On compact objects in categories

By R. WIEGANDT (Budapest)

To Prof. A. G. Kuroš on his 60th birthday

Introduction

In the paper [6] we have introduced the concept of *M*-compact objects in a category. The *M*-compact objects correspond to the 'in a narrow sense linearly compact' modules introduced by LEPTIN [2] in the category of modules. *M*-compact objects take an important part in the characterisation of *M*-semi-simple objects (cf. [6]).

It is the purpose of this paper to derive some results concerning M-compact objects. In § 1 we establish assertions used in the subsequent sections. Some of them are of some interest, and complete the results of [6] concerning the inverse

system belonging to an object.

In his paper [4] Suliński has defined the concept of M-representable ideals, and developed results concerning it. The aim of § 2 is to show a close relation between M-representable ideals and M-compact objects. It will turn out that in an M-compact object any ideal which contains the M-radical and which is an M-compact object, is M-representable and conversely, in an M-compact object any M-representable ideal is an M-compact object. Further, we obtain that any M-representable ideal of an M-compact M-semi simple object is a direct factor of this object.

In § 3 we introduce a closure operation on the subobjects of an object in a rather natural way and we prove that for *M*-compact objects this closure operation is topological. Thus *M*-compact objects can be considered as objects equipped with a topology. Making use of this closure operation we define dense subobjects of an object and also *M*-compactifications of an object. It will be proved that any *M*-semi-simple object has an *M*-compactification and can be embedded as a dense subobject in a direct product of *M*-objects.

§ 1. Preliminaries

Let C be a category. The objects and maps of C will be denoted by small Latin and small Greek letters, respectively. By definition C satisfies the following conditions (C₁) If $\alpha: a \rightarrow b$ and $\beta: b \rightarrow c$ are maps, then there is a uniquely defined map

 $\alpha\beta$: $a \rightarrow c$ which is called the product of the maps α and β ;

(C₂) If $\alpha: a \rightarrow b$, $\beta: b \rightarrow c$, $\gamma: c \rightarrow d$ are maps, then $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ holds;

 (C_3) For each object $a \in C$ there is a map ε_a : $a \rightarrow a$, called the identity map of

a such that for any $\alpha: b \to a$ and $\beta: a \to c$ we have $\alpha \varepsilon_a = \alpha$, $\varepsilon_a \beta = \beta$.

For the definitions of familiar concepts, such as monomorphism, epimorphism, equivalence, kernel, image, direct product, inverse limit, etc. we refer to the books [1], [3] and to the papers [4], [6], respectively. In this paper an epimorphism will always mean a normal epimorphism, and it will be supposed that the product of two normal epimorphisms is again a normal one. The subobject determined by the object a and the monomorphism α will be denoted by (a, α) . If the map $\xi: a \rightarrow b$ is an equivalence then we shall write $a \sim b(\xi, \xi^{-1})$ or only $a \sim b$, if there is no fear of ambiguity. The zero maps and identity maps will be denoted by ω and ε respectively, and the zero objects by 0.

We say that a diagram consisting of rows and columns is exact, if its rows and columns are exact.

As it was done in [4] and [6], we shall suppose that the category C satisfies the following additional requirements:

- (C4) C possesses zero objects;
- (C5) Every map has a kernel;
- (C₆) Every map has an image;
- (C₇) An image of an ideal by an epimorphism is always an ideal;
- (C₈) Every family of objects has a direct product and a free product;
- (C9) The class of all subobjects of any object is a set;
- (C_{10}) For each object $a \in C$ the set of all ideals of a is a complete lattice;
- (C11) Every inverse system has an inverse limit.

We shall need the analogous statements of the Noetherian Isomorphism Theorems.

First Isomorphism Theorem. Let $(k, \varkappa) \leq (d, \delta)$ be two ideals of an object a, and let

$$0 \rightarrow k \stackrel{\times}{\rightarrow} a \stackrel{\alpha}{\rightarrow} b \rightarrow 0$$

be an exact sequence. Denote the image of (d, δ) by the epimorphism α , by (m, χ) . Then there are such maps γ , β that

$$0 \quad 0$$

$$0 \rightarrow k \rightarrow d \rightarrow m \rightarrow 0$$

$$\downarrow^{\delta} \quad \downarrow^{\chi}$$

$$0 \rightarrow k \stackrel{\chi}{\rightarrow} a \stackrel{\alpha}{\rightarrow} b \rightarrow 0$$

$$\downarrow^{\delta} \quad \downarrow^{\chi}$$

$$0 \rightarrow c_{1} \rightarrow c_{2} \rightarrow 0$$

$$\downarrow^{\gamma} \quad \downarrow^{\beta}$$

$$0 \quad 0$$

is an exact commutative diagram.

For the proof we refer to [6] Theorem 2.1.

Second Isomorphism Theorem. Let (k, \varkappa) , (d_1, δ_1) and (d_2, δ_2) be ideals of an object $a \in C$ such that

$$(k, \varkappa) = (d_1, \delta_1) \cap (d_2, \delta_2),$$

 $(a,\varepsilon) = (d_1,\delta_1) \cup (d_2,\delta_2)$

are valid. If

$$0 \rightarrow k \rightarrow d_1 \rightarrow b_1 \rightarrow 0$$

and

$$0 \rightarrow d_2 \rightarrow a \rightarrow b_2 \rightarrow 0$$

are exact sequences, then the diagram

$$0 \quad 0 \quad 0$$

$$0 \rightarrow k \rightarrow d_1 \rightarrow b_1 \rightarrow 0$$

$$0 \rightarrow d_2 \rightarrow a \rightarrow b_2 \rightarrow 0$$

is exact and commutative.

The proof can be found in [4].

Combining the assertions of Theorem 2, 3 in [6] and Theorem 2, 5 of [4] we obtain

Proposition 1. Let

$$0 \rightarrow k \stackrel{\times}{\rightarrow} a \rightarrow b \rightarrow 0$$

and

$$0 \to d_i \stackrel{\delta_i}{\to} a \to b_i \to 0 \qquad (i = 1, 2)$$

be exact sequences. If

$$(k, \varkappa) = (d_1, \delta_1) \cap (d_2, \delta_2)$$

and

$$(a, \varepsilon) = (d_1, \delta_1) \cup (d_2, \delta_2)$$

hold, then b is a direct product of b_1 and b_2 : $b=b_1\times b_2(\alpha_1,\alpha_2;\beta_1,\beta_2)$ moreover, (b_i,β_i) (i=1,2) is the image of (d_i,δ_i) by α and

$$\operatorname{Ker} \alpha_1 = (b_2, \beta_2), \operatorname{Ker} \alpha_2 = (b_1, \beta_1)$$

hold.

We can prove also the converse statement of this proposition.

Proposition 2. Let

$$0 \rightarrow k \stackrel{\times}{\rightarrow} a \stackrel{\alpha}{\rightarrow} b_1 \times b_2(\pi_i; \varrho_i)$$
 $(i = 1, 2)$

be an exact sequence, and denote the complete counterimage of (b_i, ϱ_i) by (d_i, δ_i) (i = 1, 2). Then

$$(k, \varkappa) = (d_1, \delta_1) \cap (d_2, \delta_2)$$

and

$$(a, \varepsilon) = (d_1, \delta_1) \cup (d_2, \delta_2)$$

hold.

PROOF. The image of $(d_1, \delta_1) \cap (d_2, \delta_2)$ by α is $(b_1, \varrho_1) \cap (b_2, \varrho_2) = (0, \omega)$, so its complete counterimage by α is Ker $\alpha = (k, \varkappa)$.

Denote the union of (d_1, δ_1) and (d_2, δ_2) by (l, λ) . Now

$$0 \qquad 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$l \longrightarrow b_0 \longrightarrow 0$$

$$\downarrow \qquad \downarrow e_0$$

$$0 \rightarrow k \rightarrow a \stackrel{\alpha}{\rightarrow} b_1 \times b_2 \rightarrow 0$$

is an exact commutative diagram such that $(b_0, \varrho_0) = (b_1, \varrho_1) \cup (b_2, \varrho_2)$ holds Since by the Second Isomorphism Theorem

$$0 \longrightarrow b_{2} \longrightarrow b_{2} \longrightarrow b_{2} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \varrho_{2} \qquad \downarrow \varepsilon$$

$$0 \longrightarrow b_{1} \stackrel{\varrho_{1}}{\rightarrow} b_{1} \times b_{2} \stackrel{\pi_{2}}{\rightarrow} b_{2} \longrightarrow 0$$

is also an exact commutative diagram, so the complete counterimage of (b_2, ε) by π_2 is just (b_0, ϱ_0) . Since π_2 is an epimorphism, we get

$$(b_0, \varrho_0) = b_1 \times b_2 (\pi_i; \varrho).$$

Thus the assertion is proved.

We recall the definition of M-radical given in [6]. For this reason, consider a class M of objects belonging to C such that

- (i) If $a \in M$ and $a \sim b$ then $b \in M$;
- (ii) If $a, b \in M$ and $\alpha: a \rightarrow b$ is an epimorphism, then either α is a zero map, or $a \sim b(\alpha, \alpha_0^{-1})$.

The objects belonging to M will be called M-objects. We say that the ideal (d, δ) is an M-ideal of $a \in C$, if there is an exact sequence $0 \to d \xrightarrow{\delta} a \to b \to 0$ such that $b \in M$. The set M_a consisting of all M-ideals $(\neq (a, \varepsilon))$ of an object a is called the *structure M-space* of a

The *M*-radical of an object $a \in C$ is the intersection of all *M*-ideals of a. If a has no *M*-ideals, then its *M*-radical is (a, ε) , and a is called an *M*-radical object.

A subset Δ of M_a is called an *independent M-system*, of a, if for any M-ideals $(d_1, \delta_1), \ldots, (d_n, \delta_n) \in M_a$ and exact sequences

$$0 \rightarrow d_i \stackrel{\delta_i}{\rightarrow} a \rightarrow b_i \rightarrow 0 \qquad (i=1,\ldots,n)$$

the sequence

$$0 \to \bigcap_{i=1}^{n} (d_i, \delta_i) \to a \to b_1 \times ... \times b_n \to 0$$

is also exact. Every object has maximal independent M-systems, and the M-radical of an object is just the intersection of the M-ideals of any independent M-system of a (cf. [6]).

Any (not necessarily maximal) independent M-system Δ induces an inverse system Ω_{Δ} as follows (cf. [6]). Consider the set \mathbf{F}_{Δ} — a so-called filter — consisting of all finite intersections (c_i, γ_i) $(i \in I)$ of M-ideals belonging to Δ . We regard I as a partially ordered set by the definition: $i \ge j$ if and only if $(c_i, \gamma_i) \le (c_j, \gamma_j)$. For each $(c_i, \gamma_i) \in \mathbf{F}_{\Delta}$ let us consider an exact sequence

$$0 \rightarrow c_i \rightarrow a \stackrel{\alpha_i}{\rightarrow} b_i \rightarrow 0.$$

Using the First Isomorphism Theorem we get that for any ideals $(c_i, \gamma_i) \leq (c_j, \gamma_j)$ there is an epimorphism $\pi_i^i : b_i \rightarrow b_i$ such that

$$0 \quad 0$$

$$\downarrow \qquad \downarrow$$

$$0 \rightarrow c_i \rightarrow c_j \rightarrow m_j^i \rightarrow 0$$

$$\downarrow \qquad \downarrow$$

$$0 \rightarrow c_i \rightarrow a \xrightarrow{\beta_i} b_i \rightarrow 0$$

$$\downarrow^{\beta_j} \downarrow^{\pi_j^i}$$

$$0 \rightarrow b_j \xrightarrow{\varepsilon} b_j \rightarrow 0$$

$$\downarrow \qquad \downarrow$$

$$0 \qquad 0$$

is an exact commutative diagram, further we have $\beta_i \pi_j^i \pi_k^i = \beta_i \pi_k^i$ for any $i \ge j \ge k \in I$. Since β_i is an epimorphism, there follows $\pi_j^i \pi_k^i = \pi_j^i$. Thus $\Omega_A = [b_i, \pi_j^i]$ forms an inverse system, and there is a uniquely defined map, the so called *canonical map* of a belonging to Δ , β : $a \to \lim_{k \to \infty} \Omega_k$ such that $\beta \pi_i = \beta_i$ $(i \in I)$ holds where π_i means the projection π_i : $\lim_{k \to \infty} \Omega_k \to a_i$.

means the projection π_i : $\lim_{K \to a_i} \Omega_A \to a_i$. It is obvious that if $\Delta = \{(a_K, \delta_K) | k \in K\}$ is an independent M-system, then the elements $k \in K$ are just the minimal elements of the index set I of \mathbf{F}_A .

$$0 \rightarrow d_k \rightarrow a \rightarrow a_k \rightarrow 0$$
 $(k \in K)$

are exact sequences, then $\lim_{\Lambda} \Omega_{\Lambda}$ is a direct product of the objects a_k $(k \in K)$.

PROOF. According to the construction of $\Omega_{\Delta} = [b_i, \pi_j^i]$ any b_i is determined by the exact sequence

$$0 \to (c_i, \gamma_i) = \bigcap_{\text{finite}} (d_k, \delta_k) \to a \to b_i \to 0.$$

Since Δ is an independent M-system, b_i is a direct product $b_i = \prod_{\text{finite}} a_k(\tau_k^{(i)}, \vartheta_k^{(i)})$ of the objects a_k such that

$$0 \rightarrow d_k \rightarrow a \rightarrow a_k \rightarrow 0$$

is an exact sequence for all $k \in K$ occurring in the direct decomposition of b_i . Thus

by definition for the projections π_i : $\varprojlim \Omega_{\Delta} \to b_i$ the relation $\pi_i \pi_j^i = \pi_j$ is valid for all $i \ge j \in I$, and for any system of maps χ_i : $h \to b_i$ satisfying $\chi_i \pi_j^i = \chi_j$, there is a unique map χ : $h \to \varprojlim \Omega_{\Delta}$ such that $\chi \pi_i = \chi_i$ is valid for each $i \in I$.

We have to prove that $\lim_{k \to \infty} \Omega_{\Delta}$ is a direct product of the objects a_k $(k \in K)$.

Obviously we have *)

$$\varrho_k^{(i)} \colon \lim \, \Omega_{\Delta} \to a_k$$

for $\varrho_k^{(i)} = \pi_i \tau_k^{(i)}$ $(k \in K \subseteq I)$ and $\varrho_k^{(j)} = \varrho_k^{(i)}$ for $i \ge j$. Let h be an object and $\alpha_k \colon h \to a_k$ $(k \in K)$ a system of maps. Now we can complete this system of maps by setting $\chi_i^{(k)} = \alpha_k \vartheta_k^{(i)} \colon h \to b_i$. Clearly $\chi_i^{(k)} \pi_j^i = \chi_j^{(k)}$ is valid for all $i \ge j \in I$. Thus by the definition of the inverse limit there exists a unique map χ such that $\chi \pi_i = \chi_i^{(k)}$. So we get

$$\chi \varrho_k^{(i)} = \chi \pi_i \tau_k^{(i)} = \chi_i^{(k)} \tau_k^{(i)} = \alpha_k \vartheta_k^{(i)} \tau_k^{(i)} = \alpha_k,$$

therefore $\lim \Omega_{\Lambda}$ is indeed a direct product of the objects a_k $(k \in K)$.

Again, let $\Delta = \{(d_k, \delta_k) | k \in K\}$ be an independent M-system of the object a.

Theorem 2. If α denotes the canonical map $\alpha: a \to \varprojlim \Omega_{\Delta}$ then Ker $\alpha = \bigcap_{k=K} (d_k, \delta_k)$ holds.

PROOF. Denote $\bigcap_{k=K} (d_k, \delta_k)$ by (l, λ) . By Theorem 1 there is an equivalence

$$\xi : \lim_{\longleftarrow} \Omega_{\Lambda} \to \prod_{k \in K} a_k(\tau_k, \vartheta_k)$$

such that

$$0 \rightarrow d_k \rightarrow a \rightarrow a_k \rightarrow 0$$

is an exact sequence for each $k \in K$. This implies $\operatorname{Ker} \alpha = \operatorname{Ker} \beta$ $(\beta = \alpha \xi)$.

If $\beta_k = \beta \pi_k$, then we have $\lambda \beta_k = \omega$ for each $k \in K$. Thus ω is the uniquely defined map $\omega \colon l \to \prod_{k \in K} a_k (\tau_k, \vartheta_k)$ and this implies $\lambda \beta = \omega$.

Let $\gamma: c \to a$ be a map satisfying $\gamma\beta = \omega$. Now $\gamma\beta_k = \gamma\beta\pi_k = \omega$ holds for each $k \in K$, therefore there are maps $\gamma_k: c \to d_k$ $(k \in K)$ such that $\gamma_k \delta_k = \gamma$. Because of $(l, \lambda) = \bigcap_{k \in K} (d_k, \delta_k)$ there exists a map $\gamma': c \to l$ such that $\gamma'\lambda = \gamma$ holds. Thus the assertion $\ker \beta = (l, \lambda)$ is proved.

As an immediate consequence of Theorem 2 we obtain

Proposition 3. If Δ is a maximal independent M-system of a and α is the canonical map α : $a \to \underline{\lim} \Omega_{\Delta}$, then Ker α is just the M-radical of a.

In [6] we have introduced the concept of M-compactness. Let us consider a maximal independent M-system Δ_0 of an object a. The object a is said to be M-compact, if the canonical map $\alpha: a \to \lim_{n \to \infty} \Omega_{\Delta 0}$ is an epimorphism.

^{*} The maps having indices in brackets, essentially, do not depend on these indices.

Proposition 4. If a is an M-compact object, then there is a one-to-one correspondence between the M-ideals of a and those of $\lim \Omega_{A_0}$.

PROOF. Applying the First Isomorphism Theorem, we have the exact commutative diagram

$$0 \longrightarrow 0$$

$$0 \longrightarrow k \longrightarrow d \longrightarrow m \longrightarrow 0$$

$$0 \longrightarrow k \stackrel{\times}{\longrightarrow} a \longrightarrow \lim_{\longrightarrow} \Omega_{d_0} \longrightarrow 0$$

$$0 \longrightarrow c_1 \longrightarrow c_2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow 0$$

where (k, \varkappa) means the M-radical of a, further (d, δ) and (m, χ) are M-ideals of a and $\lim_{n \to \infty} \Omega_{A_0}$ respectively. Thus $(d, \delta) \leftrightarrow (m, \chi)$ induces a one-to-one correspondence between the M-ideals of a and $\lim_{n \to \infty} \Omega_{A_0}$.

Let M_a denote the structure M-space of an object a. M_a induces a filter \mathbb{F}_M , and there belongs an inverse system Ω_M to \mathbb{F}_M . In [6] we have proved

Proposition 5. If Δ_0 denotes a maximal independent M-system of a then the inverse system Ω_{Δ_0} is a cofinal subsystem of Ω_M , and so $\lim_{M \to \infty} \Omega_{\Delta_0} \sim \lim_{M \to \infty} \Omega_M$ hlods.

The class M satisfying the conditions (i) and (ii) is said to be a *modular class* of objects, if M satisfies also the following conditions (cf. [4], [6]):

(iii) If (p, π) is an ideal of a and $p \in M$, then there is a uniquely defined ideal $(m, \chi) \in M_a$ such that $(p, \pi) \cap (m, \chi) = (0, \omega)$;

(iv) If (l, λ) is an ideal of a, and (q, ϑ) is an M-ideal of l, then $(q, \vartheta\lambda)$ is an ideal of a

A non-zero object a is called *simple* if its only ideals are $(0, \omega)$ and (a, ε) . Throughout this paper we suppose that M denotes a modular class of simple objects.

Proposition 6. (see [4], Proposition 4.7). Let (l, λ) be an ideal of an object $a \in C$. If (d, δ) is an M-ideal of a, then $(d, \delta) \cap (l, \lambda)$ is either an M-ideal of l or it is equal to (l, ε) . Conversely, any M-ideal (q, ϑ) of l can be represented as an intersection $(q, \vartheta \lambda) = (d, \delta) \cap (l, \lambda)$ where (d, δ) is an M-ideal of a. The correspondence $(q, \vartheta) \leftrightarrow (d, \delta)$ is one-to-one.

As a consequence of Proposition 6 one can obtain

Proposition 7. (see [4] Theorem 4. 10) If (l, λ) is an ideal of an object $a \in C$ and (c_a, γ_a) denotes the M-radical of a then $(c_l, \gamma_l \lambda) = (c_a, \gamma_a) \cap (l, \lambda)$ is valid where (c_l, γ_l) denotes the M-radical of l.

§ 2. M-representable ideals

Following Suliński [4], we say that the ideal (l, λ) of an object $a \in C$ is *M-representable*, if (l, λ) can be represented as the intersection of all *M*-ideals containing it.

In this section we shall show a close connection between the M-compact objects and M-representable ideals. First we prove the following statement.

Proposition 8. If $\Delta = \{(d_i, \delta_i) | i \in I\}$ is a not necessarily maximal independent M-system of an M-compact object a, and J, K are subsets of I such that $J \cup K = I$ and $J \cap K = \emptyset$, then

$$\left(\bigcap_{i\in I}(d_i,\delta_i)\right)\cup\left(\bigcap_{k\in K}(d_k,\delta_k)\right)=(a,\varepsilon)$$

holds.

PROOF. Consider exact sequences

$$0 \rightarrow d_i \rightarrow a \rightarrow a_i \rightarrow 0$$
 $(i \in I)$

and denote $\bigcap_{i \in I} (d_i, \delta_i)$, $\bigcap_{j \in J} (d_j, \delta_j)$ and $\bigcap_{k \in K} (d_k, \delta_k)$ by (l, λ) , (l_J, λ_J) and (l_K, λ_K) , respectively. Since Δ is an independent M-system, so by Theorem 1 the sequences

$$0 \to l_J \to a \to \prod_{j \in J} a_j \to 0,$$

$$0 \to l_K \to a \to \prod_{k \in K} a_k \to 0,$$

$$0 \to l \to a \xrightarrow{\alpha} \prod_{j \in J} a_j \times \prod_{k \in K} a_k \to 0$$

are exact. Consider the complete counterimage of $\prod_{j \in I} a_j$ and $\prod_{k \in K} a_k$ by α , they are obviously (l_K, λ_K) and (l_J, λ_J) , respectively. Thus by Proposition 2

$$(l_I, \lambda_I) \cup (l_K, \lambda_K) = (a, \varepsilon)$$

holds, and the assertion is proved.

Theorem 3. Let M be a modular class of simple objects. If (l, λ) is an M-representable ideal of an M-compact object a, then the object l is also M-compact.

PROOF. Consider a maximal independent M-system $\Delta_1 = \{(d_j, \delta_j) | i \in J\}$ of M-ideals of a containing the ideal (l, λ) . By Zorn's Lemma there exists such an M-system.

We establish the relation $(l, \lambda) = \bigcap_{j \in J} (d_j, \delta_j)$. $(l, \lambda) \leq \bigcap_{j \in J} (d_j, \delta_j)$ is obviously true. To prove $(l, \lambda) \geq \bigcap_{j \in J} (d_j, \delta_j)$ let us consider the sequence

$$0 \to \bigcap_{j \in J} (d_j, \delta_j) \stackrel{\times}{\to} a \stackrel{\alpha}{\to} \lim_{\longleftarrow} \Omega_{\Delta_1} \to 0,$$

where

$$\Delta_1 = \{(d_j, \delta_j) | j \in J\}.$$

According to Theorem 2 this sequence is exact. Consider a map $\gamma: c \to a$ such that $\gamma \alpha = \omega$. Since $\ker \alpha = \bigcap_{j \in J} (d_j, \delta_j)$ holds, there exists a map $\gamma': c \to \ker \alpha$ such that $\gamma' \varkappa = \gamma$.

By the First Isomorphism Theorem we have for any M-ideal (d_j, δ_j) $(j \in J)$ the following exact commutative diagram

$$0 \to \bigcap_{j \in J} (d_j, \delta_j) \to d_j \xrightarrow{\downarrow} m_j \xrightarrow{\downarrow} 0$$

$$0 \to \bigcap_{j \in J} (d_j, \delta_j) \to a \xrightarrow{\alpha} \lim_{\longleftarrow} \Omega_{d_1} \to 0$$

$$0 \longrightarrow c_1 \xrightarrow{\downarrow} c_2 \longrightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longrightarrow c_1 \longrightarrow c_2 \longrightarrow 0$$

and it is easy to see that $\Delta' = \{(m_j, \chi_j) | j \in J\}$ forms a maximal independent M-system of $\varprojlim \Omega_{d_1}$. If (d, δ) is an arbitrary M-ideal containing (l, λ) , and (m, χ) is its image by α , then with respect Proposition 5 to (m, χ) there is an intersection $\bigcap (m_j, \chi_j)$ such that $\bigcap (m_j, \chi_j) \leq (m, \chi)$. Hence for their complete counterimages $\bigcap (d_j, \delta_j) \leq (d, \delta)$ holds. Thus there exists a map $\gamma_j : c \to d$ such that $\gamma_j \delta_j = \gamma$, moreover there exists a map $\gamma_0 : c \to \bigcap (d, \delta) \leq (l, \lambda)$ such that $\gamma_0 \lambda = \gamma$. Hence $(l, \lambda) = \operatorname{Ker} \alpha$ is proved.

Complete the *M*-system Δ_1 to an independent *M*-system Δ of *a* Thus we have $\Delta = \Delta_1 \cup \Delta_2$ where Δ_2 consists of certain *M*-ideals (d_k, δ_k) $(k \in K)$ not containing (l, λ) . So $J \cap K = \emptyset$ is valid, further denote $J \cup K$ by *I*.

To prove the theorem we need

Proposition 9. Consider the ideals $(q_k, \vartheta_k \lambda) = (d_k, \delta_k) \cap (l, \lambda)$ $(k \in K)$. The system $\Phi = \{(q_k, \vartheta_k) | k \in K\}$ is an independent M-system of the object l. If Δ is a maximal independent M-system, then so is Φ .

By Proposition 8 for any finite intersection $(f, \varphi) = \bigcap_{\text{finite}} (d_k, \delta_k)$ we have $(f, \varphi) \cup (l, \lambda) = (q, \varepsilon)$, and so, using the Second Isomorphism Theorem we obtain the exact commutative diagram

$$0 \qquad 0 \qquad 0 \qquad 0$$

$$0 \rightarrow (f, \varphi) \cap (l, \lambda) \rightarrow l \rightarrow b' \rightarrow 0$$

$$0 \longrightarrow f \longrightarrow a \rightarrow \Pi a_k \rightarrow 0$$

Thus Φ is an independent M-system of l.

Suppose Φ is not maximal, i.e. there exists an ideal (q, θ) of l, such that $\Phi' = \Phi \cup \{(q, \theta)\}$ is also independent. By Proposition 6

$$(q, \vartheta \lambda) = (d, \delta) \cap (l, \lambda)$$

holds for an M-ideal (d, δ) of a. Consider any finite intersection $\bigcap_{\text{finite}} (d_k, \delta_k)$. By Proposition 5 there are finite many ideals of Δ such that

$$\bigcap_{\text{finite}} (d_i, \, \delta_i) \leq \bigcap_{\text{finite}} (d_k, \, \delta_k) \cap (d, \, \delta) = (n, \, v)$$

holds. From Proposition 8 there follows

$$\left(\bigcap_{\text{finite}} (d_i, \delta_i)\right) \cup (l, \lambda) = (a, \varepsilon),$$

hence

$$(n, v) \cup (l, \lambda) = (a, \varepsilon)$$

is valid too.

The intersection $(n, v) \cap (l, \lambda) = (g, \psi)$ is obviously a finite intersection of ideals of Φ' and (q, θ) is one of the components of this intersection. Since Φ' is independent, there is an exact sequence

$$0 \to f \to l \to a' \times \prod_{\text{finite}} a_k \to 0$$

such that

$$0 \rightarrow q \rightarrow l \rightarrow a' \rightarrow 0$$

is an exact sequence. Using the Second Isomorphism Theorem we obtain the following exact commutative diagrams:

and

$$\begin{array}{cccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow q \rightarrow l \rightarrow a' \rightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow d \rightarrow a \rightarrow a'' \rightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow \\
0 & \downarrow &$$

Hence $\Delta_2 \cup \{d, \delta\}$ is an independent M-system such that (d, δ) does not contain (l, λ) . This contradicts the choice of Δ_2 , and thus the proposition results proved.

Now we continue the proof of Theorem 3. Assume that Δ is a maximal independent M- system of α . In view of Theorem 1 and Proposition 9 we obtain

$$(1) \qquad \lim_{\longleftarrow} \Omega_{\Phi} \sim \prod_{k \in K} a_k \sim \lim_{\longleftarrow} \Omega_{d_2}.$$

Let (l_0, λ_0) denote the *M*-radical of a, and denote $\bigcap_{k \in K} (d_k, \delta_k)$ by (l', λ') . Now $(l_0, \lambda_0) = (l, \lambda) \cap (l', \lambda')$ is valid, and Proposition 8 implies

$$(a, \varepsilon) = (l, \lambda) \cup (l', \lambda').$$

Taking into account the M-compactness of a, from Theorems 1 and 2 we infer by the Second Isomorphism Theorem that

$$0 \quad 0 \quad 0$$

$$0 \rightarrow l_0 \rightarrow l \rightarrow b_0 \rightarrow 0$$

$$0 \rightarrow l' \rightarrow a \rightarrow \prod_{k \in K} a_k \rightarrow 0$$

is an exact commutative diagram. Hence by (1) $b_0 \sim \underline{\lim} \ \Omega_{\Phi}$ is valid. Thus l is M-compact, and Theorem 3 is proved.

Corollary. If a is an M-compact, M-semi-simple object, then every M-reperesentable ideal of a is a direct factor of a.

If (l, λ) is an M-representable ideal of a, then by Theorem 3 the object l is M-compact. Hence we have the exact commutative diagram

and so (l, λ) is a direct factor of a.

The statement of this corollary is analogous to well-known facts in the category

of modules (cf [5]).

Now we show by a simple example that an M-compact object a in which every M-representable ideal is a direct factor, need not be M-semi simple. For this sake, let a be a direct product of an M-radical object $l \neq 0$ and an object $p \in M$: $a = l \times p$ $(\pi_1, \pi_2; \varrho_1, \varrho_2)$. It is obvious that $(l, \varrho_1) \neq (0, \omega)$ is the M-radical of a, and every M-representable ideal (namely only (l, ϱ_1)) is a direct factor of a.

The converse statement of Theorem 3 is also true.

Theorem 4. Let M be a modular class of simple objects. If l and a are M-compact objects and (l, λ) is an ideal of a containing the M-radical of a, then (l, λ) is an M-representable ideal of a, moreover, (l, λ) is the intersection $\bigcap_{j \in J} (d_j, \delta_j)$ of M-ideals which form an independent M-system $\Delta_J = \{(d_j, \delta_j) | j \in J\}$ of a.

PROOF. Consider the set of all M-ideals of a containing (l, λ) , and choose a maximal independent M-system $\Delta_K = \{(d_k, \delta_k) | k \in K\}$ from these M-ideals. Complete Δ_K to a maximal independent M-system Δ of a. Obviously $\Delta = \Delta_K \cup \Delta_J$ holds where $\Delta_J = \{(d_j, \delta_j) | j \in J\}$ denotes an independent M-system consisting of M-ideals not containing (l, λ) .

Let us denote the M-radical of a by (c, γ) . Taking into account Proposition 3

and Theorem 1, we obtain the exact sequence

$$0 \to c \to a \to \prod_{i \in I} a_i \to 0 \qquad (I = K \cup J)$$

where a_i ($i \in I$) are M-objects such that

$$0 \rightarrow d_i \stackrel{\delta_i}{\rightarrow} a \rightarrow a_i \rightarrow 0$$

is an exact sequence, meanwhile (d_i, δ_i) ranges over the maximal independent Msystem 4.

Consider the set $\Phi = \{(q_k, \vartheta_k) | k \in K\}$ such that $(q_k, \vartheta_k \lambda) = (d_k, \delta_k) \cap (l, \lambda)$. According to Proposition 9 Φ is a maximal independent M-system of l.

Since l is an M-compact object so by Theorem 1 and Proposition 3 we get the exact sequence

$$0 \to c \stackrel{\gamma_1}{\to} l \to \prod_{k \in K} a_k \to 0$$

and here, according to Proposition 7 (c, γ_1) is the M-radical of l. The First Isomorphism Theorem yields the following exact commutative diagram

$$0 \rightarrow c \rightarrow \stackrel{\downarrow}{l} \rightarrow \prod_{\substack{k \in K \\ k \in K}} a_k \stackrel{*}{\rightarrow} 0$$

$$0 \rightarrow c \rightarrow \stackrel{\downarrow}{a} \stackrel{\downarrow}{\rightarrow} \prod_{\substack{i \in I \\ i \in I}} a_i \rightarrow 0$$

$$0 \rightarrow \stackrel{\downarrow}{b} \rightarrow \prod_{\substack{j \in J \\ j \in J}} a_j \rightarrow 0$$

Hence Ker $\varphi = (l, \lambda)$ holds.

According to Proposition 8 there follows from the Second Isomorphism Theorem that

$$0 \longrightarrow c \longrightarrow \bigcap_{j \in J} (d_j, \delta_j) \longrightarrow b' \longrightarrow 0$$

$$0 \longrightarrow \bigcap_{k \in K} (d_k, \delta_k) \longrightarrow a \longrightarrow \prod_{k \in K} a_k \longrightarrow 0$$

is an exact commutative diagram. Thus the image of $\bigcap_{i \in J} (d_i, \delta_i)$ by $\alpha \pi$ is $(0, \omega)$. Hence $\bigcap_{j \in J} (d_j, \delta_j) \le (l, \lambda)$ is valid. Thus $(l, \lambda) = \bigcap_{j \in J} (d_j, \delta_j)$ holds and (l, λ) is an M-representable ideal of a.

§ 3. M-closure operation

We can introduce a closure operation in the set of all subobjects of an object $a \in C$ in a natural way.

Again, let M denote a modular class of simple objects, and let (l, λ) be a subobject of the object a. Denote the intersection of all M-ideals of a containing (l, λ) by (l, λ) . If the set of such M-ideals is empty, then we put $(l, \lambda) = (a, \varepsilon)$.

The ideal $(l, \bar{\lambda})$ will be called the *M-closure* of the subobject (l, λ) .

In other words: consider the structure M-space of a, and denote the set of all intersections of M-ideals by C. C is a closure-system, and the closure operation belonging to C is just the M-closure operation. The ideals with $(l, \lambda) = (l, \lambda)$ (i.e. the M-representable ideals) will be called M-closed ideals.

Now the question arises: does the M-closure operation define a topology on a? (i.e.: Is the union of finitly many M-closed ideals again closed?) Concerning

this problem we establish the following result.

Theorem 5. If a is an M-compact object, then the M-closure operation defines a topology on a.

PROOF. It is sufficient to prove that the union of any two M-closed ideals

 (l_1, λ_1) , (l_2, λ_2) is again M-closed.

Consider the set of all *M*-ideals containing both of (l_1, λ_1) and (l_2, λ_2) , and choose a maximal independent *M*-system $\Delta_G = \{(d_g, \delta_g) | (g \in G\} \text{ of such ideals.}$ Complete Δ_G to maximal independent *M*-systems $\Delta_J = \{(d_j, \delta_j) | j \in J\}$ and $\Delta_K = \{(d_k, \delta_k) | k \in K\}$ of *M*-ideals containing (l_1, λ_1) and (l_2, λ_2) , respectively.

It is obvious that $J \cap K = G$ is valid, moreover $\{(d_i, \delta_i) | i \in (J \cup K) \setminus G\}$ forms

an independent M-system of a.

Since by Theorem 3 l_1 and l_2 are M-compact objects, taking into account Theorem 4 we get $(l_1, \lambda_1) = \bigcap_{j \in J} (d_j, \delta_j)$ and $(l_2, \lambda_2) = \bigcap_{k \in K} (d_k, \delta_k)$.

Consider the ideal

$$(m,\chi) = \begin{cases} \bigcap_{g \in G} (d_g, \delta_g) & \text{if } G \neq \emptyset \\ (a, \varepsilon) & \text{if } G = \emptyset \end{cases}$$

and the ideals (d_i, δ_i) $(i \in (J \cup K) \setminus G)$. To each of them there exists an *M*-ideal (m_i, χ_i) of m such that

$$(m_i, \chi_i) = (d_i, \delta_i) \cap (m, \chi)$$

holds. From Proposition 9 it follows that

$$\Phi = \{m_i, \chi_i\} | i \in (J \cup K) \setminus G\}$$

is an independent M-system of m. By definition we have

$$(l_1,\lambda_1) = \bigcap_{j \in J} (d_j,\delta_j) = \bigcap_{j \in J \setminus G} (d_j,\delta_j) \cap (m,\chi) = \bigcap_{j \in J \setminus G} (m_j,\chi)$$

and

$$(l_2,\lambda_2)=\bigcap_{k\in K}(d_k,\delta_k)=\bigcap_{k\in K\setminus G}(d_k,\delta_k)\cap (m,\chi)=\bigcap_{k\in K\setminus G}(m_k,\chi_k).$$

Since $J \setminus G$ and $K \setminus G$ are disjoint sets, Proposition 8 implies

$$\left(\bigcap_{j\in J\setminus G}(m_j,\chi_j)\right)\cup\left(\bigcap_{k\in K\setminus G}(m_k,\chi_k)\right)=(m,\varepsilon).$$

Thus

$$(l_1, \lambda_1) \cup (l_2, \lambda_2) = \begin{cases} \bigcap_{g \in G} (d_g, \delta_g) & \text{if} \quad G \neq \emptyset \\ (a, \varepsilon) & \text{if} \quad G = \emptyset \end{cases}$$

is valid and the theorem is proved

In [2] LEPTIN has proved (among other results) that the sum of two closed submodules of a linearly compact module is again closed, and so linearly compact. The same holds for so-called 'in a narrow sense linearly compact' modules, i.e. for modules which are inverse limits of modules satisfying the descending chain condition. As it has been remarked in [6], the concept of *M*-compactness is a generalization of this concept. So Theorem 5 can be regarded as a category-theoretical generalization of LEPTIN's result.

The subobject (l, λ) of an object $a \in C$ will be called *dense* in a, if its M-closure is (a, ε) .

By virtue of this definition, it is clear that a dense subobject (l, λ) cannot be contained in any M-ideal of a. Moreover, according to Proposition 6 there is a one-to-one correspondence between the M-ideals of a dense ideal (l, λ) and those of a.

If \overline{a} is an M-compact object such that (a, α) is a dense subobject of \overline{a} , then \overline{a} will be called an M-compactification of a.

If \bar{a}_1 and \bar{a}_2 are *M*-compactifications of a, then by the remark made above and in view of the Second Isomorphism Theorem, it is clear that the inverse systems Ω_a , $\Omega_{\bar{a}_1}$ and $\Omega_{\bar{a}_2}$ induced by the structure *M*-spaces of a, \bar{a}_1 and \bar{a}_2 , respectively, are equivalent. However, \bar{a}_1 and \bar{a}_2 need not be equivalent objects. For instance,

consider an M-radical object $l \neq 0$ and a direct product $\bar{a}_1 = \prod_{i=1}^{\infty} a_i(\pi_i, \varrho_i)$ of

M-objects a_1, a_2, \ldots If a is the discrete direct product $\bigcup_{i=1}^{\infty} (a_i, \varrho_i)$, then both \bar{a}_1 and $\bar{a}_2 = \bar{a}_1 \times l$ are *M*-compactifications of a but \bar{a}_1 and \bar{a}_2 are not equivalent.

Problem. Has any object an M-compactification? If no, then give a necessary and sufficient condition for the existence of M-compactifications of an object.

Now we prove the existence of an M-compactification of M-semi-simple objects (they are objects whose M-radical is a zero object).

Theorem 6. Every M-semi-simple object has an M-compactification, moreover, every M-semi-simple object is a dense subobject of a direct product of M-objects.

PROOF. By Proposition 3 and Theorem 1 $a \in C$ can be embedded by a monomorphism α in a direct product of M-simple objects which is M-compact and M-semi-simple. If (d, δ) is the M-closure of (a, α) , then according to Theorem 3 d is an M-compact object, moreover, by Corollary 4, 12 of SULIŃSKI [4] also d is M-semi-simple. Thus d is a direct product of M-objects. By Proposition 6 a can be embedded as a dense subobject in d.

Theorem 6 generalizes the statement of Satz 15 in LEPTIN [2]. This theorem asserts that any semi-simple ring can be embedded as a dense subring in a direct product of linearly compact (topologically) simple rings.

References

- [1] A. G. KUROSCH-A. CH. LIWSCHITZ-E. G. SCHULGEIFER-M. S. ZALENKO, Zur Theorie der Kategorien, Berlin, 1963.
- [2] H. LEPTIN, Linear kompakte Moduln und Ringe, I, II. Math. Z., 62 (1955), 241-269; 66 (197), 289-327.

- [3] B. MITCHELL, Theory of categories, New York, 1965.
 [4] A. SULIŃSKI, The Brown-McCoy radical in categories, Fund. Math., 54 (1966) 23—41.
 [5] R. WIEGANDT, Über halbeinfache linear kompakte Ringe, Studia Sci. Math. Hungar., 1 (1966) 31—38.
 [6] R. WIEGANDT, Radical and semi-simplicity in categories, Acta Math. Acad. Sci. Hungar., 19 (1968) 345—364.

(Received November 10, 1967.)