{A} is an algebraic closure system. (See [2] Theorem 5. 2.) BIRKHOFF—FRINK [1] proved directly that $S(\mathfrak{A})$ forms a compactly generated lattice under the set inclusion.²)

These results, Theorem 4. 2 and Corollary 2. 4 imply

Corollary 4. 3. Let $\mathfrak{A} = \langle A; F \rangle$ be a finitary algebra and $S = S(\mathfrak{A})$ the algebraic closure system of all subalgebras of \mathfrak{A} . If σ is an ordinal number and $G = \langle g_0, g_1, ..., ..., g_{\eta}, ... \rangle$ $(\eta < \sigma)$ is a sequence of S-admissible finitary operations on A, then $\langle S; \bar{g}_0, \bar{g}_1, ..., \bar{g}_{\eta}, ...; \cap, \cup \rangle$ is a compactly generated algebra-lattice, where \bar{g}_{η} is the operation on S induced by g_{η} $(\eta < \sigma)$.

Let K denote the set of all compact elements of a compactly generated lattice $\mathfrak{L} = \langle L; \wedge, \vee \rangle$. Evidently the zero element 0 of \mathfrak{L} is always compact. As the union of two compact elements is a compact element, $\langle K; 0, \vee \rangle$ forms a semi-lattice with 0 under the nullary operation 0 and the binary operation \vee . We define for every element k of K the following unary operation g_k on K:

$$(4.1) g_k(x) = \begin{cases} k, & \text{if } k \lor x = x, \\ 0, & \text{if } k \lor x \neq x \end{cases} (x \in K).$$

Let $g_k, g_l, ... (k, l... \in K)$ be a sequence of all unary operations defined by (4.1).

²⁾ This theorem is generalized in G, GRÄTZER[5] for the subalgebras of an algebra (with infinitary operations).

We call the finitary algebra $\mathfrak{A} = \mathfrak{A}(K) = \langle K; 0, \vee, g_k, g_l, ... \rangle$ of type $\langle 0, 2, 1, 1, ... \rangle$ the finitary algebra belonging to K.

An *ideal* of a semilattice $\mathfrak{F} = \langle F; \vee \rangle$ is a non-void set A of F such that, for all

 $a, b \in F$

$$a \lor b \in A$$
 if and only if $a, b \in A$.

We prove the following analogon of Lemma 3.1.

Lemma 4. 4. (Cf. Grätzer—Schmidt [7]). Let K denote the set of all compact elements of the compactly generated lattice $\mathfrak{L} = \langle L; \wedge, \vee \rangle$. For a non-void subset B of K the following conditions are equivalent:

(a') B is an ideal of the semilattice ⟨K; ∀⟩;

(c') B has the form $B = [0, b] \cap K = [0, b]_K$, where $b = \bigvee y$;

(d') $\mathfrak{B} = \langle B; 0, \vee, g_k, g_l, ... \rangle$ is a subalgebra of the finitary algebra $\mathfrak{A} = \mathfrak{A}(K) = \langle K; 0, \vee, g_k, g_l, ... \rangle$ belonging to K.

PROOF. (a') \Rightarrow (c'). If B is an ideal of $\langle K; \vee \rangle$, then for the element $b = \bigvee_{y \in B} y$ $B \subseteq [0, b] \cap K = [0, b]_K$

holds. To show that $[0, b]_K = B$, we must prove that $x \in [0, b]_K$ implies $x \in B$. If $x \in [0, b]_K$, then x is a compact element with the property

$$x \leq b = \bigvee_{y \in B} y$$
.

Hence, $x \leq \bigvee_{y \in B'} y$ for some finite subset B' of B. Set $B' = \langle y_1, y_2, ..., y_n \rangle$ and $b' = y_1 \lor y_2 \lor ... \lor y_n$. Then $x \lor b' = b' \in B$ and the ideal property of B imply $x \in B$, which was to be proved.

(c') \Rightarrow (d'). Let $B = [0, b] \cap K = [0, b]_K$ with $b = \bigvee_{y \in B} y$. Evidently $0 \in [0, b]_K$ and $[0, b]_K$ is closed under the binary operation \vee . Now let us consider an arbitrary unary operation g_k ($k \in K$). (4. 1) implies for every element y of $[0, b]_K = B$ that $g_k(y) \in [0, b]_K$ holds. Thus $\langle B; 0, \vee, g_k, g_l, \ldots \rangle$ is a subalgebra of $\langle K; 0, \vee, g_k, g_l, \ldots \rangle$, indeed

(d') \Rightarrow (a'). Now let $\mathfrak{B} = \langle B; 0, \vee, g_k, g_l, ... \rangle$ be a subalgebra of $\mathfrak{A} = \mathfrak{A}(K) = \langle K; 0, \vee, g_k, g_l, ... \rangle$. If $x, y \in B$, then evidently $x \vee y \in B$. Conversely, let us assume that for the elements $k, l \in K$

$$k \vee l \in B$$

holds. We have to show that $k, l \in B$. Since B is closed under the operations g_k and g_l $(k, l \in K)$, it follows from (4.1)

$$g_k(k \vee l) = k \in B$$
 and $g_l(k \vee l) = l \in B$.

Thus B is an ideal of the semilattice $\langle K; \vee \rangle$.

For the compactly generated algebra-lattices, Theorem 3. 2 has the following analogon:

Theorem 4. 5. Let $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ be a compactly generated algebra-lattice and let K denote the set of all compact elements of the complete lattice $\langle V; \wedge, \vee \rangle$. The set $S(\mathfrak{A})$ of all subalgebras of the finitary algebra $\mathfrak{A} = \mathfrak{A}(K)$ belonging

to K forms under suitable operations a compactly generated algebra-lattice isomorphic to \mathfrak{B} .

PROOF. First we shall show that the mapping

$$(4.2) a \to [0, a]_K = [0, a] \cap K (a \in V)$$

is one-to-one. Let us assume that for the elements $a, b \in V$ the relation $[0, a]_K = [0, b]_K$ holds. Because of the condition (iv) one can write the element $a \in V$ in the form $a = \bigvee_{\lambda \in A} a_{\lambda}$, where $a_{\lambda} \in K$. This implies $a_{\lambda} \in [0, a] \cap K = [0, a]_K$ for every

 $\lambda \in \Lambda$, whence we obtain

$$a = \bigvee_{\lambda \in \Lambda} a_{\lambda} \leq \bigvee_{x \in [0, a]_K} x \leq a,$$

that is $a = \bigvee_{x \in [0, a]_K} x$. Similarly $b = \bigvee_{y \in [0, b]_K} y$. Thus the assumption $[0, a]_K = [0, b]_K$ implies a = b.

In view of Lemma 4. 4 we obtained that the set $S(\mathfrak{A})$ of all subalgebras of the finitary algebra $\mathfrak{A} = \langle K; 0, \vee, g_k, g_l, ... \rangle$ belonging to K is exactly the set of all intersections $[0, a]_K = [0, a] \cap K$ $(a \in V)$. It is known that $S(\mathfrak{A})$ forms a compactly generated lattice under the set-theoretical inclusion. Now we have to define the "suitable" operations on $S(\mathfrak{A})$. If the operations f(a) = f(a) on f(a) = f(a) on f(a) = f(a) on f(a) = f(a) on f(a) = f(a) of all subalgebras of the finitary algebra of the set-theoretical inclusion.

are n_0 -ary, n_1 -ary, ..., n_ξ -ary, ..., then we can define the following n_0 -ary, n_1 -ary, ..., ..., n_ξ -ary, ... operations $f_0', f_1', \ldots, f_\xi', \ldots (\xi < \tau)$ on $S(\mathfrak{A})$. For an arbitrary sequence $[0, a_1]_K, [0, a_2]_K, \ldots, [0, a_{n_\xi}]_K$ $(a_1, a_2, \ldots, a_{n_\xi} \in V)$ of subalgebras of \mathfrak{A} let

$$(4.3) f'_{\xi}([0, a_1]_K, [0, a_2]_K, ..., [0, a_{n_{\xi}}]_K) = [0, f_{\xi}(a_1, a_2, ..., a_{n_{\xi}})]_K.$$

It is obvious that the operation f'_{ξ} on $S(\mathfrak{A})$ defined by (4.3) is isotone in its variables and it is contractive in $S(\mathfrak{A})$.

Denoting by \cap and \cup the lattice-operations in $S(\mathfrak{A})$ we obtained that $\mathfrak{S} = \langle S(\mathfrak{A}); f'_0, f'_1, ..., f'_{\xi}, ...; \cap, \cup \rangle$ is a compactly generated algebra-lattice, furthermore $\langle V; f_0, f_1, ..., f_{\xi} ... \rangle$ and $\langle S(\mathfrak{A}); f'_0, f'_1, ..., f'_{\xi}, ... \rangle$ ($\xi < \tau$) are finitary algebras of the same type $\langle n_0, n_1, ..., n_{\xi}, ... \rangle$ of order τ . We shall show that the mapping (4. 2) is an isomorphism of the given compactly generated algebra-lattice \mathfrak{B} onto $\mathfrak{S} = \langle S(\mathfrak{A}); f'_0, f'_1, ..., f'_{\xi}, ...; \cap, \cup \rangle$. As we have seen (4. 2) is a one-to-one mapping.

For the operation f_{ξ} the property of homomorphism $f_{\xi}(a_1, a_2, ..., a_{n_{\xi}}) \rightarrow [0, f_{\xi}(a_1, a_2, ..., a_{n_{\xi}})]_K = f'_{\xi}([0, a_1]_K, [0, a_2]_K, ..., [0, a_{n_{\xi}}]_K) (a_1, a_2, ..., a_{n_{\xi}} \in V)$ follows from (4. 3).

To complete the proof, we have to show the relations

$$(4.4) \quad \bigwedge_{\lambda \in A} a_{\lambda} \to [0, \bigwedge_{\lambda \in A} a_{\lambda}]_{K} = \bigcap_{\lambda \in A} [0, a_{\lambda}]_{K} \quad \text{and} \quad \bigvee_{\lambda \in A} a_{\lambda} \to [0, \bigvee_{\lambda \in A} a_{\lambda}]_{K} = \bigcup_{\lambda \in A} [0, a_{\lambda}]_{K}$$

for an arbitrary system $a_{\lambda}(\lambda \in \Lambda)$ of elements of V. The proof of (4.4) is analogous to the proof of (3.5).

It follows from Lemma 4. 4 and the proof of Theorem 4. 5 the following analogon of Theorem 3. 3.

³⁾ Since the operations $f_0, f_1, ..., f_{\xi}, ... (\xi < \tau)$ generally are not $S(\mathfrak{A})$ -admissible, we cannot use Corollary 4.3.

Theorem 4. 6. Let $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ ($\xi < \tau$) be a compactly generated algebra-lattice and let $\langle K; \vee \rangle$ denote the semilattice of all compact elements of $\langle V; \wedge, \vee \rangle$. If I(K) denotes the set of all ideals of $\langle K; \vee \rangle$, then by the mapping (4. 2) \mathfrak{B} is isomorphic to the compactly generated algebra-lattice $\langle I(K); f'_0, f'_1, ..., ..., f'_{\xi}, ...; \cap, \cup \rangle$, where the operation f'_{ξ} ($\xi < \tau$) is defined by (4. 3).

This theorem is an extension of the mentioned result of GRÄTZER and SCHMIDT [7]

for the compactly generated algebra-lattices.

§ 5. Embedding of algebra-lattices into complete algebra-lattices

We shall prove the following

Theorem 5.1. Every algebra-lattice is isomorphic to some subalgebra-lattice of a suitable complete algebra-lattice.

This theorem is an analogon of the known result of MACNEILLE [8] about the embedding of lattices into complete lattices. (See e.g. G. Szász [10] Corollary of Theorem 27).

WARD [11] proved the following result.

Proposition 5. 2. Let Φ be a closure operator of a complete lattice L. The set Z_{Φ} of the Φ -closed elements of L forms a complete lattice under the operations

$$\inf_{z_{\Phi}} R = \inf_{L} R$$
, $\sup_{z_{\Phi}} R = \Phi (\sup_{L} R)$

for an arbitrary subset R of Z_{Φ} . (See e.g. G. Szász [10] Theorem 25.).

For a subset X of a partially ordered set $\langle P; \leq \rangle$ an upper (lower) bound of X in P is an element $u \in P$ ($v \in P$) such that $x \leq u$ ($x \geq v$) for every $x \in X$. The set of all upper (lower) bounds of X will be denoted by U(X)(L(X)). The set L(U(X)) = D(X) is called the *Dedekind cut* determined by X. It is easy to show that the following relations hold:

- (5.1) $X \subseteq Y \subseteq P$ implies $U(X) \supseteq U(Y)$ and $L(X) \supseteq L(Y)$,
- (5.2) $X \subseteq L(U(X))$ and $X \subseteq U(L(X))$,
- (5.3) U(L(U(X))) = U(X) and L(U(L(X))) = L(X).

One gets from (5.1), (5.2) and (5.3):

- (5.4) if $X \subseteq Y \subseteq P$, then $D(X) = L(U(X)) \subseteq L(U(Y)) = D(Y)$,
- $(5.5) \quad X \subseteq D(X) = L(U(X)) \qquad (X \subseteq P),$
- (5. 6) D(D(X)) = L[U(L(U(X)))] = L(U(X)) = D(X) $(X \subseteq P)$.

As the set B(P) of all subsets of the partially ordered set P forms a complete lattice under the set-theoretical inclusion, we have verified the following known result:

Proposition 5. 3. Let B(P) denote the complete lattice of all subsets of the partially ordered set P. The mapping

$$X \to L(U(X)) = D(X)$$
 $(X \in B(P))$

of B(P) into itself is a closure operator on B(P).

Now we begin the proof of Theorem 5. 1. Let $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ..., ; \wedge, \vee \rangle$ be an arbitrary algebra-lattice. If $B(\mathfrak{B})$ denotes the complete lattice of all subsets of the lattice $\langle V; \wedge, \vee \rangle$, then in view of Proposition 5. 3 the mapping

$$X \to L(U(X)) = D(X)$$
 $(X \in B(\mathfrak{V}))$

of $B(\mathfrak{V})$ into itself is a closure operator on $B(\mathfrak{V})$. Using Proposition 5.2 for the closure operator D on the complete lattice $B(\mathfrak{V})$ we get that the set Z_D of all D-closed elements of $B(\mathfrak{V})$ is a complete lattice under the operations of \inf_{Z_D} and \sup_{Z_D} , defined in Proposition 5.2. We shall show that Z_D forms under suitable operations a complete algebra-lattice, in which \mathfrak{V} can be embedded isomorphically.

Let us consider the fundamental operation f_{ξ} of V. If f_{ξ} is a v_{ξ} -ary operation, then we consider an arbitrary sequence $A_0, A_1, ..., A_{\eta}, ... \in Z_D \ (\eta < v_{\xi})$. Let $f_{\xi}(A_0, A_1, ..., A_{\eta}, ...)$ denote the set of all elements $f_{\xi}(a_0, a_1, ..., a_{\eta}, ...)$ $(a_0 \in A_0, a_1 \in A_1, ..., a_{\eta} \in A_{\eta}, ...)$. We define by

(5.7)
$$f_{\xi}^{*}(A_{0}, A_{1}, ..., A_{\eta}, ...) = L(U(f_{\xi}(A_{0}, A_{1}, ..., A_{\eta}, ...))) =$$
$$= D(f_{\xi}(A_{0}, A_{1}, ..., A_{\eta}, ...)) \quad (\eta < v_{\xi})$$

a v_{ξ} -ary operation 4) on Z_D . We are going to show that $\langle Z_D; f_0^*, f_1^*, ..., f_{\xi}^*, ...; \inf_{Z_D}, \sup_{Z_D} \rangle$ is a complete algebra-lattice.

If $A_0, A_1, ..., A_{\eta}, ... \in Z_D$ and $B_0, B_1, ..., B_{\eta}, ... \in Z_D$ are two sequences with the property $A_{\eta} \subseteq B_{\eta}$ $(0 \le \eta < v_{\xi})$, then

$$f_{\xi}(A_0, A_1, ..., A_{\eta}, ...) \subseteq f_{\xi}(B_0, B_1, ..., B_{\eta}, ...)$$
 $(\eta < v_{\xi}).$

This implies by (5.4) and (5.7)

$$f_{\xi}^*(A_0, A_1, ..., A_{\eta}, ...) \subseteq f_{\xi}^*(B_0, B_1, ..., B_{\eta}, ...)$$
 $(\eta < v_{\xi}).$

So f_{ξ}^* is isotone in its variables, i.e. property (ii) is fulfilled for the operation f_{ξ}^* . Now let us consider an arbitrary *D*-closed set $A(\in Z_D)$ and let $u(\in V)$ be an upper bound of *A*. If $f_{\xi}(a_0, a_1, ..., a_{\eta}, ...)$ ($a_0, a_1, ..., a_{\eta}, ... \in A$) denotes an arbitrary

upper bound of A. If $f_{\xi}(a_0, a_1, ..., a_{\eta} ...)$ $(a_0, a_1, ..., a_{\eta}, ... \in A)$ denotes an arbitrary element of the set $f_{\xi}(A, A, ..., A, ...)$ $(\eta < v_{\xi})$, then because of the conditions (ii) and (iii) given for f_{ξ}

$$f_{\xi}(a_0, a_1, \dots, a_{\eta}, \dots) \leq f_{\xi}(\overset{0}{u}, \overset{1}{u}, \dots, \overset{\eta}{u}, \dots) \leq u \qquad (\eta < v_{\xi})$$

holds. This means that every upper bound $u(\in V)$ of A is an upper bound of the set $f_{\xi}(A, A, ..., A, ...)$, that is

$$U(A) \subseteq U(f_{\xi}(\overset{0}{A},\overset{1}{A},\ldots,\overset{\eta}{A},\ldots)) \qquad (\eta < v_{\xi}).$$

⁴⁾ In (5.7) we extend the definition (8) of FUCHS [3] for infinitary operations.

This implies because of (5.1), (5.7) and D(A) = L(U(A)) = A

$$f_{\xi}^{*}(\overset{0}{A},\overset{1}{A},\ldots,\overset{\eta}{A},\ldots) = D\left(f_{\xi}(\overset{0}{A},\overset{1}{A},\ldots,\overset{\eta}{A},\ldots)\right) =$$

$$= L\left(U\left(f_{\xi}(\overset{0}{A},\overset{1}{A},\ldots,\overset{\eta}{A},\ldots)\right)\right) \subseteq L\left(U(A)\right) = D(A) = A,$$

that is the operation f_{ξ}^* is contractive in Z_D . Thus $\langle Z_D; f_0^*, f_1^*, ..., f_{\xi}^*, ...; \inf_{Z_D}, \sup_{Z_D} \rangle$ is a complete algebra-lattice indeed. Now we show that the mapping

$$(5.8) x \to D(x) = L(x) (x \in V)$$

is an isomorphism of the algebra-lattice $\mathfrak{B} = \langle V; f_0, f_1, ..., f_{\xi}, ...; \wedge, \vee \rangle$ into the complete algebra-lattice

$$3 = \langle Z_D; f_0^*, f_1^*, ..., f_{\xi}^*, ...; \inf_{Z_D}, \sup_{Z_D} \rangle.$$

Evidently (5. 8) is a one-to-one mapping. One can verify the laws of homomorphism

$$x \wedge y \to D(x \wedge y) = \inf_{Z_D} (D(x), D(y))$$
 $(x, y \in V),$
 $x \vee y \to D(x \vee y) = \sup_{Z_D} (D(x), D(y))$ $(x, y \in V)$

by the usual method. (See e.g. the proof of Theorem 27 in G. Szász [10]). We have only to prove the relation

(5.9)
$$f_{\xi}(x_0, x_1, ..., x_{\eta}, ...) \rightarrow D(f_{\xi}(x_0, x_1, ..., x_{\eta}, ...)) = f_{\xi}^*(D(x_0), D(x_1), ..., D(x_{\eta}), ...) \qquad (\eta < v_{\xi})$$

for an arbitrary sequence $x_0, x_1, ..., x_n, ... \in V$. Because of $L(x) = D(x) \in Z_D$ and (5. 7) we have

(5. 10)
$$f_{\xi}^{*}(D(x_{0}), D(x_{1}), ..., D(x_{\eta}), ...) = f_{\xi}^{*}(L(x_{0}), L(x_{1}), ..., L(x_{\eta}), ...) =$$

$$= D(f_{\xi}(L(x_{0}), L(x_{1}), ..., L(x_{\eta}), ...)) = L(U(f_{\xi}(L(x_{0}), L(x_{1}), ..., L(x_{\eta}), ...))) (\eta < v_{\xi}).$$

As $f_{\xi}(x_0, x_1, ..., x_{\eta}, ...)$ is the greatest element of the set $f_{\xi}(L(x_0), L(x_1), ..., L(x_{\eta}), ...)$) therefore we have

$$U\big(f_{\xi}(L(x_0),\,L(x_1),\,...,\,L(x_\eta),\,...)\big)=U\big(f_{\xi}(x_0\,,\,x_1\,,\,...,\,x_\eta,\,...)\big) \qquad (\eta < v_{\xi}).$$

This and (5.10) imply

$$f_{\xi}(x_0, x_1, ..., x_{\eta}, ...) \rightarrow D(f_{\xi}(x_0, x_1, ..., x_{\eta}, ...)) = L(U(f_{\xi}(x_0, x_1, ..., x_{\eta}, ...))) =$$

$$= L(U(f_{\xi}(L(x_0), L(x_1), ..., L(x_{\eta}), ...))) = f_{\xi}^*(D(x_0), D(x_1), ..., D(x_{\eta}), ...)$$

that is (5. 9) is true.

The proof of Theorem 5.1 is finished.

Remark 3. By the embedding of the algebra-lattice 3 into the complete algebralattice 3 the identities between operations of B carry over only exceptionally to 3. In Fuchs [3] a sufficient condition is given for an identity to carry over to 3.

§ 6. Examples and applications

First we define a special complete algebra-lattice which plays an important rôle in the following examples.

Let L be a partially ordered groupoid, i.e. let in L a binary multiplication and a partial order \leq be defined with the property

(6.1)
$$a \le b(a, b \in L)$$
 implies $ac \le bc$ and $ca \le cb$ for all $c \in L$.

We assume that the following conditions hold in L:

$$(6.2) a^2 \le a (for all \ a \in L)$$

and L is a complete lattice with respect to the partial order \leq , whose least, greatest elements are 0 and e, respectively, satisfying

$$(6.3) 0 \cdot e = e \cdot 0 = 0.$$

The partially ordered groupoid L with the mentioned properties is called a complete groupoid-lattice.

From the conditions (6.1), (6.3) it follows

$$(6.4) 0 \cdot a = a \cdot 0 = 0 (for all \ a \in L).$$

Evidently every complete groupoid-lattice L is a special complete algebralattice, as properties (i'), (ii) and (iii) are fulfilled in L.

Example 6.1. Let $\mathfrak{L}_0 = \langle C_0; \cdot, 0 \rangle$ be a groupoid with 0. If A, B are two subgroupoids with zero of \mathfrak{L}_0 , then in view of (2.4') the multiplication defined on C_0 induces the following binary multiplication

(6.5)
$$AB = \{ab; a \in A, b \in B\}$$

on the set L_1 of all subgroupoids with zero of \mathfrak{L}_0 . It is easy to show that L_1 forms a complete groupoid-lattice under the multiplication (6. 5) and under the set inclusion. We denote by \cap and \cup the lattice operations in the complete lattice L_1 . Evidently 0 is the least element and C_0 is the greatest one of L_1 .

Example 6. 2. Let L_2 denote the set of all subgroups of a group G. It is known that L_2 forms a complete lattice under the set inclusion. Evidently the commutator-forming $[x, y] = xyx^{-1}y^{-1}$ $(x, y \in G)$ is an L_2 -admissible binary operation on G. If H, K denote two arbitrary subgroups of G, then which respect to (2.4') the operation $[\cdot, \cdot]$ induces the following binary operation

$$[H, K] = \{[h, k]; h \in H, k \in K\}$$

on the complete lattice L_2 . It is easy to see that L_2 forms a complete groupoidlattice under the "multiplication" (6. 6) and under the lattice operations. The least element of L_2 is the unit element of G and its greatest element is G. It is remarkable that in general [x, y] = [y, x] $(x, y \in G)$ does not hold, but [H, K] = [K, H] holds for all $H, K \in L_2$.

Example 6.3. Let $\mathfrak{F}_0 = \langle F_0; \cdot, 0 \rangle$ be a semigroup with 0. Similarly to Example 6.1 the set L_3 of all subsemigroups with zero of \mathfrak{F}_0 forms a complete groupoid-

lattice. It is interesting that the associative multiplication on F_0 induces by (6.5) an in general non-associative multiplication on L_3 . Namely if A, B, C, are subsemigroups with zero of \mathfrak{F}_0 , then for the elements $a_1, a_2 \in A$, $b_1b_2 \in B$ and $c \in C$

$$d = (a_1b_1a_2b_2)c \in (AB)C$$
 but in general $d \in A(BC)$.

Example 6.4. Analogously to Example 6.1 the set L_4 of all subrings of a (not necessarily associative) ring R forms a complete groupoid-lattice, whose least element is 0 and the greatest one is R.

In the foregoing examples we considered only one (binary) operation of the given algebraic system and the set of all algebraic subsystems formed always a complete groupoid-lattice. In an other paper we want to write about complete groupoid-lattices, which satisfy some conditional associative and distributive laws. Now we give some illustrating examples for the results of § § 2, 3 and 4.

Example 6. 5. Let us consider again the set L_2 of all subgroups of a group G. If A, B are two subgroups of G, then the multiplication on G induces by (2.4') the multiplication $AB = \{ab; a \in A, b \in B\}$ in L_2 , satisfying the relation $AB = A \cup B$. The inverse-forming $a^{-1}(a \in G)$ is an L_2 -admissible unary operation in G, it induces by (2.4') the unary operation $A^{-1} = A(\in L_2)$ in L_2 . (It is evident that not the same identities hold for the multiplication and inverse-forming on G as for the induced operations on L_2 .) In view of Corollary 4. 3 L_2 forms a compactly generated algebra-lattice under the mentioned two induced operations and under the set inclusion.

Example 6.6. Let $\mathfrak{L} = \langle L; \wedge, \vee \rangle$ be a complete lattice with the least element 0 and with the greatest element e. Let $S_0(\mathfrak{L})$ denote the set of all complete sublattices with zero of \mathfrak{L} . If $A_{\gamma}(\gamma \in \Gamma)$ is a system of elements of $S_0(\mathfrak{L})$ then in view of (2. 4') the operations \wedge and \vee induce the following operations $\overline{\wedge}$ and $\overline{\vee}$ on $S_0(\mathfrak{L})$:

It is easy to show that $\overline{\wedge}$ and $\overline{\vee}$ are commutative and associative (infinitary) operations on $S_0(\mathfrak{Q})$. Naturally $S_0(\mathfrak{Q})$ forms a complete lattice under the set inclusion. If we denote by \cap and \cup the operations of this complete lattice, then $\langle S_0(\mathfrak{Q}); \overline{\wedge}, \overline{\vee}; \cap, \cup \rangle$ is a complete algebra-lattice.

Example 6.7. Let us consider the following operations a+b, -a, ab, $a \circ b = a+b-ab$ of an associative ring $R(a,b \in R)$. If A, B are two subrings of R, then the given operations induce by (2,4') the following operations on the set L_5 of all subrings of R:

$$A + B = \{a + b; a \in A; b \in B\},\$$

 $-A = \{-a; a \in A\},\$
 $AB = \{ab; a \in A; b \in B\},\$
 $A \circ B = \{a \circ b; a \in A; b \in B\}.$

Naturally L_5 forms a complete lattice under the set inclusion. Let \cap and \cup denote the lattice operations. It is easy to show that the following relations hold 5) $A + B = A \circ B = A \cup B$ and -A = A. Similarly to Example 6.3 the multiplication AB may not be associative.

Example 6. 8. a) Let S_3 denote the symmetric permutation group of order 3. The subgroups of S_3 are: S_3 ; $A_3 = (1)$, (123), (132); B = (1), (12); C = (1), (13); D = (1), (23); E = (1). These subgroups form under the set inclusion a complete lattice H, whose diagram is:

In view of Example 6.2 H forms under the binary operation (6.6) a commutative groupoid, whose Caley-table is:

		E	В	C	D	A_3	S_3
(6.8)	\overline{E}	E	E	E	E	E	E
	В	E	E	A_3	A_3	A_3	A_3
	\overline{c}	E	A3	E	A_3	A_3	A_3
	D	E	A_3	A_3	E	A_3	A_3
	A_3	E	A_3	A_3	A_3	E	A_3
	S_3	E	A_3	A_3	A_3	A_3	A_3

Thus H is a complete groupoid-lattice and the operations on H are given by (6.7) and (6.8).

b) Conversely let $\mathfrak{B} = \langle V; \cdot; \wedge, \vee \rangle$ be a complete groupoid-lattice with the underlying set V = 0, a, b, c, d, e. It is assumed that \mathfrak{B} is isomorphic to the complete groupoid-lattice H and the one-to-one mapping is given by

$$0 \rightarrow E$$
, $a \rightarrow A_3$, $b \rightarrow B$, $c \rightarrow C$, $d \rightarrow D$, $e \rightarrow S_3$.

(The operations on V are defined according to (6.7) and (6.8).)

⁵⁾ Cf. Remark 1.

In view of Theorem 3. 2 the algebra $\mathfrak{A} = \langle V; \cdot, \wedge, \vee, g_a, g_b, ... \rangle$ $(a, b, ... \in V)$ belonging to \mathfrak{B} has the property that the complete algebra-lattice of all subalgebras of \mathfrak{A} is isomorphic to \mathfrak{B} .

(We remark that \mathfrak{B} is naturally a compactly generated algebra-lattice and \mathfrak{A} is a finitary algebra.)

Ex ample 6. 9. Let N_0 denote the multiplicative semigroup of the non-negative egers. If we define on N_0 the following partial order \leq :

$$a \le b$$
 if and only if $b \mid a$ $(a, b \in N_0)$,

then N_0 forms under the relation \leq a complete lattice. Its greatest (least) element is the number 1 (zero). For any subset M of N_0 , sup M is the greatest commons divisor of the elements of M. Moreover for finite M, inf M is the least common multiple of the elements of M and for infinite M, it is 0.

It is easy to see that the relations (6.1), (6.2) and (6.3) hold in N_0 , thus $\mathfrak{N}_0 = \langle N_0; \cdot; \sup, \inf \rangle$ is a complete groupoid-lattice. According to (3.1) one can define for every number $a(\in N_0)$ the following unary operation g_a on N_0 :

$$g_a(x) = \begin{cases} a, & \text{if} \quad x \mid a, \\ 0, & \text{if} \quad x \nmid a \end{cases} \quad (x \in N_0).$$

Let us consider the algebra $\mathfrak{A} = \langle N_0; \cdot; \sup, \inf, g_a, g_b, ... \rangle$ $(a, b, ... \in N_0)$ belonging to \mathfrak{R}_0 . From Lemma 3.1 it follows that every subalgebra of \mathfrak{A} has the form [0, a] $(a \in N_0)$, where the interval [0, a] consists of the multiples of the number a.

In view of Theorem 3. 2 the set $S(\mathfrak{A})$ of all subalgebras of \mathfrak{A} forms a complete groupoid-lattice isomorphic to \mathfrak{R}_0 . The isomorphism is given by

$$a \rightarrow [0, a]$$
 $(a \in N_0)$.

References

- G. BIRKHOFF and O. FRINK, Representations of lattices by sets, Trans. Amer. Math. Soc. 64 (1948), 299—316.
- [2] P. M. COHN, Universal algebra, New York, Evanston, London, Tokio, 1965.
- [3] L. Fuchs, On partially ordered algebras I, Collog. Math. 14 (1966), 115-130.
- [4] L. Fuchs, On partially ordered algebras II, Acta Sci. Math. Szeged, 26 (1965), 35-41.
- [5] G. Grätzer, On the family of certain subalgebras of a universal algebra, *Indag. Math.* 27 (1965), 790—802.
- [6] G. GRÄTZER, Universal algebra (mimeographed).
- [7] G. GRÄTZER and E. T. SCHMIDT, Characterizations of congruence lattices of abstract algebras, Acta Sci. Math. Szeged. 24 (1963), 34—59.
- [8] H. M. MacNeille, Partially ordered sets, Trans. Amer. Math. Soc. 42 (1937), 416-460.
- [9] J. SLOMINSKI, The theory of abstract algebras with infinitary operations, Rozprawy Mat. (Warszawa) 18 (1959), 1—67.
- [10] G. Szász, Introduction to lattice theory, Budapest, 1963.
- [11] M. WARD, The closure operators of a lattice, Ann. of Math. 43 (1942), 191—196.

(Received October 16, 1967)