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On lattice-ordered algebras with infinitary operations

By O. STEINFELD (Budapest)

Dedicated to Professor A. G. Kuros on his 60-th birthday

§ 1. Introduction

In the papers [3], [4] L. Fuchs began the systematical investigation on partially
ordered (universal) algebras with finitary operations. The purpose of this paper
is to introduce a class of lattice-ordered algebras with infinitary operations which
play an important réle in the theory of algebras with infinitary operations.

Let C denote a closure system on a set 4. An operation g on A4 is called C-
admissible if every X € C is closed under it. In Proposition 2. 2 it is proved that every
C-admissible v-ary operation on A induces a v-ary operation § on C such that g
is isotone in its variables. Furthermore g is contractive in C, i.e. for every X¢C

E(X’ X’ il ) X, -)gx

holds. (The definitions of the fundamental notions are given in §2.)

Let A =(A: F) be an algebra (with infinitary or finitary operations). We assume
that the meet of all subalgebras of ¥ is not void. It is known that the set S(2) of
all subalgebras of U forms a closure system on A.

Let (V; G) denote an algebra with the following properties:

(i) V is a lattice under a partial order =;

(ii) every fundamental operation g(€G) is isotone in its variables;

(ii1) every g( € G) is contractive in V.

By an algebra-lattice B=(V;G; =) we mean an algebra (V; G) with the
properties (i), (i), (iii). V=(V; G; =) is called a complete algebra-lattice, if V
is a complete lattice under the partial order =. Making use of the Dedekind—
MacNeille completion method we prove that every algebra-lattice is isomorphic
to some subalgebra-lattice of a complete algebra-lattice. (See Theorem 5.1.)

In Theorem 2. 3 it is proved that every closure system C on a set 4 forms a
complete algebra-lattice under the set inclusion and under the operations
GosTys +ees Gns --- induced by the C-admissible operations gg, g, ..., &y ... ON A.
This theorem implies that the set S(2) of all subalgebras of an algebra 2 forms
a complete algebra-lattice under suitable operations. (See Corollary 2. 4.)

Conversely, for every complete algebra-lattice B =(V; G; =) one can construct
an algebra A =A(VB) uniquely determined by VB such that the complete algebra-
lattice S(2A) of all subalgebras of A is isomorphic to B. (See Theorem 3. 2.) The
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proof of this representation theorem is based on Lemma 3.1, in which we show
that S(2A) coincides with the set of all closed intervals [0, a] (@< V).

A subalgebra I of a complete algebra-lattice B=(V; G; =) is called a
complete subalgebra-ideal of B, if W is a complete ideal of the complete lattice
(V; =). In Lemma 3.1 it is proved that the set /() of all complete subalgebra-
ideals of B coincides with the set of all closed intervals [0, a] (@€ V) too. Thus
one can show that B and /(B) are isomorphic complete algebra-lattices by the

mapping

(See Theorem 3. 3.)

For algebraic closure systems on a set and for finitary a!gebras we can sharpen
the mentioned results. E.g. the set of all subalgebras of a finitary algebra forms
a compactly generated algebra-lattice and conversely, for a compactly generated
algebra-lattice B there exists a finitary algebra, whose subalgebras form a compactly
generated algebra-lattice isomorphic to . (See Corollary 4. 3 and Theorem 4. 5.
In these results the known lattice-theoretical theorems of BIRKHOFF and FRINK [1]
are extended for algebra-lattices.)

In § 6 we define the complete grupoid-lattice which is a special complete algebra-
lattice. Example 6. 2 (6. 4) shows that the set of all subgroups of a group (the set
of all subrings of a ring) forms a complete grupoid-lattice under suitable operations.
Examples 6. 8 and 6. 9 are applications of Corollary 2. 4 and Theorem 3. 2.

a-—~[0, a] (acv).

§ 2. On algebras and complete algebra-lattices

Let A be a non-void set and let v be an ordinal number. A v-ary operation on
A is a function f'(Xq, X, ..., ...y Xy, ...) (i <v) which associates with every sequence
Ao, @yy ooy Ay, ... (EA;n<v) an element f(ay,a,,...,q,,..)(n<v) of 4. If f
isa (v-ary) operation on the set 4, then we say that A is closed under the operation f.
In the case v=n<w,, a n-ary operation is called finitary. A O-ary (nullary)
operation picks out a certain distinguished element in 4. The v-ary operations,
where v=w, are called infinitary.

Let = be an ordinal number. A sequence WU =(4; fo,[f1, - for ...) ({<7)
in which A4 is a non-void set and f; is a ve-ary operation on A is called an algebra
of type A={vq, \1, coes Vgy ooy (E=<1). T 1s called the order of A. In the algebra
W =(4; fo,[1> --» J2, ...) A denotes the underlying set and fy, fy, ..., fe, ... are
the fundamental operations on A. Two algebras of the same type are called similar.
(We use mostly the notions and the terminology of J. SLoMINSKY [9]).

Let W=(A;fos/1s:sJ2s...) be an algebra of type A=(vg, Vi, .., Vg, ...)
((<=1) of order T and B a non-void subset of A. If the fundamental operations
JosS1s coos f2s ... (E<1) are also operations on B, that is if B is closed under each
of the operations fy, f;, ..., fe, ... (§ <7), then the sequence B =(B; fo, 1, ... fese-.)
(¢ <1) is also an algebra of type A. B is called a subalgebra of algebra A. We also
write (A4; F) for A={4; fy, fi, .- fer ...) and (B; F) for the subalgebra
CBS JosTisorsptos ooy SL W

Let S(2A) denote the set of all subalgebras B,=(B,; F) (y€I') of an algebra
N=(A; F). If B;=(Bs; F) (6€4AST) is a family of subalgebras of 2, then the
set-theoretical intersection aﬂ B, =( () B;: F) of the subalgebras B, is either the

€4 dg4
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void set or a subalgebra of . In this paper we assume that the intersection of all
subalgebras of an algebra W is always a subalgebra of . Thus the set S(2A) of all
subalgebras of an algebra 2 forms a complete lattice under the set-theoretical
inclusion.

If X is a non-void subset of the underlying set A of an algebra A=(A4; F)
and B,(0 € 4) is the family of all subalgebras of 2 which contain X, then the inter-
section [ B; is the subalgebra of N generated by X. This subalgebra will be denoted

ocA
by {X}. _

Let A be an arbitrary set and B(A) the set of all its subsets. A subset C of B(A)
is said to be a closure system if C is closed under intersections, i.e. for any subsystem
DS C, we have NDeC.

Note that A € C, by the definition of the intersection of a void family of subsets.
Since a closure system C admits arbitrary intersections, it is easy to prove that
C forms a complete lattice (with respect to the set-theoretical inclusion). However,
it need not be a sublattice of B(A4). (See P. M. ConN [2] Ch. II. 1.)

Let A=(A; F) be an algebra. The complete lattice S(A) of all subalgebras
of U is e.g. a closure system of A.

A closure operator on a partially ordered set (P; =) is a mapping @ of P into
itself with the properties:

@1 if x=y, then ®(x)=®(y),
(2.2) x = P(x),
2.3) B(D(x)) = B(x)

for all x, yeP.

For a closure operator @ the element @(x) is called the @®-closure of x; if an
element x coincides with its @-closure, it is said to be ®-closed.

The following theorem is proved in CouN [2].

Theorem 2. 1. (See [2] Ch. II. Theorem 1. 1). Every closure system C on a set
A defines a closure operator ® on the complete lattice B(A) of all subsets of A by

the rule
D(X) = Y:r‘]_cy (X € B(A)).

Conversely, every closure operator @ on B(A) defines a closure system C on A by
C = the set of all X€ B(A) with ®(X)=X,

and the correspondence C+~® between closure systems and closure operators thus
defined is bijective.

Let us consider a closure system C of a set 4. We call an operation g on 4
C-admissible if every set X¢cC is closed under the operation g.

Let g be an arbitrary v-ary operation on the set 4 which is C-admissible with
respect to the closure system C on A. For a sequence 4y, 4,, ..., 4,, ...€C(n<v)
the set of all elements g(a,.a,, ...,a,,...) where a, is an arbitrary element of
A, (n=v) is denoted by g(4,, 4,, ..., 4,, ...). Let @ denote the closure operator

D 16
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on B(A) corresponding to C, determined by Theorem 2.1. We define the operation
g on the set C by the equality

{24) .‘(}(A()’Al’---, Aq!"') - ¢(g(A0$ AI’---! Aqa"')) (’F":")-

We call § the operation on C induced by g. (Cf. L. FucHhs [4]).
Let S=S(2A) denote the closure system of all subalgebras of an algebra
A =(A; F). In view of Theorem 2.1 the closure operator @ determined by S= S()

has the form
X)=" ) ¥ ={X} (X eSM).
XSYes@)
Let g be an arbitrary S-admissible v-ary operation on 4. For a sequence B,,8,, ...,
s B, ...(n=v) of subalgebras of U the operation g on S(A) induced by g is
defined by

(2.4) J80, B3, ey By 000) = {8084, B4, 0, By o)) (n<v).

Let (P; =) be a partially ordered set. A v-ary operation f on P is isotone in
its variables x4, Xy, ..., X,, ...(n <v) if the inequalities a,=b, (a,, b, P; 0=n<v)
imply the inequality

f'(ach ats ssey app -0-)§f(b0s b;a saey b" ) (,1{1")

for each sequence ay,a,,...,a,, ...€P.
A p-ary operation g on P is called contractive in P if

0 1 &
(2.5) £@.3,..,d,..)sa  (E<p)

holds for every element a of P.

Proposition 2. 2. Let C be a closure system on a set A and g a C-admissible
v-ary operation on A. Then the v-ary operation g on C induced by g has the following
properties:

(a) g is isotone in its variables,
(b) g is contractive in C.

Proor. Because of (2.1) and (2. 4) the operation g has evidently the property
(a). As g is a C-admissible operation on A, for every B C

0 1 n 0 1 "

§(B,B,...,B,..)=®(2(B,B,..., B, ..) < &@B) = B.

holds, where @ denotes the closure operator on B(A) corresponding to C. Thus
g is contractive in C.

We can now define a class of partially ordered algebraic systems which plays
an important réle in this paper.

Let {V; fosf15:--s a5 ...) be an algebra of type A=(vy, vy, ..., V2, ...) ({ <7)
of order t with the following properties:

(i) in V a partial order = is defined such that V forms a lattice under it.
{The lattice operations are denoted by /A and V);
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(ii) every fundamental operation f,,f;,...,/[s, ...((=1) is isotone in its
variables;

(iii) every fo,f1, ..., /s, ..(§=<7) is contractive in V.

By an algebra-lattice B=(V; fo,f;,...s fer ...3 \, V) we mean an algebra
(VifosSis o Jas ...) Of type A=(vg, vy, ..., Vg, ...) (E<7) of order 7, satisfying
the properties (i), (ii), (iii). (An algebra-lattice is a special lattice-ordered algebra
with infinitary operations; for the definition of lattice-ordered algebras with finitary
operations see in FucHs [3] p. 117.)

If we assume instead of (i) the condition

(i’) in V a partial order = is defined such that ¥ forms a complete lattice
under it. (The lattice operations are denoted by /\ and /), then the algebra-lattice
%=<V9f0sf] 3 '"aj:',‘a'-'-; Ag ‘J} iS Ca“ed CO!np{efe.

Naturally a complete algebra-lattice B=(V; fo,f1,....fe,...; N, V) has
a least element 0= A x and a greatest element e=\ x.

xEV xEV
With the help of Proposition 2. 2 we can prove

Theorem 2. 3. Let C be a closure system on a set A, ¢ an ordinal number and
G=(20,81s s &y» -..) (N=0) a sequence of C-admissible operations on A. If g,
is the operation on C induced by g, (n<a), then C forms a complete algebra-lattice
under the operations Go, 3y, ..., Gy, ...(0 =0) and under the set inclusion < .

Proor. If go, gy, ..., &, ...(n<0) are pgy-ary, p,-ary, ..., p-ary, ...(n <o)
operations on A, then in view of Proposition 2.2 74, §y, -..s G, --.(§ <0) are
Mo-ary, p,-ary, ..., p,-ary, ... operations on C. Thus €=(C;Fo, Fy1s 0> Ty» ---)
(n <o) is an algebra of type (uo, pty, ..., i, ...) of order . We have to show that
the algebra € satisfies the condition (i’), (ii), (iii). Evidently € is a complete lattice
under the set-theoretical inclusion. As every operation Fgo, Jy «..s ys --- (1 <0)
has the properties (a) and (b), therefore conditions (ii) and (iii) are fulfilled.

Since the set S(21) of all subalgebras of an algebra A =(A4; F) is a closure system
on A, Theorem 2. 3 implies the following

Corollary 2. 4. Let A=(A; F) be an algebra and S= S(N) the closure system
of all subalgebras of N. If ¢ is an ordinal number and G ={gq, &y, ..., &y» -y (N=<0)
a sequence of S-admissible operations on A, then S forms a complete algebra-lattice
under the operations Go, Gy, ..., §y, ... and under the set inclusion, where g, is the
operation on S induced by g,(n=oa).

Remark 1. It is possible that two S-admissible operations f, g of an algebra
A are different but the operations f, § on the set S() induced by f and g are
identical. E.g. let R be an associative ring and let

f(a, b) = a+b, gla, b) = a+b—ab (a, b€ R)

be two admissible binary operations on R. If 4 and B are two arbitrary subrings
of R, then in view of (2. 4")

(A, B) = {a+b;acA, bcB} and §(A4, B) = {a+b—ab;acA, b B}
are two operations on the set S(R) of all subrings of R. The elements f(a, b)
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and g(a, b) of R are generally not equal, but f(4, B) and (A4, B) both are the subring
of R generated by 4 and B.

Remark 2. Evidently not all the identities of the algebra A={(4:/f,, fi, ...,
coos fos ooy (€ <1) retain their validity in the algebra (S(); o, f,, ..., f¢, ...) where
f;(é{r) is the operation on S(2) induced by f;. (See Example 6. 3).

§ 3. A representation theorem on complete algebra-lattices

Let B=C(V;/fo./1s .0sJus-..3 A\, V) (E<7) be a complete algebra-lattice.
W=(W; fo,f1s s fer .3 N, V) (E<1) is a complete subalgebra-lattice of B,
if 2B is a subalgebra and a complete sublattice of B.

We call a (non-void) subset 4 of a complete lattice £={(L; A, V) a complete
ideal of L, if the following two conditions hold:

(1) if a,(a;€A; A€ A) denotes an arbitrary system of elements of A4, then

Va,c4;
AEA

(2) if ac A and x€ L, then a/\x€ A.

Evidently every complete ideal of a complete lattice £ is a complete sublattice
of £.

A complete subalgebra-lattice W=(W: f,, f;, ..., fe, ... N\, V) of a complete
algebra-lattice B=(V:/fo,f1, .... fy,...2 A, V) is called a complete subalgebra-
ideal of B, if (W; A, V) is a complete ideal of the complete lattice /V: A, V).

In Corollary 2.4 we give a method how one can obtain complete algebra-
lattices from a given algebra. Now we shall define to every complete algebra-lattice
B a uniquely determined algebra which plays an important rdle in the representation
of 8.

Let B=(V:fo,f1s--sSes .3 A, V) be an arbitrary complete algebra-
lattice. We define for every element @ of V' the following unary operation g, on V:

g i oaVy=x;

-1 &%) = {0 if aVxs=x FRE)

Let g,, g, ---(a, b, ...€ V) be a sequence of all unary operations defined by (3.1).
We call the algebra A=AU(B)=(V;/fo,[is .-sSoes.-3 A, V:8a 8,...) the
algebra belonging to the complete algebra-lattice B. (If o is the cardinality of V
and a=Y,, then we consider the meet /\ and join V as infinitary operations on V.)

Lemma 3.1. Let B=(V:fo,f,, ... fe, ... A\, V) be a complete algebra-
lattice. For a non-void subset W of V the following conditions are equivalent:

(@) W=(W:fo,frs.cosfes ... N\, V) is a complete subalgebra-ideal of %B;

(b) OeW and W={(W; fo, [y, ..;/fer ...3 N\, V) is a convex') complete
subalgebra-lattice of B;

(c) W has the form W=[0, w], where w=V x;

XEW
(d) B=(W:fo,f1s s Ses it Ny Vi 8as 8y --.) IS a subalgebra of the algebra
W=(V;fosS1s oosSus eoe3 Ny Vi 8as 8ps --.) belonging to B.

') A subset of a partially ordered set is called convex if it contains the whole interval [a, b] whe-
never it contains the endpoints a, b.
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Proor. The implication (a)=(b) follows immediately from the property (2).

(b)=>(c). As W is closed under the operation V/, the element w= \/ x belongs
XEW

to W. Thus 0, we W and the convexity of W imply (c).
(c)=(d). Let us assume that W=[0, w] (w= V x) holds. We have to prove
XEW

that W is closed under every fundamental operation f5,f;, ..., /s ..., A, V,
Qas &by --- (@, b, ...c V) on V. Evidently W=][0, w] is closed under the operations
A and V. By the conditions (ii) and (iii) the operations f,, fi, ..., f;, ... are isotone
in their variables and they are contractive in V, therefore [0, w] (we V) is closed
under these operations too. Let us consider an arbitrary unary operation g, (k€ V).
If for the element y of the closed interval [0, w] the relation &'/ y =y holds, then
0=k=y=w and so because of (3. 1)

g(¥)=ke<[0, w].
If z is an element of [0, w] with the property kVz#z, then in view of (3. 1)
2(2)=0¢€[0, w]

holds. Thus the interval W=[0, w] is closed under each operation g,<V.

(d)=(). Let B=(W;fo,f;,..csSer -3 N\y V; 8ar & -..) be a subalgebra
of the algebra W=W(B)=(V; fo, f1s cesSas o3 Ny V; Zas Qs .-.) belonging to B.
As the underlying set W is closed under the operations fy, f;, ..., fe, ..., /\ and V,
therefore W=(W; fo, f1s ..., [z, ...: A\, V) is a complete subalgebra-lattice of .
We have only to show that (W; A, V) is a complete ideal of the complete lattice
(Vi; A, V). By the definition of B the property (1) holds evidently. If € W and
x €V, then for the element b=alx

g(@=b=ahx (bVa=a)

holds. As W is closed under the unary operation g,, therefore a/\x=b=g(a)c W.
Thus the property (2) holds too.

With the help of Lemma 3.1 we can prove our main result. First we must
define some fundamental notions.

Let A=(4;fo,/1s..s [or ...) and B=(B; fo, f1, ..., f¢ ...) be two similar
algebras of type A=(vy, v{, ..., V¢, ...) ({<1) of order 1. Let us assume that ¢
is a one-to-one mapping of 4 onto B such that

(p(f::(a()? 'ﬂl B onvy ﬂ,', )) =f{'(<p(ao), (p(al}ﬂ taey (p{a,'), --*) (‘;: =T; s ";)

holds for each pair of fundamental operations fz, f; and for all sequences a,, 4, ...,
s @y . (EA; =), then we say that the algebras U and B are isomorphic by
the isomorphism .

We call the (complete) algebra-lattices B=(V;fo,f1s s Sy s Ay V)
and W=(W; fo,f1, ... fz, ... N', V') isomorphic, if the similar algebras
(VifosSis coos fas ooy and (W fo, f1, ..., f& ...) furthermore the (complete) lattices
(Vi A, V) and (W; A%, V') are isomorphic by the same isomorphism ¢.

Theorem 3. 2. Let B = (V; fo,f1s ceos Jor o3 Ay V) (E<1) be a complete
algebra-lattice and let W = W(B) =(V; fo,[iseesSoreees Ny Vi 8as &b +oo) =
= (Vifosfis coes Ses o3 Ay Vi 8as 85 -..) be the algebra belonging to B. Let
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(S=S8SA); N, U) denote the complete lattice ol all suba!gebras of U. Then B
is isomorphic to the complete algebra-lattice S=(S;fo,fy, ... fe...; N, U),
where fz is the operation on S=S(N) induced by f; (5 <=1).

Proor. From the equivalence of the conditions (¢) and (d) in Lemma 3. 1 we
obtain that the set S = S(21) of all subalgebras of the algebra W =(V; fo, f1, .o fos ...
Ny V5 8as s --.p 1 exactly the set of all closed intervals [0, a] (@€ V). If f,, fy, ...,

o ey .(E=1) are vy-ary, vi-ary, ..., vg-ary, ... operations on V, then the induced
operatlons JosTis coos Jor .. (E<7) are vyp-ary, vy-ary, ..., ve-ary, ... operations on
S(2A). Namely, for an arbitrary sequence [0, ao), [0, ¢,], ..., [0, @], ... (4o, ay, ...,
ey Gys . €V p<vg) of subalgebras of A

(.2) J10, agl, [0, @], ..., [0, @), ..) ={/([0, al. [0, a,], ..., [0, a,], ...)}
(n=ve)
holds, according to (2. 4°). In view of Corollary 2. 4 € =(S; fo, fi, -.s fer .3 N, U)

is a complete algebra-lattice.

Now we will show that the given complete algebra-lattice B=(V:f,, fi, ...,
v Ses o3 Ay V) (E<1) is isomorphic to 2. First we remark that the algebras
(Vi Sor fus eoes Jos oo) and (S5 fo, Jis ooesfe -..) both are of the same type 4=

=(Vgs Vis +ees Vo -..) (§<7) of order 7. It is enough to prove that the mapping

(3.3) p:a—+[0,a] (acV;[0, alc S(A))

of V onto S(A) is an isomorphism between the algebras (V: fi, fi, ..., fey o),
(S(W); fos i «es Jos ...) and between the complete lattices (V; A, V), (S(A); N, UB
Naturally ¢ is a one-to-one mapping of ¥ onto S(2[). Thus we have to show only
the following properties of homomorphism:

(3. 4) for every sequence ay, a;, ..., a, ... (EV:n=<vy)
fdao, ay, .., ay, ..) [0, fe(ag, ay, ..., a,, ... )]1=f10, aol, [0, a4}, ..., [0, a,], ...);

(3.5) for every system of elements a,(€V; A€ A) the relations

A a;_ o [0, A a,'_] = n [0, a;‘] and V a,'_ o [0, V a)_l = U [0, a;']
AEA AEA AEA AEA AEA iEA

hold.
Because of the definition of the operation f;

(3.6)  fao, ay, ..., a,, ...)J:([0, a0}, [0, ay], ..., [0, @], ...) (n=<vy).
As fd[0, ao], [0, a,], ..., [0, @), ...) is a subalgebra of 2, therefore it must have
the form

]ﬁ([oi ao]a [Oa al]’ it ] [Oa aq L] "') :[05 b] (b€ V)
Thus (3. 6) implies [0, fx(aq, a, ..., a,, ...) ET([0, ay], [0 a;}, .., [0, a], ...). Con-
versely, according to (3.2) the subalgebra f;([O ao), [0, ,], snss BN 5ed) " 1B

generated by all the elements fi(x,, x,, ... ...)(x0 €[0, a,l, x, €[0, a4, ...,
ooy X, €[0, @], ...(n < v;). Since f; is isotone in its variabies, we have

0=f(x0, X15 ous Xys ) =fe@g, @y ..0v @y, ) (0=x,=a,; n<vy),



On lattice-ordered algebras 247

whence f«([0, ao), [0, a,], ..., [0, a,, ... <0, fi(ay, ay, ..., a, ...)] (n=<v;) follows.
Thus (3. 4) is proved.

Let us show that the relation (3. 5) is true. Namely, if x is an element of the
subalgebra [0, /\a,‘] then O0=x= /\a,‘ =a; (L€A) holds, whence x¢€ ["] [0, a;].

On the other hdnd if the element ) “is contained in every subalgebra [0, a; ] (z £A),
then y= /\aa Hence y€]0, Aa]

Because U [0, a;] denotes the subalgebra of 2l generated by the subalgebras
[0, a;] ()e/l), therefore Va E U [0, a;]. On the other hand the subalgebra U [0, a;]

AgA
of 2l has the form U [0 at] [0 u] with a suitable element u € ¥, whence [0, V ;]S

Ac/‘

- U[O a;). Conversely, every subalgebra [0, a;] (A€ A) of 2A is contained in the
subalgebra [0, V a] therefore U[O a;]< [0, Vad] must hold.

Thus (3. 52) 1s proved and rhe proof of Theorem 3. 2 is finished.

Let us consider a complete algebra-lattice B=(V; fo, 1, ..o fer o3 Ay V).
It follows from Lemma 3.1 that the set /() of all complete subalgebra-ideals
of B coincides with the set of all closed intervals [0, @] (a € V). Hence /(8) is a closure
system on V such that the operations fy, f,, ..., f;, ... are I(B)-admissible. If f;
is a vg-ary operation and [0, a¢], [0, a,], ..., [0, @), ... (n <v¢; ag, ayy ... @y, ... EV)
is an arbitrary sequence of complete subalgebra-ideals of B, then because of (2. 4)
and the properties of f; the operation f; on /(%) induced by f; satisfies the relation

(3- ?} .}‘{([03 aO]! (09 al], caey [0! a,,], ) = [09 j-{(aos a] s vevy arp ---)] (" = \'g)-

In view of Theorem 2.3 T ={I(B); fo, /15 --sSos ... [, U) is a complete algebra-
lattice_. Lemma 3.1 and Theorem 3.2 imply that ¥ is isomorphic to T by the
mapping

(3.8) a—[0, aj (acVv).

So we have obtained:

Theorem 3.3. Let B=(V;fo,fis s Sos .3 AN, V) (E<7) be a complete
algebra-lattice and I(B) the set of all complete subalgebra-ideals of B. By the mapping
(3.8) B is isomorphic to the complete algebra-lattice T =_I(B); o, [1s ...s ey ...
N, U), where f; is the operation on I(B) induced by f; (¢ <1).

We mention the following special case of Theorem 3. 3.

Corollary 3.4. Let L be a complete lattice. The set of all complete ideals of L
forms under the set theoretical inclusion a complete lattice such that is isomorphic
to L by the mapping (3. 8).

§ 4. On finitary algebras and compactly generated algebra-lattices

An algebra A =(A4; fo, 1, .c0s fa ...) Of type A=(ng, Ny, 0oy voiy gy ..0) (E<1)
of order t is called finitary, if ny, n, ng, ... are non-negative integers. For finitary
algebras we can sharpen Theorems 2. 3 and 3. 2 and Corollary 2. 4.
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An element a of a complete lattice (L; A, V) is called compact if the following
condition is satisfied: if a= V x,(x,€L), then there exists a finite subset I"(S )
€T

such that a=V x,.
yEI*
By a compactly generated algebra-lattice B=(V; fo,fis ... fer...s NV)
we mean a finitary algebra (V; /o, f, ..., fe, ...) of type A=(ng, ny,...,n; ...
({ =7) of order 7 satisfying the properties (i”), (ii), (iii) and

(iv) every element b of the complete lattice (V; /A, V) can be written as b=
= Va,, where all the a, are compact elements of ¥V, i.e. (V; A, V) is a compactly

o
generated lattice.

A closure system C on a set A is called algebraic (or inductive) if every chain
in C has a supremum in C.
The following result is known. (See G. GRATZER [6] Chapter 0, § 6, Theorem 4.)

Theorem 4. 1. Every algebraic closure system C on a set A forms a compactly
generated lattice with respect to the set inclusion.

Theorems 2.3 and 4.1 imply

Theorem 4. 2. Let C be an algebraic closure system on a set A, ¢ an ordinal
number and G=(gy, &y, ..es &y ---) (M=0) a sequence of C-admissible finitary
operations on A. If g, is the operation on C induced by g, (n<o), then C forms a
compactly generated algebra-lattice under the operations Go, Gy, .., Jy, --- (1 =<0)
and under the set inclusion.

In P. M. ConN [2] it is proved that the set S(2[) of all subalgebras of a finitary
algebra 9 is an algebraic closure system. (See [2] Theorem 5. 2.) BIRKHOFF—FRINK [1]
proved directlythat S(20) forms a compactly generated lattice under the set inclusion.?)

These results, Theorem 4. 2 and Corollary 2. 4 imply

Corollary 4. 3. Let W={(A; F) be a finitary algebra and S = S() the algebraic
closure system of all subalgebras of N. If & is an ordinal number and G ={gy, g, , ...,
vees &y ---) (M=<0) is a sequence of S-admissible finitary operations on A , then

S:GosTyseees Gy ooos [Ny, U) is a compactly generated algebra-lattice, where §,
is the operation on S induced by g, (n <o0).

Let K denote the set of all compact elements of a compactly generated lattice
£=(L; A, V). Evidently the zero element 0 of £ is always compact. As the union
of two compact elements is a compact element, (K:0, V) forms a semi-lattice
with 0 under the nullary operation 0 and the binary operation V. We define for
every element k of K the following unary operation g, on K:

T {k, if kVx=x,
( . ) gk('\} = 0, if k VX =#x ('YEK)'

Let g, g, ...k, /... €K) be a sequence of all unary operations defined by (4. 1).
; ?) This theorem is generalized in G. GrRATZER[S] for the subalgebras of an algebra (with infini-
tary operations).
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We call the finitary algebra A=A(K)=(K;0, V, &, g, ...) of type (0,2, 1,1, ...)
the finitary algebra belonging to K.
An ideal of a semilattice § =(F; V) is a non-void set 4 of F such that, for all
a, be F
aVbeA ifandonlyif a,bcA.

We prove the following analogon of Lemma 3.1.

Lemma 4. 4. (Cf. GRATZER—SCHMIDT [7]). Let K denote the set of all compact
elements of the compactly generated lattice £=(L; N\, \ ). For a non-void subset
B of K the following conditions are equivalent:

(a’) B is an ideal of the semilattice (K; \/);

(c’) B has the form B=[0, b))\ K=[0, b]x, where b= y;

seb
(d) B=(B;0,V, g, &g ...) is a subalgebra of the ﬁniter algebra N =WU(K)=
=(K:0, V, g, &, ...) belonging to K.

PROOF. (a’)=(c¢’). If B is an ideal of (K; V), then for the element b=\ y
yeB
BZ [0, 6] N K=[0, blk

holds. To show that [0, b]x =B, we must prove that x¢[0, b]x implies x€B. If
x€[0, b]g, then x is a compact element with the property

x=b=Vy.
yeB

Hence, x=V » for some finite subset B’ of B. Set B ={y,, Y3, ..., ¥ay and
yEB’

b'=y,V _1-'2\,’}..."\.:’ V.- Then xVb’=b"cB and the ideal property of B imply x¢ B,

which was to be proved.

(¢)=(d’). Let B=[0,b]NK=[0, b]x with b=V y. Evidently 0£[0, b]x

YEB
and [0, b]k is closed under the binary operation \/. Now let us consider an arbitrary
unary operation g, (k€K). (4. 1) implies for every element y of [0, b]x =B that
&(») €[0, ]k holds. Thus (B; 0, V, g, &, ...) is a subalgebra of (K; 0, V/, g, &, ...),
indeed.

(d’)=(a’). Now let B=(B:;0, \V, g, g, ...) be a subalgebra of A=A(K)=
=(K; 0, V, & & ---)- If x,yeB, then evidently x\ycB. Conversely, let us
assume that for the elements k, /e K

kVIEB

holds. We have to show that k, /¢ B. Since B is closed under the opertaions g,
and g; (k, I€ K), it follows from (4.1)

gkV)=keB and g(kVIl)=I¢B.

Thus B is an ideal of the semilattice (K; V).
For the compactly generated algebra-lattices, Theorem 3. 2 has the following
analogon:

Theorem 4.5. Let B=(V:fo,f1s..0,fes ... Ny V) be a compactly generated
algebra-lattice and let K denote the set of all compact elements of the complete lattice
(Vi Ay V). The set S(N) of all subalgebras of the finitary algebra N =W(K) belonging
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to K forms under suitable operations a compactly generated algebra-lattice isomorphic
to B.

Proor. First we shall show that the mapping
4.2) a—~[0,alg=[0,a) K (acV)

is one-to-one. Let us assume that for the elements a, b€ V the relation [0, alx=

=[0, b]x holds. Because of the condition (iv) one can write the element a(€ V)

in the form a= V a;, where a; € K. This implies a; [0, a] N K=][0, a]; for every
LEA

A€ A, whence we obtain
o= Vo, = Y x=aq
icA x€[0,alx
that is a= V x. Similarly b= \ y. Thus the assumption [0, a]x =[0, b]x
x£[0,a)k y€[0,blk
implies a=b.

In view of Lemma 4. 4 we obtained that the set S(2) of all subalgebras of the
finitary algebra A=(K;0, V, g, g, ...) belonging to K is exactly the set of all
intersections [0, a]x =[0, a] N K (a€ V). It is known that S(2) forms a compactly
generated lattice under the set-theoretical inclusion. Now we have to define the
,,suitable” operations on S(2A). If the operations ®) fy, fis ..oy for -.n (E<7) ON V

are ny-ary, n,-ary, ..., ng-ary, ..., then we can define the following ny-ary, n;-ary, ...,
..., Ng-ary, ... operations fo, f1, ..., f%, ... (6 <7) on S(A). For an arbitrary sequence
[0, a,], [0, 5], ..., [0, @u )k (a,,a,, ..., a..€V) of subalgebras of A let

{4 3) fé([ov al]Ks [0’ a.‘!]l\'» seey [0; ﬂn;,]x) :[05 ./:;‘(al ] a:’. Y. any an;)]K'

It is obvious that the operation f; on S(20) defined by (4. 3) is isotone in its variables
and it is contractive in S(2I).

Denoting by () and (J the lattice-operations in S(2[) we obtained that
S=(S(A); fo, f1s «os fis ...5 N, U) is a compactly generated algebra-lattice,
furthermore (V; fo, fi, «-os Sz ...) and (S(A); fo, f1, -+s S5y ...) (£ <7) are finitary
algebras of the same type (ng, n,, ..., n,...) of order . We shall show that the
mapping (4. 2) is an isomorphism of the given compactly generated algebra-lattice
B onto S =(S); fo, 1 ---» fis -..; 1, U). As we have seen (4. 2) is a one-to-one
mapping.

For the operation f; the property of homomorphism fda,, a,, ..., a,.)—~
-'[09f& (ai L] aze 2 AT ] aug)]l\' =.f;([0’ a]]Ka [0; a;]xa seeyp [Os aﬂ.;]K) (aj E] azs wany aﬂ; E V) fOl-
lows from (4. 3).

To complete the proof, we have to show the relations

4.4 Aa,~[0, Aa)Jx = N[0,a;]x and Va;, -~ [0, V alx = U [0, a;]x
AEA A€EA AEA AEA AcA AEA

for an arbitrary system a,(4 € A) of elements of V. The proof of (4. 4) is analogous
to the proof of (3. 5).

It follows from Lemma 4. 4 and the proof of Theorem 4. 5 the following analogon
of Theorem 3. 3.

3) Since the operations fy, fi, ... fs, ... (§=1) generally are not S()-admissible, we cannot
use Corollary 4.3.
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Theorem 4.6. Let B=(V;fo,f1, -.0sSor..s Ny V) (E<7) be a compactly
generated algebra-lattice and let (K; /) denote the semilattice of all compact elements
of (Vi A, V). If I(K) denotes the set of all ideals of (K; \/), then by the mapping
(4.2) B is isomorphic to the compactly generated algebra-lattice (I(K); fo, /1y - -
vees fos it [y U), where the operation f: (¢ <t) is defined by (4. 3).

This theorem is an extension of the mentioned result of GRATZER and ScHMIDT [7]
for the compactly generated algebra-lattices.

§ 5. Embedding of algebra-lattices into complete algebra-lattices

We shall prove the following

Theorem 5. 1. Every algebra-lattice is isomorphic to some subalgebra-lattice
of a suitable complete algebra-lattice.

This theorem is an analogon of the known result of MACNEILLE [8] about
the embedding of lattices into complete lattices. (See e.g. G. SzAsz [10] Corollary
of Theorem 27).

WARD [11] proved the following result.

Proposition 5. 2. Let @ be a closure operator of a complete lattice L. The set
Zy of the ®-closed elements of L forms a complete lattice under the operations

inf., R=inf, R, sup., R=® (sup,. R)

for an arbitrary subset R of Zg. (See e.g.” G. SzAsz [10] Theorem 25.).

For a subset X of a partially ordered set (P: =) an upper (lower) bound
of X in P is an element u€ P (v€ P) such that x=wu(x=v) for every x€ X. The
set of all upper (lower) bounds of X will be denoted by U(X)(L(X)). The set
L(U(X))=D(X) is called the Dedekind cut determined by X. It is easy to show that
the following relations hold:

(5.1) XS Y(£EP) implies UX)2U(Y) and L(X)2L(Y),
(5.2) XSL(UWX)) and XS U(L(X)),
(5.3) U(L(U(X))=U(X) and L(U(L(X)))=L(X).

One gets from (5. 1), (5.2) and (5. 3):
(5.4) if XS Y(SP), then DX)=L(UX))SL(U(Y))=D(Y),
(.5 XSDX)=L(UX)) (XSP)
(5.6) D(D(X))=L[U(L(UX))]=LUX))=D(X) «(XSP).

As the set B(P) of all subsets of the partially ordered set P forms a complete
lattice under the set-theoretical inclusion, we have verified the following known
result:



252 0. Steinfeld

Proposition 5. 3. Let B(P) denote the complete lattice of all subsets of the partially
ordered set P. The mapping

X-L(UX)=D(X) (XeB(P))
of B(P) into itself is a closure operator on B(P).

Now we begin the proof of Theorem 5. 1. Let B=(V; fo, f1, ...x foy i Ny V)
be an arbitrary algebra-lattice. If B(8) denotes the complete lattice of all subsets
of the lattice (¥V; A, V), then in view of Proposition 5.3 the mapping

X-LUX)=DX) (XeB(B))

of B(B) into itself is a closure operator on B(VB). Using Proposition 5. 2 for the
closure operator D on the complete lattice B(B) we get that the set Z,, of all D-closed
elements of B(Y) is a complete lattice under the operations of infz, and supz,,
defined in Proposition 5. 2. We shall show that Z, forms under suitable operations
a complete algebra-lattice, in which 8 can be embedded isomorphically.

Let us consider the fundamental operation f; of V. If f; is a ve-ary operation,
then we consider an arbitrary sequence A,, A4,,...,4,,...€Zp(n<vy). Let
J:(Ay, Ay, ..., 4,, ...) denote the set of all elements f; (ay, ay, ..., a,, ...) (@€ Ay,
a, €Ay, ...,a,€A4,,...). We define by

s 7) f;(AO, Agy iy Ay ...)3L(U(f:=(A0, Ay ooy Ay )))2
=D(J‘.{(Aos Ays ey Ay )) (n=vo)

a vg-ary operation *) on Z, We are going to show that (Zp; /o, [, ... [ ...;
infz,, supz,) is a complete algebra-lattice.

If Ay, Ay ..., A,,...€Z, and By, By, ..., B,, ... €Z, are two sequences
with the property A4,< B, (0=n<v), then

.f{(Al)s A|9 ey Aqs --°)gﬁ(809 Bt g vany Bpp °--) ('f“: ‘.;)'
This implies by (5.4) and (5.7)
.f;(AO! Als ooy Aqv >°-)g.f;(30! Bl | R Brp --') ('?“: "{)°

So f* is isotone in its variables, i.e. property (ii) is fulfilled for the operation f.
Now let us consider an arbitrary D-closed set A(¢Z,) and let u(€ V) be an

upper bound of 4. If f(a,,a,, ..., a,...)(a, a,, ..., a,, ... € A) denotes an arbitrary
0 1 n

element of the set fc(;;, b A (< vg), then because of the conditions (ii)
and (iii) given for f;
0 1
Je(30s 815 ... 8y, ...) = [0, 4, ..., %, ..} S U (n=vy)

u
holds. This means that every upper bound wu(< V) of A4 is an upper bound of the

0 1 "

set f;(A", Ao o i) e 48
0o 1 "
UA) S U(fA, 4, ... 4,..))  (n=<vy).

n
e
g o

4) In (5. 7) we extend the definition (8) of Fucshs [3] for infinitary operations.
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This implies because of (5. 1), (5.7) and D(A)=L(U(A))=A4

=

o X gL 1
fi¥A,4,...,4,..)=D(f:(4,4, ..., 4, ...) =

1 n

0
= L(U(fu(A4, 4, ..., 4, ...)) S L(U(4)) = D(4) = 4,

that is the operation f; is contractive in Z,.
Thus {Zp: fo, f1"s ..., [, .1 infz,, supz,) is a complete algebra-lattice indeed.
Now we show that the mapping

(5.8) x+D(x)=L(x) (xcV)
is an isomorphism of the algebra-lattice B=(V:fy,f,,....[ e, ...: A\, V) into the
complete algebra-lattice
3=(Zp; fo', [{'s -+ s G oo infzp, SUPZY).
Evidently (5. 8) is a one-to-one mapping. One can verify the laws of homomorphism
xA\y—=D(x\y)=infz, (D(x), D(y)) (x,y€V),
xVy—=D(xVy)=supz,(D(x), D(y)) (x,y€eV)

by the usual method. (See e.g. the proof of Theorem 27 in G. SzAsz [10]). We have
only to prove the relation

(5.9 Xy Xy 'svvs iona Xy 1o0) > B Sl Xa5 X5 vy Xigy sas) )
=/2(D(xo), D(x,), coes D(x,), ) (=)

for an arbitrary sequence xg, Xy, ..., X,, ... € V. Because of L(x)=D(x)€Z, and
(5. 7) we have

(5. 10) FE(D(xo), D(Xy)s oy D(x,), ) =FH(L(X0)s LX)y ooy L(X), ) =
= D(fL(xo), L(Xy), ..., L(x,), ...)) = L{U(fL(xo), L(x,), ..., L(x,), ...))) (1 < Ve).

As fe(xg, Xy, ...y X, ...) I the greatest element of the setfg(L(.\'o), IAxy), .-.s L(x,), i)
therefore we have

ULHCE ), 1), o ZOED o)) w UL Sl s X1y sers Xy 4v)) (n=<vg).
This and (5.10) imply

Tl By vosg Xae o) DTN By ving Kgs 160)) 2 LU TG s Xt o vi By i)Y 5
= L(UULL(3), LX), orry L), ) =/H(DCxo), D(x,),s .oy D), -..)

that is (5. 9) is true.
The proof of Theorem 5.1 is finished.

Remark 3. By the embedding of the algebra-lattice ¥ into the complete algebra-
lattice 3 the identities between operations of 8 carry over only exceptionally to 3.
In Fucas [3] a sufficient condition is given for an identity to carry over to 3.
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§ 6. Examples and applications

First we define a special complete algebra-lattice which plays an important
role in the following examples.

Let L be a partially ordered groupoid, i.e. let in L a binary multiplication and
a partial order = be defined with the property

(6.1) a=b(a,be L) implies ac=bc and ca=ch forall ccL.
We assume that the following conditions hold in L:
(6.2) a*=a (forall acl)

and L is a complete lattice with respect to the partial order =, whose least, greatest
elements are 0 and e, respectively, satisfying

(6.3) 0-e=e-0=0.

The partially ordered groupoid L with the mentioned properties is called a
complete groupoid-lattice.
From the conditions (6.1), (6. 3) it follows

(6.4) 0:a=a-0=0 (for all a<cL).

Evidently every complete groupoid-lattice L is a special complete algebra-
lattice, as properties (i’), (ii) and (iii) are fulfilled in L.

Example 6. 1. Let £,=(C,; -, 0) be a groupoid with 0. If 4, B are two sub-
groupoids with zero of £, then in view of (2. 4") the multiplication defined on C,
induces the following binary multiplication

(6.5) AB={ab; ac A, be B}

on the set L, of all subgroupoids with zero of £,. It is easy to show that L, forms
a complete groupoid-lattice under the multiplication (6. 5) and under the set inclusion.
We denote by () and U the lattice operations in the complete lattice L, . Evidently
0 is the least element and C, is the greatest one of L,.

Example 6. 2. Let L, denote the set of all subgroups of a group G. It is known
that L, forms a complete lattice under the set inclusion. Evidently the commutator-
forming [x, y]=xpx~'p~' (x, y€G) is an L,-admissible binary operation on G.
If H, K denote two arbitrary subgroups of G, then which respect to (2.4") the
operation [-, -] induces the following binary operation

(6. 6) [H, K]={[h, k]; h€ H, k€ K}

on the complete lattice L,. It is easy to see that L, forms a complete groupoid-
lattice under the ,,multiplication™ (6. 6) and under the lattice operations. The least
element of L, is the unit element of G and its greatest element is G. It is remarkable
that in general [x, y]=[y, x] (x, ¥y€G) does not hold, but [H, K]=[K, H] holds
forall H, K€L,.

Example 6. 3. Let &, =(F,: +, 0) be a semigroup with 0. Similarly to Example
6.1 the set Ly of all subsemigroups with zero of &, forms a complete groupoid-
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lattice. It is interesting that the associative multiplication on F, induces by (6. 5)
an in general non-associative multiplication on L;. Namely if 4, B, C, are sub-
semigroups with zero of &, then for the elements a,,a,€A4, b;b,<B and c€C

d=(a,b,a,b;)cc(AB)C butin general d¢ A(BC).

Example 6. 4. Analogously to Example 6.1 the set L, of all subrings of a
(not necessarily associative) ring R forms a complete groupoid-lattice, whose least
element is 0 and the greatest one is R.

In the foregoing examples we considered only one (binary) operation of the
given algebraic system and the set of all algebraic subsystems formed always
a complete groupoid-lattice. In an other paper we want to write about complete
groupoid-lattices, which satisfy some conditional associative and distributive laws.
Now we give some illustrating examples for the results of §§2, 3 and 4.

Example 6. 5. Let us consider again the set L, of all subgroups of a group G.
If A, B are two subgroups of G, then the multiplication on G induces by (2. 4') the
multiplication AB={ab;ac A, bc B} in L,, satisfying the relation 4B=A4JB.
The inverse-forming a '(¢€G) is an L,-admissible unary operation in G, it
induces by (2. 4°) the unary operation A~ '=A(€L,) in L,. (It is evident that not
the same identities hold for the multiplication and inverse-forming on G as for the
induced operations on L,.) In view of Corollary 4. 3 L, forms a compactly generated
algebra-lattice under the mentioned two induced operations and under the set
inclusion.

Example 6.6. Let £=(L; A, V) be a complete lattice with the least element 0
and with the greatest element e. Let S,(¥) denote the set of all complete sublattices
with zero of £. If A,(y€T) is a system of elements of Sy(£) then in view of (2. 4)

the operations /\ and V induce the following operations /A and '/ on Sy(£):
A 4, = { A x,; x,€4,(p€DN),
7€ €T

VA= {‘\,/rx.,.; x,€ A, (yeD)}.

yET

v/

It is easy to show that A and V are commutative and associative (infinitary)
operations on S,(&). Naturally S,(£) forms a complete lattice under the set inclusion.
If we denote by M and |J the operations of this complete lattice, then (S, (2);

A,V N, U)is a complete algebra-lattice.

Example 6. 7. Let us consider the following operations a+b, —a, ab,acb=
=a+b—ab of an associative ring R (a, b€ R). If A, B are two subrings of R, then
the given operations induce by (2. 4) the following operations on the set Ls of all
subrings of R:

A+B={a+b;acA;bcB},

—A={—a;ac A},
AB=ab; acA; b¢ B},
AoB={acb;acA; b¢ B}.
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Naturally Ls forms a complete lattice under the set inclusion. Let M and U denote
the lattice operations. It is easy to show that the following relations hold *) 4 + B=
=AoB=AUB and —A=A. Similarly to Example 6.3 the multiplication AB
may not be associative.

Example 6. 8. a) Let S; denote the symmetric permutation group of order 3.
The subgroups of S; are: S3; A;=(1), (123), (132); B=(1), (12); C=(1), (13);
D=(1),(23);: E=(1). These subgroups form under the set inclusion a complete
lattice H, whose diagram is:

R

g

In view of Example 6. 2 H forms under the binary operation (6. 6) a commutative
groupoid, whose Caley-table is:

_|elalclo|a]s
E|E|E|E ' E|E| E
B | E EIA_,,;A,.A; Ay
(6.8) ol N T«l, E |y 4] 4
Dl E dgl Al B | 4y Lils
N :rA_,,” E | A;
Sy | E | As | As | A5 | A3 | A5

Thus H is a complete groupoid-lattice and the operations on H are given by (6. 7)
and (6. 8).

b) Conversely let B=(V;-: A, V) be acomplete groupoid-lattice with the
underlying set V=0, a, b, ¢, d, e. Itisassumed that B is isomorphic to the complete
groupoid-lattice H and the one-to-one mapping is given by

0+~E, a+Ay,b—+B,¢c—~C,d—=D, e—~S;.
(The operations on V are defined according to (6. 7) and (6. 8).)

%) Cf. Remark 1.
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In view of Theorem 3. 2 the algebra A =(V; -, A, V, & &, ---) (@, b, ...€V)
belonging to B has the property that the complete algebra-lattice of all subalgebras
of ¥ is isomorphic to V.

(We remark that 9 is naturally a compactly generated algebra-lattice and
A is a finitary algebra.)

Ex ample 6. 9. Let N, denote the multiplicative semigroup of the non-negative
cgers. If we define on N, the following partial order =:

a=b ifand only if bla (a, bEN,),

then N, forms under the relation = a complete lattice. Its greatest (least) element
1s the number 1 (zero). For any subset M of N,, sup M is the greatest commons
divisor of the elements of M. Moreover for finite M, inf M is the least common
multiple of the elements of M and for infinite M, it is 0.

It is easy to see that the relations (6.1), (6.2) and (6. 3) hold in N, thus
Ny =(Ny: +; sup, inf) is a complete groupoid-lattice. According to (3.1) one can
define for every number a(€ N,) the following unary operation g, on N,:

A R

gﬂ(x) = {0 (xENO)

if x{a

Let us consider the algebra A =(N,; «; sup, inf, g,, &, -..) (@, b, ... € N,) belonging
to M,. From Lemma 3.1 it follows that every subalgebra of 2 has the form [0, 4]
(a€ N,), where the interval [0, a] consists of the multiples of the number a.

In view of Theorem 3. 2 the set S(2[) of all subalgebras of 2l forms a complete
groupoid-lattice isomorphic to M,. The isomorphism is given by

a-[0, a] (@€ N,).
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