267

On compact objects in categories
By R. WIEGANDT (Budapest)
To Prof. A. G. Kuros on his 60" birthday

Introduction

In the paper [6] we have introduced the concept of M-compact objects in a
category. The M-compact objects correspond to the ’in a narrow sense linearly
compact’ modules introduced by LEPTIN [2] in the category of modules. M-compact
objects take an important part in the characterisation of M-semi-simple objects
(cf. [6]).

It is the purpose of this paper to derive some results concerning M-compact
objects. In § 1 we establish assertions used in the subsequent sections. Some of
them are of some interest, and complete the results of [6] concerning the inverse
system belonging to an object.

In his paper [4] SuLiNskI has defined the concept of M-representable ideals,
and developed results concerning it. The aim of §2 is to show a close relation
between M-representable ideals and M-compact objects. It will turn out that in
an M-compact object any ideal which contains the M-radical and which is an M-
compact object, is M-representable and conversely, in an M-compact object any
M-representable ideal is an M-compact object. Further, we obtain that any M-
representable ideal of an M-compact M-semi simple object is a direct factor of
this object.

In §3 we introduce a closure operation on the subobjects of an object in
a rather natural way and we prove that for M-compact objects this closure operation
is topological. Thus M-compact objects can be considered as objects equipped
with a topology. Making use of this closure operation we define dense subobjects
of an object and also M-compactifications of an object. It will be proved that any
M-semi-simple object has an M-compactification and can be embedded as a dense
subobject in a direct product of M-objects.

§ 1. Preliminaries

Let C be a category. The objects and maps of C will be denoted by small Latin
and small Greek letters, respectively. By definition C satisfies the following conditions

(C,) If a:a—b and B: b—~c are maps, then there is a uniquely defined map
afi: a—c which is called the product of the maps « and J3;
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(Cy) If a:a—=b,p:b—c, y:c—~d are maps, then (xf)y=u(fy) holds;

(C;) For each object acC there is a map ¢,: a—~a, called the identity map of
a such that for any a:b-—+~a and f: a-c we have oe,=uo, &, =p.

For the definitions of familiar concepts, such as monomorphism, epimorphism,
equivalence, kernel, image, direct product, inverse limit, etc. we refer to the books
[1], [3] and to the papers [4], [6], respectively. In this paper an epimorphism will
always mean a normal epimorphism, and it will be supposed that the product of two
normal epimorphisms is again a normal one. The subobject determined by the object
a and the monomorphism « will be denoted by (a, ). If the map &: @a—~b is an equi-
valence then we shall write a~b(&, ') or only a~ b, if there is no fear of am-
biguity. The zero maps and identity maps will be denoted by ® and & respectively,
and the zero objects by 0.

We say that a diagram consisting of rows and columns is exact, if its rows and
columns are exact.

As it was done in [4] and [6], we shall suppose that the category C satisfies the
following additional requirements:

(C,) C possesses zero objects;

(Cs) Every map has a kernel;

(Cy) Every map has an image;

(C;) An image of an ideal by an epimorphism is always an ideal;

(Cg) Every family of objects has a direct product and a free product;

(Cy) The class of all subobjects of any object is a set:
(C,o) For each object a€ C the set of all ideals of a is a complete lattice;
(C,,) Every inverse system has an inverse limit.

We shall need the analogous statements of the Noetherian Isomorphism
Theorems.

First Isomorphism Theorem. Ler (k, x)=(d,d) be two ideals of an object a,
and let
0 - k —2:- a -ﬂ; b — 0

be an exact sequence. Denote the image of (d, 8) by the epimorphism o, by (m, ). Then
there are such maps vy, p that

0 0
4 i
O0-k—=-d-m-0
4o ‘x
O Bi% fa S /B e t)
v }
0+c¢y—+c,~0
v 8
0 0

is an exact commutative diagram.

For the proof we refer to [6] Theorem 2.1.
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Second Isomorphism Theorem. Ler (k, x), (d,,d,) and (d,,d,) be ideals of
an object acC such that
(ky %) =(d;, 0,)(d;, 3,),

(O’, 8)=(d1 ] 51)U(dz: 62)
0-k—=d,—~b,~0

are valid. If

and
0*(]2"“"'!)2"0

are exact sequences, then the diagram

0 0 0
{ } }
0~k -d, -b; -0
! ) }
0+dy,—~a—~b,—~0
.
0
is exact and commutative.

The proof can be found in [4].
Combining the assertions of Theorem 2, 3 in [6] and Theorem 2, 5 of [4] we
obtain

Proposition 1. Let
O+kZa b0
and
0-d2a+b-+0 (i=12
be exact sequences. If
(ka %) =(dl ? 51) n (dz ’ "52)
and

(ﬂ, 5) =(d1 ’ 61) U(dzv 52)

hold, then b is a direct product of b, and b, : b=>b, Xby(xy,x;; fB,, ;) moreover,
(b;, B) (i=1,2) is the image of (d,, d;) by o and

Ker a; =(b,, #,), Kera,=(b,, 31)
hold.

We can prove also the converse statement of this proposition.

Proposition 2. Let
0—hk—tﬂ—ib1><b2(ni; Q") (f=], 2)

be an exact sequence, and denote the complete counterimage of (b, 0;) by (d, d))
(i=1,2). Then
(k, X)=(d| . 51)n(d2, 52)
and
(a,8)=(d,, 6,) U(d,, d,)
hold.
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Proor. The image of (d,,d,)N(d,,d,) by « is (b;, 0,)(b;, 0,)=(0, w),
so its complete counterimage by « is Ker x =(k, x).
Denote the union of (d,,d,) and (d,, d,) by (/, 4). Now

0 0
} }
 PETE SRS

v Voo

0—«!(403*1’)1)([12—-0

is an exact commutative diagram such that (b,, 0,)=(b,, 0,) U (b,, 0,) holds
Since by the Second Isomorphism Theorem

0 0
| }
B e By i B
' fer e
0By B h Kb 2 b0
'

0

is also an exact commutative diagram, so the complete counterimage of (b,, )
by 7, is just (b, 00). Since @, is an epimorphism, we get

(bg, 00)=by X b, (m;: ).

Thus the assertion is proved.
We recall the definition of M-radical given in [6]. For this reason, consider
a class M of objects belonging to C such that

(i) If acM and a~b then be M;

(i) If a,be M and o: a—~b is an epimorphism, then either o is a zero map,
or a~b(x,a5').

The objects belonging to M will be called M-objects. We say that the ideal

(d, d) is an M-ideal of acC, if there is an exact sequence 0 —~d 2 a-b-0 such
that b€ M. The set M, consisting of all M-ideals (+#(a, ¢)) of an object a is called
the structure M-space of a

The M-radical of an object a€ C is the intersection of all M-ideals of a. If a
has no M-ideals, then its M-radical is (a, ), and a is called an M-radical object.

A subset 4 of M, is called an independent M-system, of a, if for any M-ideals
(d,, d,), < Vi (d, 9,)€ M, and exact sequences

Osdtawba0 i=1,..,n)
the sequence

Godn s (1 B3 2 a Bk o0
i=1
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is also exact. Every object has maximal independent M-systems, and the M-radical
of an object is just the intersection of the M-ideals of any independent M-system
of a (cf. [6]).

Any (not necessarily maximal) independent M-system 4 induces an inverse
system €, as follows (cf. [6]). Consider the set F, — a so-called filter — consisting
of all finite intersections (c;, y;) (i¢1) of M-ideals belonging to 4. We regard 7 as
a partially ordered set by the definition: i=j if and only if (c;, ) =(c;, y;). For
each (c;, 7,)€F, let us consider an exact sequence

O-cl—-af:bi-ao.

Using the First Isomorphism Theorem we get that for any ideals (¢;, ;) =(c;, ¥;)
there is an epimorphism =j: b;—~b; such that

0 0

+ '
0~c;»c;—~my—0

4 ‘
0-c-a b -0

18,  in

O*bj—ibj"’o
' '
0 0

is an exact commutative diagram, further we have ﬁin,:ri Pimi foranyiz=j=kel
Since f; is an epimorphism, there follows nin{=n}. Thus Q,=[b, n}] forms
an inverse system, and there is a uniquely defined map, the so called canonical
map of a belonging to 4, f: a— lim Q, such that fr,=p; (i€l) holds where =;
means the projection x;: lim Q, —~g;.

It is obvious that if 4 = {(dy, 6x)|k € K} is an independent M-system, then the
elements k € K are just the minimal elements of the index set / of F,.

Theorem 1. If
0->dy~a—=a, -0 (k€eK)
are exact sequences, then lim Q, is a direct product of the objects ay (k € K).

ProOF. According to the construction of Q,=[b, nj] any b; is determined
by the exact sequence

0_.(6‘1'3’:)_ n(dly(sk)"'a—“b - 0.

finite

Since 4 is an independent M-system, b; is a direct product b,= [] a(tf?, 3)
finite
of the objects a, such that

is an exact sequence for all k € K occurring in the direct decomposition of b,. Thus
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by definition for the projections m;: lim Q,—b; the relation mnj=n; is valid
for all i=jcl, and for any system of maps y;: h—b; satisfying yn} =y, there
is a unique map y:h- lim Q, such that ym =y; is valid for each i€/l

We have to prove that lim Q, is a direct product of the objects g, (k€ K).
Obviously we have *)

o: lim Q, -~ a,

for of? =mna{? (k€ KSI)and of” =p§? for i=j. Let h be an object and o: h —~a;
(k€ K) a system of maps. Now we can complete this system of maps by setting
() =, 3 : h—+b;. Clearly yMnj=yx® is valid for all i=jcl Thus by the
definition of the inverse limit there exists a unique map y such that ym =y®.

So we get
EY o APLE r § T i) (i) —
yof = ymrf? = Pl = 0,90 1f) = a,

therefore lim Q, is indeed a direct product of the objects @, (k€ K).
Again, let 4={(d,,d,) ke K} be an independent M-system of the object a.

Theorem 2. If o denotes the canonical map a:a— lim Q, then Ker x=
= (di, ;) holds.
k=K

PrOOF. Denote [ (d, d,) by (/, A). By Theorem 1 there is an equivalence
k=K

¢ limQ, —~ ” a (T, 9)
i kEK
such that

0-’(!* —“‘a—“'a* —"0

is an exact sequence for each k€ K. This implies Kera=Ker f (f=uaf).
If B, =pn,, then we have Af, = for each k € K. Thus w is the uniquely defined
map w: I~ [[ a (z;, 9,) and this implies if=w.
kEK

Let y:c¢--a be a map satisfying yf=w. Now 7yf,=7yfr,=wm holds for each

k € K, therefore there are maps y,: ¢ —~d, (k€K) such that 7,6,=7y. Because of

(, )= N (di, &;) there exists a map 7y": ¢~/ such that p’A=7y holds. Thus the
kcK

assertion Ker f=(/, ) is proved.
As an immediate consequence of Theorem 2 we obtain

Proposition 3. If A4 is a maximal independent M-system of a and « is the canonical
map a:a—lim Q4 then Ker o is just the M-radical of a.

In [6] we have introduced the concept of M-compactness. Let us consider
a maximal independent M-system A4, of an object a. The object a is said to be M-
compact, if the canonical map «: a—lim Q,, is an epimorphism.

* The maps having indices in brackets, essentially, do not depend on these indices.
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Proposition 4. If a is an M-compact object, then there is a one-to-one corres-
pondence between the M-ideals of a and those of lim Q, .

ProOOF. Applying the First Isomorphism Theorem, we have the exact
commutative diagram

0 0

} |
O+k—-d —m—=0

4 }
Dk d -lim_Q‘,D—-O

4 }
0_’('1‘__‘02___"0

0 0

where (k, ») means the M-radical of a, further (d, é) and (m, y) are M-ideals of
a and lim Q, respectively. Thus (d, 6)<=(m, y) induces a one-to-one correspondence
between the M-ideals of @ and lim Q, .

Let M, denote the structure M-space of an object a. M, induces a filter F,,,
and there belongs an inverse system Qu to Fy. In [6] we have proved

Proposition 5. If A4, denotes a maximal independent M-system of a then the
inverse system Q, is a cofinal subsystem of Qy, and so lim Q, ~ lim Q hlods.

The class M satisfying the conditions (i) and (ii) is said to be a modular class
of objects, if M satisfies also the following conditions (cf. [4], [6]):

(iii) If (p, m) is an ideal of a and p € M, then there is a uniquely defined ideal
(m, x)EM, such that (p,n)(m, x)=(0, ®);

(iv) If (1, 2) is an ideal of a, and (q, 9) is an M-ideal of I, then (g, 34) is an ideal
of a.

A non-zero object a is called simple if its only ideals are (0, w) and (a, ¢).
Throughout this paper we suppose that M denotes a modular class of simple objects.

Proposition 6. (see [4], Proposition 4.7). Let (I, A) be an ideal of an object
acC. If (d, d) is an M-ideal of a, then (d, 6) (I, A) is either an M-ideal of l or it is
equal to (I, €). Conversely, any M-ideal (q, 3) of | can be represented as an intersection
(g, 34)=(d, d) N (I, 2) where (d, d) is an M-ideal of a. The correspondence (g, 3)<~(d, é)
is one-to-one.

As a consequence of Proposition 6 one can obtain

Proposition 7. (see [4] Theorem 4. 10) If (I, A) is an ideal of an object ac C and
(ca 7.) denotes the M-radical of a then (c;, 1,A) = (¢4 Ya) (I, A) is valid where (¢, 7))
denotes the M-radical of 1.

§ 2. M-representable ideals
Following SuLiNsk1 [4], we say that the ideal (/, 4) of an object ac€C is M-
representable, if (I, 4) can be represented as the intersection of all M-ideals contain-
ing it.

D1



274 R. Wiegandt

In this section we shall show a close connection between the M-compact objects
and M-representable ideals. First we prove the following statement.

Proposition 8. If A={(d, 6,)licl} is a not necessarily maximal independent
M-system of an M-compact object a, and J, K are subsets of I such that J\UK=1
and JN K=, then

(n (dj’ 61))U( r] (dk! a‘it)) - (as 'E)
jed ke K
holds.
Proor. Consider exact sequences
0—+d,~a—+a;—~0 (iel)
and denOte n( i) 61)1 n (djs 61) and [l(dkv ék) b)’ (L }*)v (IJ’ )*J) and UK': )'K):
€J kE
respectively. Smce A4 is an independent M-system, so by Theorem 1 the sequences

0"!}“'0"1]0}"0,

J€d

0‘*1’;""0" Ha,‘—-O,
kEK

0~l—>a[[aX [[a,—~0

j€J kEK
are exact. Consider the complete counterimage of H a; and H a, by «, they are
obviously (/k, Ax) and (/;, 4;), respectively. Thus by Proposmon 2
1y, 2 Ul 2x) =(a, &)
holds, and the assertion is proved.

Theorem 3. Let M be amodular class of simple objects. If (I, ) is an M-represent-
able ideal of an M-compact object a, then the object | is also M-compact.

Proor. Consider a maximal independent M-system 4, ={(d;, é;)|icJ} of
M-ideals of a containing the ideal (/, 2). By Zorn’s Lemma there exists such an

M-system.
We establish the relation (/, 2)= N (d;, ;). (, )= [)(d;,d;) is obviously
Jjed jeJ

true. To prove (/, )= (N (d;, ;) let us consider the sequence
Je€J

= N@.5) *a>lim, -0,

where
4, = {(d;; 5| jeJ}.

According to Theorem 2 this sequence is exact. Consider a map y: ¢ —~a such that
y2=w. Since Kera= ) (d;, 6;) holds, there exists a map y’: ¢ —~Ker a such that
jed

Yr=7.
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By the First Isomorphism Theorem we have for any M-ideal (d;, ;) (j€J)
the following exact commutative diagram

0 0

' '
iedJ

' %9
ied S

v '

0'_"" Cl- —-(‘2—-*0
' '
0 0

and it is easy to see that A"={(m,, z;)/j€J} forms a maximal independent M-
system of lim Q, . If (d, ) is an arbitrary M-ideal containing (/, 1), and (m, ) is
its image by «, then with respect Proposition 5 to (m, y) there is an intersection

N (m;, x;) such that () (my, x;)=(m, ). Hence for their complete counter-
finite i

nite
images [ (d;, d;)=(d, 0) holds. Thus there exists a map 7y;:c—d such that
finite

7;0;=7, moreover there exists a map 7,: c-’w a)n(; a (d, )=(l, 2) such that
704 =17. Hence (/, A)=Ker« is proved. > A

Complete the M-system 4, to an independent M-system 4 of @ Thus we have
A=4,J4, where 4, consists of certain M-ideals (dy, d;) (k€ K) not containing
(/, 2). So JNK=0 is valid, further denote JIJ K by I.

To prove the theorem we need

Proposition 9. Consider the ideals (g, 3:4) =(dy, 6,) (I, 2) (k€ K). The system
@ ={(qy, W)k € K} is an independent M-system of the object I. If A is a maximal
independent M-system, then so is @.

By Proposition 8 for any finite intersection (f,@)= [ (d;,d,) we have

nite
(f. @)\ J(l, 2)=(q, &), and so, using the Second Isomorphism Theorem we obtain
the exact commutative diagram

0 0 0
. . :

0=, NLA)~1~ b -0
) | |

B o f v gl +D
}
0

Thus @ is an independent M-system of /.
Suppose @ is not maximal, i.e. there exists an ideal (g, 3) of /, such that
@' =@ J{(q, 9)} is also independent. By Proposition 6

(g, 92)=(d, )N (1, 2)
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holds for an M-ideal (d,d) of a. Consider any finite intersection (] (d;, d;).
finite
By Proposition 5 there are finite many ideals of 4 such that

n (d;, 5‘) by ﬁn (dk‘l 6*] ﬂ (d, 6) — (ﬂ, "_)

finite

mite

holds. From Proposition 8 there follows
(N @, 3) Ut 2)=(a.2),

nite

hence
(n, VU, 2)=(a, &)
is valid too.

The intersection (n, v)((/, A)=(g, ) is obviously a finite intersection of
ideals of @” and (g, 9) is one of the components of this intersection. Since @’ is
independent, there is an exact sequence

O—-f—+1l—-aX [[a—~0

finite

such that
0-g—=l—-a -0

is an exact sequence. Using the Second Isomorphism Theorem we obtain the following
exact commutative diagrams:

0 0 0
{ } |
0O-g—-1—-dX [[a—~0
finite
v v |
O-n—-a—— b —=0
!
0
and
0 @ U
} i |
0-qgq—+1—-d -0
{ } i
O+d—+a—-a—~0
}
0

Hence 4,!){d, d)} is an independent M-system such that (d, 3) does not contain
(/, ). This contradicts the choice of 4,, and thus the proposition results proved.

Now we continue the proof of Theorem 3. Assume that 4 is a maximal independ-
ent M- system of a. In view of Theorem 1 and Proposition 9 we obtain
(1) lim Qp ~ J] @ ~ lim Q.

Sery kEK e
Let (/y, 40) denote the M-radical of a, and denote rL(d,‘, d) by (', 2'). Now
k€

(Iy, 29)=( AN, ") is valid, and Proposition 8 implies
(@ &)= A)UT,2).
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Taking into account the M-compactness of a, from Theorems 1 and 2 we infer by
the Second Isomorphism Theorem that

0 0 0

. 4 .
O0->l—-1-> by -0

b 4
0=V —-a~- [[a ~0

kEK

+

0

is an exact commutative diagram. Hence by (1) by~ lim Q, is valid. Thus / is
M-compact, and Theorem 3 is proved.

Corollary. If a is an M-compact, M-semi-simple object, then every M-
reperesentable ideal of a is a direct factor of a.

If ([, A) is an M-representable ideal of a, then by Theorem 3 the object / is
M-compact. Hence we have the exact commutative diagram

0 0

' }
fla s P Tl =2l
'- |

0+-0+a—~ [la;x [Ta,~ 0
jed kEK
and so (/, A) is a direct factor of a.

The statement of this corollary is analogous to well-known facts in the category
of modules (cf [3]).

Now we show by a simple example that an M-compact object @ in which every
M-representable ideal is a direct factor, need not be M-semi simple. For this sake,
let @ be a direct product of an M-radical object /0 and an object pe M: a=IXp
(my, 2 04, 05). It is obvious that (/, 0,) #(0, w) is the M-radical of a, and every
M-representable ideal (namely only (/, ¢,)) is a direct factor of a.

The converse statement of Theorem 3 is also true.

Theorem 4. Let M be a modular class of simple objects. If | and a are M-compact
objects and (I, 2) is an ideal of a containing the M-radical of a, then (I, A) is an

M-representable ideal of a, moreover, (I,1) is the intersection () (d;,d;) of M-
icJ

i€
ideals which form an independent M-system A;={(d;,d;)|j€J} of a.

Proor. Consider the set of all M-ideals of a containing (/, 1), and choose
a maximal independent M-system Ady={(d,,d)k€K} from these M-ideals.
Complete A; to a maximal independent M-system A of a. Obviously 4=4,U4,
holds where 4,={(d;,d;)|j€J} denotes an independent M-system consisting of
M-ideals not containing (/, 2).

Let us denote the M-radical of a by (¢, 7). Taking into account Proposition 3
and Theorem 1, we obtain the exact sequence

0O+c—a—~[[a~0 (= KLU
il
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where a; (i¢]) are M-objects such that
Dud2gsa+0

is an exact sequence, meanwhile (d;, d;) ranges over the maximal independent M-
system A4.

Consider the set ®={(q., 3 )keK} such that (q., 94)=(d,d)N(I, 7).
According to Proposition 9 @ is a maximal independent M-system of /.

Since / is an M-compact object so by Theorem 1 and Proposition 3 we get
the exact sequence

O-cZl!- [[a—-0
KEK

and here, according to Proposition 7 (¢, y,) is the M-radical of /. The First
Isomorphism Theorem yields the following exact commutative diagram

0 0
! +
O-c-1~- J[la=0
kEK
' ‘e
Dse+as Jla-+0
icl
‘e i=
0~b-~ [Ja,~0
jes
b '
0 0

Hence Ker ¢ =(/, /) holds.
According to Proposition 8 there follows from the Second Isomorphism
Theorem that
0 0 0
' ' .
0— ¢ — N@,d)—- & -0
jeJ

' ' '
0+ N(@,0)— a — [[a~0
keK KEK
'
0

is an exact commutative diagram. Thus the image of [ (d;, d;) by an is (0, ).
jEd
Hence () (d;,0;)=(/,4) is valid. Thus (/, )= (dj,léj) holds and (/, 4) is an
j€d J

€J
M-representable ideal of a.
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§ 3. M-closure operation

We can introduce a closure operation in the set of all subobjects of an object
acC in a natural way.

Again, let M denote a modular class of simple objects, and let (/, ) be a sub-
object of the object a. Denote the intersection of all M-ideals of @ containing (/, 1)
by (I, Z). If the set of such M-ideals is empty, then we put (I, 1) =(a, ¢).

The ideal (I, £Z) will be called the M-closure of the subobject (/, ).

In other words: consider the structure M-space of @, and denote the set of all
intersections of M-ideals by C. C is a closure-system, and the closure operation
belonging to C is just the M-closure operation. The ideals with (/, 2) =(I, £) (i.e. the
M-representable ideals) will be called M-closed ideals.

Now the question arises: does the M-closure operation define a topology on a?
(i.e.: Is the union of finitly many M-closed ideals again closed?) Concerning
this problem we establish the following result.

Theorem 5. If a is an M-compact object, then the M-closure operation defines
a topology on a.

Proor. It is sufficient to prove that the union of any two M-closed ideals
(/y, 4y), (I5, £,) is again M-closed.

Consider the set of all M-ideals containing both of (/,, 4;) and (/;, 4,), and
choose a maximal independent M-system AG—{(d,,ée)ngG} of such ideals.
Complete 4; to maximal independent M-systems _,—{(dj,é )jeJ} and
AK—{(d,,,é,‘)‘kEK} of M-ideals contamlng (/;, 4y) and (/5, 4,), respectwely

It is obvious that J K=G is valid, moreover {(d;,é)l:G(JUK)\G} forms
an independent M-system of a.

Since by Theorem 3 /, and /, are M-compact objects, taking into account
Theorem 4 we get (/,, 4,)= ﬂ_,(df’ 4;) and (/,, 4;)= rl(dk,ék).

je keK

Consider the ideal

‘ N d,,9d,) if G# &

9ceG

(m, ) = .
l(a, £) if G=¢@
and the ideals (d,,d;) (i¢(JUK)\G). To each of them there exists an M-ideal
(my, z;) of m such that
(my, 7)) =(d;, 6;) N(m, 3)
holds. From Proposition 9 it follows that
@ ={m, y)ic(JUK)\G}
is an independent M-system of m. By definition we have
(I! 2 ;‘l) — jDJ{{ o;) o q ( ] ‘S;)ﬁ("’ f) qﬁ("’j’ Z)

and

(i) = (@30 = N @00 = ) (om0, 20
kEK ke K\G ke K\G
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SinceJ\G and K\G are disjoint sets, Proposition 8 implies
(qu(; (mj’ ZJ)) U (k E[A(}(mk’ Xk)) = (’n’ 8).

Thus
[ N @,,95) if G#
(1, AUy, 4y) =  956¢
(a, &) if G=0@
is valid and the theorem is proved.

In [2] LepTiN has proved (among other results) that the sum of two closed
submodules of a linearly compact module is again closed, and so linearly compact.
The same holds for so-called ’in a narrow sense linearly compact’ modules, i.e.
for modules which are inverse limits of modules satisfying the descending chain
condition. As it has been remarked in [6], the concept of M-compactness is a general-
ization of this concept. So Theorem 5 can be regarded as a category-theoretical
generalization of LEPTIN's result.

The subobject (/, 1) of an object @< C will be called dense in a, if its M-closure
is (a, €).

By virtue of this definition, it is clear that a dense subobject (/, 1) cannot be
contained in any M-ideal of a. Moreover, according to Proposition 6 there is a
one-to-one correspondence between the M-ideals of a dense ideal (/, 4) and those of a.

If @ is an M-compact object such that (a, ) is a dense subobject of a, then a
will be called an M-compactification of a.

If @, and @, are M-compactifications of a, then by the remark made above
and in view of the Second Isomorphism Theorem, it is clear that the inverse systems
Q,, Q5 and Q,, induced by the structure M-spaces of a4, a, and a,, respectively,
are equivalent. However, a@, and @, need not be equivalent objects. For instance,

consider an M-radical object /0 and a direct product a,= J[ a(n;, ¢) of
i=1

M-objects a,,a,,.... If a is the discrete direct product U (a;, ¢;), then both
i=1

a,and a,=a, X[/ are M-compactifications of @ but @, and a, are not equivalent.

Problem. Has any object an M-compactification? If no, then give a necessary
and sufficient condition for the existence of M-compactifications of an object.

Now we prove the existence of an M-compactification of M-semi-simple
objects (they are objects whose M-radical is a zero object).

Theorem 6. Every M-semi-simple object has an M-compactification, moreover,
every M-semi-simple object is a dense subobject of a direct product of M-objects.

Proor. By Proposition 3 and Theorem 1 a€C can be embedded by a mo-
nomorphism « in a direct product of M-simple objects which is M-compact and
M-semi-simple. If (d, §) is the M-closure of (a, ), then according to Theorem 3 d
is an M-compact object, moreover, by Corollary 4, 12 of SuLiNsk1 [4] also d is M-
semi-simple. Thus d is a direct product of M-objects. By Proposition 6 a can be
embedded as a dense subobject in d.

Theorem 6 generalizes the statement of Satz 15 in LepTIN [2]. This theorem
asserts that any semi-simple ring can be embedded as a dense subring in a direct
product of linearly compact (topologically) simple rings.
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